NLPJOB Version 2.0: A Fortran Code for
Multicriteria Optimization

- User’s Guide -

Address: Prof. Dr. K. Schittkowski
Department of Mathematics
University of Bayreuth
D - 95440 Bayreuth

Phone: 4921 553278 (office)
+921 32887 (home)

Fax: +921 35557

E-mail: klaus.schittkowski@uni-bayreuth.de
Web: http://www.klaus-schittkowski.de
Date: April 2003

Abstract

The Fortran subroutine NLPJOB solves smooth nonlinear multiobjective
or multicriteria problems, respectively, by a transformation into a scalar non-
linear program. Provided are 15 different possibilities to perform the transfor-
mation, depending on the preferences of the user. The subproblem is solved
by the sequential quadratic programming code NLPQL. The usage of the code
is outlined and an illustrative example is presented.

Keywords: multicriteria optimization, multiobjective optimization, SQP, sequen-
tial quadratic programming, nonlinear programming, numerical algorithm, Fortran
codes

1 Introduction

A multicriteria problem consists of a vector-valued objective function to be mini-
mized, and of some equality or inequality constraints, i.e.,

min (fi(x),..., fi(z))
gj(x) =0 , j=1,...,m., (1)
x e R": gj(x) >0 s J=me+1,...,m,
<<z

u

with continuously differentiable functions fi(x), ..., fi(z) and g1(z), ..., gm(x).

The above formulation, however, must be interpreted in an alternative way.
Instead of one objective function, we have [objectives which we want to reduce
subject to the constraints. Since some of the objective functions may conflict with
others, one has to find an appropriate compromise depending on priorities of the
user. The ideal situation is to compute a vector x* with

(fl(x*)7 . 'afl(l‘*)) = (fl*v s 7fl*>

where each f, 7 = 1,...,[, is the individual minimum value of the corresponding
scalar problem

min f;(z)
gi(x) =0 ,j=1,...,m, (2)
zrelR": gj(x)>0 ,j=m.+1,....m,

IL‘[SIESZEU

fort =1, ..., [. But one has to expect that when reducing one objective function,
another one will increase, so that the ideal objective function vector
(ffa s 'afl*)

will be approximated at most.
Thus, we define the term optimality in a different way. A point x* is said to be
Pareto-optimal for the multicriteria problem, if there is no other vector x € IR™ with

filz) < fi(z")

foralli=1, ..., 1 and

filz) < fi(z")

for at least one i, « = 1, ..., [. Alternative notations are functional efficient or
efficient point. The set of all Pareto-optimal points defines a certain boundary, which
is convex in case of convex individual functions. Section 4 contains an example for
which this set is easily approximated, see Figure 1.

The numerical computation of all efficient points of a multicriteria or vector
optimization problem is extremely expensive with respect to calculation time and
depends also on certain assumptions, e.g., convexity, which are often not satisfied in
practice. On the other hand, there are many different alternative ways to compute at
least one efficient point by defining a certain substitute scalar problem which is then
solved by any standard nonlinear programming method. The choice of the individual
approach and the corresponding weights depends on the special application problem
to be solved, and the priorities of the user.

Since, however, any decision could be very vague at least in the beginning, it
is highly useful to have an interactive algorithm which allows to modify the scalar
transformation or the weights during the design process. Efficient points evaluated
during an interactive session, must be saved and retrieved whenever desirable. An
interactive optimization system EASY-OPT is available to run NLPJOB interac-
tively from a GUI under MS-Windows, see Schittkowski [6].

A deeper treatment of multicriteria optimization and some numerical experi-
ments are found in Osyczka [3], more applications from engineering design in Es-
chenauer, Koski, and Osyczka [1].

2 The Transformation into a Scalar Nonlinear Pro-
gram

The Fortran code NLPJOB introduced in this paper, offers 15 different possibilities
to transform the objective function vector into a scalar function. Depending on the
selected method, additional constraints must be added. The following options are
available:

(1) Weighted sum:
The scalar objective function is the weighted sum of individual objectives, i.e.,

flz) =wifi(x)+ ... +wfi(z) ,

where wy, ..., w; are non-negative weights given by the user. When we use
positive weights and a convex problem, the resulting optimal solutions of the
substitute problem are efficient points.

(2)

(3)

(4)

(5)

Hierarchical optimization method:

The idea is to formulate a sequence of [scalar optimization problems with
respect to the individual objective functions subject to bounds on previously
computed optimal values, i.e., we minimize

flz):=filz),i=1,...,1
subject to the original and the additional constraints
fJ(I) <= (1+€J/100)f;, j=1,...;1—1,

where ¢; is the given coefficient of the relative function increment as defined
by the user and where f7 is the individual minimum, see (3). It is assumed
that the objective functions are ordered with respect to their importance.

Trade-off method:
One objective is selected by the user and the other ones are considered as
constraints with respect to individual minima, i.e.,

f(@) = fiz)

is minimized subject to the original and some additional constraints of the
form
fj(.%) <=¢€;, g=1,...,01,75<>1,

where ¢; is a bound value of the j-th objective function as provided by the
user.

Method of distance functions in L1-norm:
A sum of absolute values of the differences of objective functions from prede-

termined goals ¥y, ..., y; is minimized, i.e.,
f(@) = filx) =yl + ... + | filx) —wl -
The goals yi, ..., y; are given by the user and their choice requires some

knowledge about the ideal solution vector.

Method of distance functions in L2-norm:
A sum of squared values of the differences of objective functions from prede-
termined goals 1, ..., y; is minimized,

fl@) = (filz) —9)* + .+ (filz) =)
Again the goals yq, ..., y; are provided by the user.

(6)

(7)

(8)

(9)

(10)

(11)

Global criterion method:
The scalar function to be minimized, is the sum of relative distances of indi-
vidual objectives from their known minimal values, i.e.,

f(@) = (fule) = NI+ 4 (le) = SO/

where f* is the i-th optimal function value obtained by minimizing f;(x) sub-
ject to original constraints.

Global criterion method in Ly;-norm:
The scalar function to be minimized, is the sum of squared distances of indi-
vidual objectives from their known optimal values, i.e.,

fla) = ((ful@) = /) + o+ (L) = D)
where f7 is the i-th optimal function value.

Min-max method no. 1:
The maximum of absolute values of all objectives is minimized, i.e.,

flz):=max { |fi(x)],i=1,...,1} .

Min-max method no. 2:
The maximum of all objectives is minimized, i.e.,

flz):=max{ fi(x), i=1,...,01} .

Min-max method no. 3:
The maximum of absolute distances of objective function values from given
goals vy, ..., y; is minimized, i.e.,

flz):=max { |fi(x) —y|,i=1,...,01} .
The goals ¥y, ..., y; must be determined by the user.

Min-max method no. 4:
The maximum of relative distances of objective function values from ideal
values is minimized, i.e.,

f(x) == max { (fi(x) = f)/IfF],i=1,....0} .

(12) Min-max method no. 5:
The maximum of weighted relative distances of objective function values from
individual minimal values is minimized, i.e.,

f(@) =max { wi(fi(z) = f{)/IfF] i=1....1} .
Weights must be provided by the user.

(13) Min-max method no. 6:
The maximum of weighted objective function values is minimized, i.e.,

flz) =max {w;fi(x),i=1,....1} .
Weights must be provided by the user.

(14) Weighted global criterion method:
The scalar function to be minimized, is the weighted sum of relative distances
of individual objectives from their goals, i.e.,

f(@) =wi(fi(z) —y)/yn + ...+ file) —u)/y

The weights wy, ..., w; and goals v, ..., y; must be set by the user.

(15) Weighted global criterion method in L2-norm:
The scalar function to be minimized, is the weighted sum of squared relative
distances of individual objectives from their goals, i.e.,

f@) = wi((fil@) —y)/p)* + -+ wl(filx) —w)/m)* -

The weights wy, ..., w; and goals vy, ..., y; must be set by the user.

In some cases we have to know the ideal values f7, ..., f/, which must be com-
puted initially. Thus, the numerical solution of the corresponding problem requires
additional efforts.

3 Program Documentation

NLPJOB is implemented in form of a Fortran subroutine. The scalar nonlinear
programs are solved by the SQP code NLPQL, see Schittkowski [4, 5]. If analytical
derivatives are not available, simultaneous function calls can be used for gradient
approximations, for example by forward differences, two-sided differences, or even
higher order formulae. In some situations, the new scalar objective function consists

of the maximum of smooth functions, of the maximum of absolute values of smooth
functions, or of a sum of absolute values of smooth functions. In these cases, addi-
tional variables and constraints are introduced to get smooth nonlinear programs.
The transformation is standard and not discussed in detail.

Usage:

CALL NLPOBJ(N,ME MILL,LN,LM,MODEL,IMIN, MMAX NMAX,

~

X,F,G, XL, XU IOUT,IPRINT,DF,DG,U, LMNN2 W FK,
FW,ACC,SCBOU,MAXFUN,MAXIT,IFAIL,WA,LWA,
KWA,LKWA,ACT,LACT)

Definition of the parameters:

N:

ME :
MI :

L:

LN :

Number of optimization variables.

Number of equality constraints.

Number of inequality constraints.

Number of objective functions.

Number of variables of the scalar subproblem depending
on the transformation:

MODEL=1 - LN=N
MODEL=2 - LN=N
MODEL=3 - LN=N
MODEL=4 - LN=N+L
MODEL=5 - LN=N
MODEL=6 - LN=N
MODEL=7 - LN=N
MODEL=8 - LN=N+1
MODEL=9 - LN=N+1

MODEL=10 - LN=N+1
MODEL=11 - LN=N+1
MODEL=12 - LN=N+1
MODEL=13 - LN=N+1
MODEL=14 - LN=N
MODEL=15 - LN=N

LM :

MODEL :
IMIN :

MMAX :

NMAX :

X(LN) :

G(MMAX) :

Number of constraints of the scalar subproblem depending
on the transformation:

MODEL=1 - LM=ME+MI
MODEL=2 - LM=ME+MI+IMIN-1
MODEL=3 - LM=ME+MI+L-1
MODEL=4 - LM=ME+MI+L+L
MODEL=5 - LM=ME+MI
MODEL=6 - LM=ME+MI
MODEL=7 - LM=ME-+MI
MODEL=8 - LM=ME+MI+L+L
MODEL=9 - LM=ME+MI+L
MODEL=10 - LM=ME+MI+L+L
MODEL=11 - LM=ME+MI+L
MODEL=12 - LM=ME+MI+L
MODEL=13 - LM=ME+MI+L
MODEL=14 - LM=ME-+MI
MODEL=15 - LM=ME+MI

Desired scalar transformation as indicated above.

If necessary (MODEL=2,3), IMIN defines the index of the
objective function to be take into account for the desired
scalar transformation.

Dimension of G and row dimension of array DG containing
Jacobian of constraints. MMAX must be greater or equal
to MAX(LM,ME+MI+L).

Row dimension of C. NMAX must be at least two and
greater than N or N+4L to remain valid for all transforma-
tions.

Initially, X has to contain suitable starting values for solv-
ing the scalar subproblem. On return, X is replaced by the
last iterate. In the driving program, the row dimension of
X has to be equal to LN at least.

On return, F contains the final objective function value of
the scalar program generated.

On return, G contains the constraint function values at the
final iterate X. In the driving program, the dimension of G
should be equal to MMAX.

XL(LN),XU(LN) :
10UT :

IPRINT :

DF(LN) :

DG(MMAX,LN) :

U(LMNN2) :

On input, the one-dimensional arrays XL and XU must
contain upper and lower bounds of the variables.
Integer indicating the desired output unit number, i.e., all
write-statements start with "WRITE(IOUT,... .
Specification of the desired output level.

0 - No output.

1 - Only final results for the multicriteria problem.

2 - Additional final convergence analysis for the scalar
subproblem.

3 - One line of intermediate results for each iteration.

4 - More detailed information iteration step, e.g., vari-
able, constraint and multiplier values.

5 - In addition, merit function and steplength values
displayed.

DF contains the current gradient of the scalar objective
function. Dimension should be LN at least

DG contains the gradients of the active constraints
(ACT(J)=.true.) at a current iterate X subject to the
scalar subproblem under consideration. The remaining
rows are filled with previously computed gradients. In the
driving program, the row dimension of DG has to be equal
to MMAX.

U contains the multipliers with respect to the actual iterate
stored in X. The first M locations contain the multipliers of
the nonlinear constraints, the subsequent N locations the
multipliers of the lower bounds, and the final N locations
the multipliers of the upper bounds subject to the scalar
subproblem chosen. At an optimal solution, all multipliers
with respect to inequality constraints should be nonnega-
tive.

FK(L) :

FW(L) :

ACC :

SCBOU :

MAXFUN :

MAXIT :

IFAIL :

Dimension of U, must be at least LM+LN+LN+2 when
calling NLPJOB.

Weight vector of dimension L, to be filled with suitable
values when calling NLPJOB depending on the transfor-
mation model:

MODEL=1,10,12,13,14,15 - weights

MODEL=2 - bounds

MODEL=3 - bounds for objective functions

MODEL=4,5 - goal values

For MODEL=2,6,7,11,12,14,15, FK has to contain the op-
timal values of the individual scalar subproblems when call-
ing NLPJOB.

Returns the objective function values subject to the final
iterate.

The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

Allows automatic scaling of problem functions in the fol-
lowing sense. If at the starting pint stored in X, a function
value is greater than SCBOU, then this function will be
divided by its square root.

The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).
Maximum number of iterations, where one iteration cor-
responds to one formulation and solution of the quadratic
programming subproblem, or, alternatively, one evaluation
of gradients (e.g. 100).

The parameter shows the reason for terminating a solu-
tion process. On return, IFAIL could contain the following
values:

10

0 The optimality conditions are satisfied.

1 The algorithm has been stopped after MAXIT it-
erations.

2 The algorithm computed an uphill search direction.

3 Underflow occurred when determining a new ap-
proximation matrix for the Hessian of the La-
grangian.

4 The line search could not be terminated success-
fully.

5 Length of a working array is too short.
More detailed error information is obtained for
TPRINT>0.

6 There are false dimensions, for example
LM>MMAX or LN>NMAX.

7 The search direction is close to zero, but the current
iterate is still infeasible.

>10 The solution of the quadratic programming sub-
problem has been terminated with an error message
IFQL>0 and IFAIL is set to IFQL+10.
WA (LWA) : WA is a real working array of length LWA.
LWA Length of the real working array WA. LWA must be at

least 3/2*NMAX*NMAX+6*MMAX+28*NMAX+100.

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA should
be at least MMAX+2*NMAX+20.

ACT(LACT) : The logical array indicates constraints, which NLPQL con-
siders to be active at the last computed iterate, i.e., G(J,X)
is active, if and only if ACT(J)=.TRUE., J=1,...,M.

LACT : Length of the logical array ACT. The length LACT of the
logical array should be at least 2*MMAX+15.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the

following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization

cycle again with a larger stopping tolerance.

11

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

To solve a multicriteria optimization problem by NLPJOB, a user has to imple-
ment two subroutines for function and gradient evaluations.

a) Calculation of function values:

SUBROUTINE MCFUNC(ME,MI,L,NMAX,MMAX,X,C)

where
ME : Number of equality constraints.
MI - Number of inequality constraints.
L : Number of objective functions.
NMAX : Dimensioning parameter for X.
MMAX : Dimensioning parameter for C.

X(NMAX) : When calling MCFUNC from NLPJOB, X contains the para-
meter values for which function values are to be computed.

C(MMAX) : On return, the first ME locations of C contain the function
values of the equality constraints followed by MI values for
the inequality constraints. The subsequent positions must be
filled with L values of the objective functions.

b) Calculation of derivative values:

SUBROUTINE MCGRAD(ME,MI,L NMAX, MMAX,X,C,DC)

12

where

ME : Number of equality constraints.

MI : Number of inequality constraints.

L : Number of objective functions.

NMAX : Dimensioning parameter for X and DC.

MMAX : Dimensioning parameter for C and DC.
X(NMAX) : When calling MCGRAD from NLPJOB, X con-

tains the parameter values for which gradient val-
ues are to be computed.

C(MMAX) : When calling MCGRAD, the first ME locations
of C contain the function values of the equality
constraints followed by MI values for the inequality
constraints. The subsequent positions are filled
with L values of the objective functions. C can be
used for numerical differentiation, for example.

DC(MMAX,NMAX) : On return, DC has to contain the gradient values
for all functions, row by row in the same order
as used for C. In the driving program, the row
dimension of DC must be equal to MMAX.

When executing MCFUNC, only the array C must be set by the user code.
The remaining parameters must not be altered. Similarly, only the two-dimensional
array DC must be defined when calling MCGRAD.

To link and run NLPJOB, the code has to be linked to the main program of the
user containing the subroutines MCFUNC and MCGRAD for function and gradient
evaluations, respectively, and the object codes of

NLPJOB - multicriteria optimization,

NLPQL - SQP code for solving the scalar subproblems,
QL - quadratic programming code for subproblems generated by
NLPQL.

13

4 Example

To give an example how to organize the code, we consider a very simple problem,

min ((z1+3)2+1, x2)

22+ 23 <9
[El,l’QERZ .%'1+33'2§1 (3)
-10< 2, <10
—10 <25 <10
The transformation method 12 is selected, i.e., the weighted relative distances of
objective function values from the individual minima f; =1 and f; = —3 is to be
minimized.

When using the weights one, NLPJOB generates the scalar problem

min max { (z; +3)%, (z2+3)/3 }
i+ 23 <9
T1,T20 €IR: x11+1x9<1 (4)
—-10< 2, <10
—-10< 2, <10

The maximum formulation requires the introduction of one additional variable and

two additional inequality constraints, to further transform this problem into a smooth
one,

min 3
4 23<9
1+ a9 <1
T, To, 03 € R: (21 + 3)* < 23 (5)
(x24+3)/3 < x3
-10< 2, <10
—10 <2, <10

This nonlinear program is now in a form to be solved by the SQP code NLPQL.
The execution of NLPJOB is to be illustrated for the simple example under con-

sideration. The dimensioning parameters, i.e., number of variables and constraints

of the transformed scalar problem, must be correctly set by the user. The Fortran

14

source code for executing NLPJOB is listed below. Gradients are approximated by
forward differences. The gradient evaluation is easily exchanged by an analytical
one or higher order derivatives.

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
PARAMETER (NX = 3, MX = 2, LMAX = 2)
PARAMETER (NMAX = NX + LMAX + 2,
MMAX = MX + LMAX + LMAX + 1,
MNN2 = MMAX + NMAX + NMAX + 2,
LWA = B*NMAX*NMAX/2 + 31*NMAX + 11xMMAX +
NMAX*MMAX + 100,
LKWA = MMAX + 2*NMAX + 20,
LACT = 2xMMAX + 20)
DIMENSION X(NMAX),G(MMAX) ,DF(NMAX),DG(MMAX,NMAX) ,U(MNN2),
/ XL (NMAX) ,XU (NMAX) ,W(LMAX) ,FK (LMAX) ,FW(LMAX) ,
/ C(NMAX,NMAX) ,D(NMAX) ,
/ WA (LWA) ,KWA (LKWA) , GEPS (MMAX)
LOGICAL ACT(LACT)

NN N NN

COMMON/CMACHE/EPS
[¢
C Set some constants
[
IOUT = 6
EPS = 1.0D-12
ACC = 1.0D-7
SCBOU = 1.0
MAXIT = 1000
MAXFUN = 10
IPRINT = 3
N =2
ME = 0
MI = 2
L=2
M = ME + MI
MODEL = 12
LM =M+ L
LN =N+ 1
C
C Set starting values, bounds, weights, and individual minima
[¢
X(1) =1.0
XL(1) = -10.0
XU(1) = 10.0
w(1) =1.0
FK(1) = 1.0
X(2) = 1.0
XL(2) = -10.0
XU(2) = 10.0
w(2) =1.0
FK(2) = -3.0
C
C Start the multicriteria optimization algorithm
C
CALL NLPJOB(N,ME,MI,L,LN,LM,MODEL,IMIN,MMAX,KNMAX,
/ X,F,G,XL,XU,IOUT,IPRINT,DF,DG,U,MNN2,W,FK,
/ FW,ACC,SCBOU,MAXFUN,MAXIT,IFAIL,WA,LWA,
/ KWA ,LKWA,ACT,LACT)
C

15

Q

End of main program

STOP
END

SUBROUTINE MCFUNC(ME,MI,L,NMAX,MMAX,X,C)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION X(NMAX),C(MMAX)

Q

Evaluation of model functions

c(1)
c(2)
c(3)
Cc(4

9.0 - X(1)**2 — X(2)**2
1.0 - X(1) - X(2)

(X(1) + 3.0)**2 + 1.0
X(2)

RETURN
END

SUBROUTINE MCGRAD(ME,MI,L,NMAX,MMAX,X,C,DC)
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION X(NMAX),C(MMAX),DC(MMAX,NMAX) ,CEPS(1000)

C Numerical evaluation of gradients

EPS = 1.0D-7
DO11I-=1,2
EPSA = EPS*DMAX1(1.0,DABS(X(I)))
EPSI = 1.0/EPSA
X(I) = X(I) + EPSA
CALL MCFUNC(ME,MI,L,NMAX,MMAX,X,CEPS)
DO 2 J=1,ME+MI+L
2 DC(J,I) = EPSI*(CEPS(J) - C(J))
1 X(I) = X(I) - EPSA

RETURN
END

Only 9 function calls and 9 iterations are required to get a solution within ter-
mination accuracy 10~7. The following output should appear on screen:

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

PARAMETERS :
MODE = 2
ACC = 0.1000D-06
SCBOU = 0.1000D+01
MAXFUN = 10
MAXIT = 1000
IPRINT = 2

OUTPUT IN THE FOLLOWING ORDER:
IT - ITERATION NUMBER
F - OBJECTIVE FUNCTION VALUE

16

SCV - SUM OF CONSTRAINT VIOLATION

NA - NUMBER OF ACTIVE CONSTRAINTS

I - NUMBER OF LINE SEARCH ITERATIONS

ALPHA - STEPLENGTH PARAMETER

DELTA - ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY

KT - KUHN-TUCKER OPTIMALITY CRITERION
IT F SCv NA I ALPHA DELTA KT

1 0.00000000D+00 0.18D+02 4 O 0.00D+00 0.00D+00 0.74D+01
2 0.11232449D+01 0.35D+01 2 1 0.10D+01 0.00D+00 0.62D+00
3 0.10133789D+01 0.69D+00 2 1 0.10D+01 0.00D+00 0.17D+00
4 0.83916502D+00 0.50D-11 1 1 0.10D+01 0.00D+00 0.57D+00
5 0.42820593D+00 0.20D+01 2 1 0.10D+01 0.00D+00 0.24D+00
6 0.29186007D+00 0.81D+00 3 1 0.10D+01 0.00D+00 0.18D+00
7 0.37929495D+00 0.10D+00 3 1 0.10D+01 0.00D+00 0.20D-01
8 0.38938026D+00 0.98D-03 3 1 0.10D+01 0.00D+00 0.14D-03
9 0.38945243D+00 0.49D-07 3 1 0.10D+01 0.00D+00 0.70D-08

* FINAL CONVERGENCE ANALYSIS

OBJECTIVE FUNCTION VALUE: F(X) = 0.38945243D+00
APPROXIMATION OF SOLUTION: X =
-0.23759388D+01 -0.18316427D+01 0.38945243D+00
APPROXIMATION OF MULTIPLIERS: U =
0.67580923D-01 0.00000000D+00 0.25729541D+00 0.74270459D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00
CONSTRAINT VALUES: G(X) =
-0.47868960D-07 0.52075815D+01 -0.10424180D-08 -0.41078252D-13
DISTANCE FROM LOWER BOUND: XL-X =
-0.76240612D+01 -0.81683573D+01 -0.10000000D+31
DISTANCE FROM UPPER BOUND: XU-X =
0.12375939D+02 0.11831643D+02 0.10000000D+31

NUMBER OF FUNC-CALLS: NFUNC = 9
NUMBER OF GRAD-CALLS: NGRAD = 9
NUMBER OF QL-CALLS: NQL = 9

--- Summary of Multicritera Solution ---

Termination reason: IFAIL = 0
Number of function calls: NFUNC = 9
Number of gradient calls: NGRAD = 9
Variable values: X =

-0.23759388D+01 -0.18316427D+01

Objective function values: F(X) =
0.13894524D+01 -0.18316427D+01

Constraint values: G(X) =
-0.47868960D-07 0.52075815D+01

When applying all 15 scalar transformations to the multicriteria problem (3),
we get the results of the subsequent table. m denotes the transformation method

17

and f(z7,23) the optimal value of the scalar subproblem. For m = 4,5 10, the
goal values are reached exactly. There are no differences in the solution between
models m = 4,5 and m = 6,7. In these cases, only the norm is changed. Problems
m = 11,12 are identical in case of unit weights.

m J@hay) o @ fhs))
1 -0.44 -2.4 -1.8 14 -1.8
2 -1.3 2.7 -1.3 1.1 -1.3
3 1.0 -2.8 -1.0 1.0 -1.0
4 0.0 -1.0 -1.0 5.0 -1.0
5 0.0 -1.0 -1.0 5.0 -1.0
6 1.0 -3.0 0.030 1.0 0.030
7 1.0 -3.0 0.030 1.0 0.030
8 1.0 -3.0 -0.035 1.0 -0.035
9 1.0 -3.0 -0.042 1.0 -0.042

10 0.0 -1.0 -1.0 5.0 -1.0

11 1.0 3.0 0.028 1.0 0.028

12 1.0 3.0 0.028 1.0 0.028

13 1.0 -3.0 -0.042 1.0 -0.042

14 -1.9 -1.5 -2.6 3.2 -2.6

15 0.0 -1.0 -1.0 5.0 -1.0

By changing the weights in case of the first transformation method, i.e. m =1, an
approximation of the Pareto-optimal boundary can be found, as shown in Figure 1.

5 Summary

A new version of a multicriteria optimization code is presented which transforms
the given problem into a scalar nonlinear program. After some reformulations, the
smooth, constrained subproblem is solved by the SQP code NLPQL. The transfor-
mations are outlined, the usage of version 2.0 of the Fortran subroutine NLPJOB is
documented, and a few demonstrative numerical results are presented.

References

[1] Eschenauer H., Koski J., Osyczka A. eds. (1990): Multicriteria Design Opti-
mization, Springer, Herlin, Heidelberg, New York

18

2]

-1.2

o4

1.4
1.6

1.8 =

fa -2
-2.2 U

2.4 L

-

2.6 =

2.8 005

P 00000

Figure 1: Efficient Boundary

Kneppe G., Krammer J., Winkler E. (1987): Structural optimization of
large scale problems wusing MBB-LAGRANGE, Report MBB-S-PUB-305,
Messerschmitt-Bolkow-Blohm, Munich

Osyczka A. (1984): Multicriterion Optimization in Engineering, Series in En-
gineering Science, Ellis Horwood

Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Mathematische
Operationsforschung und Statistik, Series Optimization, Vol. 14, 197-216

Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained
nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-

200

Schittkowski K. (1999): FASY-OPT: An interactive optimization system with
automatic differentiation - User’s guide, Report, Department of Mathematics,
University of Bayreuth, D-95440 Bayreuth

Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison
of nonlinear programming algorithms for structural optimization, Structural
Optimization, Vol. 7, No. 1, 1-28

19

