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1 Introduction

1.1 Overview

Welcome to the TOMLAB /CGO User’s Guide. TOMLAB /CGO includes the solvers, rbfSolve, ego and arbfMIP.
The solvers are specifically designed to solve costly (expensive) global optimization problems with up to roughly
30 decision variables. The costly component is only the objective function, i.e. if the constraints are costly as well
they need to be integrated in the objective.

The overall solution approach followed by TOMLAB /CGO is based on the seamless combination of the global
and local search strategies. The package requires the presence of a global solver and a local solver.

1.2 Contents of this manual

• Section 1 provides a basic overview of the TOMLAB /CGO solver package.

• Section 2 provides an overview of the solver interface.

• Section 3 describes how to set CGO solver options from Matlab.

• Section 4 provides information regarding (non-costly) TOMLAB /CGO test examples.

• Section 5 gives detailed information about the interface routines rbfSolve, ego and arbfMIP.

1.3 More information

Please visit the following links for more information and see the references at the end of this manual.

• http://tomopt.com/tomlab/products/cgo/

• http://tomopt.com/tomlab/products/cgo/solvers/rbfSolve.php

• http://tomopt.com/tomlab/products/cgo/solvers/ego.php

• http://tomopt.com/tomlab/products/cgo/solvers/arbfMIP.php

1.4 Prerequisites

In this concise manual we assume that the user is familiar with global optimization and nonlinear programming,
setting up problems in TOMLAB (in particular global constrained nonlinear (glc) problems) and with the Matlab
language in general.
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2 Using the Matlab Interface

The CGO solver package is accessed via the tomRun driver routine, which calls the rbfSolve, ego or arbfMIP
routines.

Table 1: The Costly global solver routines.

Function Description Section Page
rbfSolve Costly global solver routine called by the TOMLAB driver routine

tomRun. This routine will also call local and global subsolvers.
5.1 5

ego Costly global solver routine called by the TOMLAB driver routine
tomRun. This routine will also call local and global subsolvers.

5.2 15

arbfMIP Costly global solver routine called by the TOMLAB driver routine
tomRun. This routine will also call local and global subsolvers.

5.3 26

3 Setting CGO Options

All control parameters can be set directly from Matlab.

The parameters can be set as subfields in the Prob.CGO, Prob.optParam and Prob.GO structures. The following
example shows how to set a limit on the maximum number of iterations when using a global subsolver to solve
some sub problem and the global search idea (surface search strategy) used by rbfSolve. The major thing is most
often to set the limit MaxFunc, defining how many costly function evaluations the CGO solver is allowed to use.

Prob = glcAssign(...) % Setup problem, see help glcAssign for more information

Prob.GO.MaxIter = 50; % Setting the maximum number iterations.

Prob.CGO.idea = 1; % Idea set to first option.

Prob.optParam.MaxFunc = 90; % Maximal number of costly function evaluations

A complete description of the available CGO parameters can be found in Section 5.

4 TOMLAB /CGO Test Examples

There are several test examples included in the general TOMLAB distribution. The examples are located in the
testprob folder in TOMLAB. lgo1 prob contains one dimensional test problems while lgo2 prob includes two- and
higher-dimensional. Several problems are also available in glb prob, glc prob, glcIP prob and minlp prob.

To test the solution of these problem sets with CGO, the following type of code can be used:

Prob = probInit(’lgo1_prob’, 1);

Result = tomRun(’rbfSolve’, Prob, 1);
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5 TOMLAB /CGO Solver Reference

A detailed description of the TOMLAB /CGO solvers is given below. Also see the M-file help for rbfSolve.m,
ego.m and arbfMIP.m.

5.1 rbfSolve

Purpose
Solve general constrained mixed-integer global black-box optimization problems with costly objective functions.

The optimization problem is of the following form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

where f(x) ∈ R; xL, x, xU ∈ Rd; the m1 linear constraints are defined by A ∈ Rm1×d, bL, bU ∈ Rm1 ; and the m2

nonlinear constraints are defined by cL, c(x), cU ∈ Rm2 . The variables xI are restricted to be integers, where I
is an index subset of {1,. . . ,d}, possibly empty. It is assumed that the function f(x) is continuous with respect to
all variables, even if there is a demand that some variables only take integer values. Otherwise it would not make
sense to do the surrogate modeling of f(x) used by all CGO solvers.

f(x) is assumed to be a costly function while c(x) is assumed to be cheaply computed. Any costly constraints can
be treated by adding penalty terms to the objective function in the following way:

min
x

p(x) = f(x) +
∑
j

wj max
(

0, cj(x)− cjU , cjL − cj(x)
)
,

where weighting parameters wj have been added. The user then returns p(x) instead of f(x) to the CGO solver.

Calling Syntax
Result = rbfSolve(Prob,varargin)
Result = tomRun(’rbfSolve’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Name Name of the problem. Used for security when doing warm starts.
FUNCS.f Name of function to compute the objective function.
FUNCS.c Name of function to compute the nonlinear constraint vector.

x L Lower bounds on the variables. Must be finite.
x U Upper bounds on the variables. Must be finite.

b U Upper bounds for the linear constraints.
b L Lower bounds for the linear constraints.
A Linear constraint matrix.
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Prob Problem description structure. The following fields are used:, continued

c L Lower bounds for the nonlinear constraints.
c U Upper bounds for the nonlinear constraints.

WarmStart Set true (non-zero) to load data from previous run from cgoSave.mat and re-
sume optimization from where the last run ended. If Prob.CGO.WarmStartInfo
has been defined through a call to WarmDefGLOBAL, this field is used instead
of the cgoSave.mat file. All CGO solvers uses the same mat-file and structure
field and can read the output of one another.

MaxCPU Maximal CPU Time (in seconds) to be used.

user User field used to send information to low-level functions.

PriLevOpt Print Level. 0 = silent. 1 = Summary 2 = Printing each iteration. 3 = Info
about local / global solution. 4 = Progress in x.

PriLevSub Print Level in subproblem solvers, see help in snSolve and gnSolve.

f Low Lower bound on the optimal function value. If defined, used to restrict the
target values into interval [f Low,min(surface)].

optParam Structure with optimization parameters. The following fields are used:

MaxFunc Maximal number of costly function evaluations, default 300 for rbfSolve and
arbfMIP, and default 200 for ego. MaxFunc must be ≤ 5000. If WarmStart = 1
and MaxFunc ≤ nFunc (Number of f(x) used) then set MaxFunc := MaxFunc
+ nFunc.

IterPrint Print one information line each iteration, and the new x tried. Default IterPrint
= 1. fMinI means the best f(x) is infeasible. fMinF means the best f(x) is
feasible (also integer feasible).

fGoal Goal for function value, not used if inf or empty.
eps f Relative accuracy for function value, fTol == eps f . Stop if |f − fGoal| ≤

|fGoal| ∗ fTol , if fGoal 6= 0. Stop if |f − fGoal| ≤ fTol , if fGoal = 0. See
the output field maxTri.

bTol Linear constraint tolerance.
cTol Nonlinear constraint tolerance.
MaxIter Maximal number of iterations used in the local optimization on the re-

sponse surface in each step. Default 1000, except for pure IP problems, then
max(GO.MaxFunc, MaxIter);.

CGO Structure (Prob.CGO) with parameters concerning global optimization options.
The following general fields in Prob.CGO are used:

Percent Type of strategy to get the initial sampled values:
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Prob Problem description structure. The following fields are used:, continued

Percent Experimental Design ExD
Corner strategies

900 All Corners 1
997 xL + xU + adjacent corners 2
998 xU + adjacent corners 3
999 xL + adjacent corners 4

Deterministic Strategies
0 User given initial points 5
94 DIRECT solver glbFast 6
95 DIRECT solver glcFast 6
96 DIRECT solver glbSolve 6
97 DIRECT solver glcSolve 6
98 DIRECT solver glbDirect 6
99 DIRECT solver glcDirect 6

Latin Based Sampling
1 Maximin LHD 1-norm 7
2 Maximin LHD 2-norm 8
3 Maximin LHD Inf-norm 9
4 Minimal Audze-Eglais 10
5 Minimax LHD (only 2 dim) 11
6 Latin Hypercube 12
7 Orthogonal Samling 13

Random Strategies (pp in %)
1pp Circle surrounding 14
2pp Ellipsoid surrounding 15
3pp Rectangle surrounding 16

Negative values of Percent result in constrained versions of the experimental
design methods 7-16. It means that all points sampled are feasible with respect
to all given constraints.
For ExD 5,6-12,14-16 user defined points are used.

nSample Number of sample points to be used in initial experimental design. nSample is
used differently dependent on the value of Percent:
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Prob Problem description structure. The following fields are used:, continued

(n)Sample:
ExD < 0 = 0 > 0 [ ]

1 2d

6 |n| iterations
7-11 d+ 1 d+ 1 max (d+ 1, n) (d+ 1)(d+ 2)/2

12 LATIN(k)
13 |n|

14-16 d+ 1 ,
where LATIN = [21 21 33 41 51 65 65] and k = |nSample|. Otherwise nSample
as input does not matter.

Description of the experimental designs:

ExD 1, All Corners. Initial points is the corner points of the box given by
Prob.x L and Prob.x U. Generates 2d points, which results in too many points
when the dimension is high.

ExD 2, Lower and Upper Corner point + adjacent points. Initial points are
2 ∗ d + 2 corners: the lower left corner xL and its d adjacent corners xL +
(xU (i)−xL(i))∗ei, i = 1, ..., d and the upper right corner xU and its d adjacent
corners xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 3. Initial points are the upper right corner xU and its d adjacent corners
xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 4. Initial points are the lower left corner xL and its d adjacent corners
xL + (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 5. User given initial points, given as a matrix in CGO.X. Each column
is one sampled point. If d = length(Prob.x L), then size(X,1) = d, size(X,2) ≥
d+1. CGO.F should be defined as empty, or contain a vector of corresponding
f(x) values. Any CGO.F value set as NaN will be computed by solver routine.

ExD 6. Use determinstic global optimization methods to find the initial design.
Current methods available (all DIRECT methods), dependent on the value of
Percent:
99 = glcDirect, 98 = glbDirect, 97 = glcSolve, 96 = glbSolve, 95 = glcFast, 94
= glbFast.

ExD 7-11. Optimal Latin Hypercube Designs (LHD) with respect to different
norms. The following norms and designs are available, dependent on the value
of Percent:
1 = Maximin 1-Norm, 2 = Maximin 2-Norm, 3 = Maximin Inf-Norm, 4 =
Audze-Eglais Norm, 5 = Minimax 2-Norm.
All designs taken from: http://www.spacefillingdesigns.nl/
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Prob Problem description structure. The following fields are used:, continued

Constrained versions will try bigger and bigger designs up to M =
max(10 ∗ d, nTrial) different designs, stopping when it has found nSample fea-
sible points.

ExD 12. Latin hypercube space-filling design. For nSample < 0, k =
|nSample| should in principle be the problem dimension. The number of points
sampled is:

k : 2 3 4 5 6 > 6
Points : 21 33 41 51 65 65

The call made is: X = daceInit(abs(nSample),Prob.x L,Prob.x U);
Set nSample = [ ] to get (d+1)*(d+2)/2 sampled points:

d : 1 2 3 4 5 6 7 8 9 10
Points : 3 6 10 15 21 28 36 45 55 66

This is a more efficient number of points to use.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.
Constrained version of Latin hypercube only keep points that fulfill the
linear and nonlinear constraints. The algorithm will try up to M =
max(10 ∗ d, nTrial) points, stopping when it has found nSample feasible points
(d+ 1 points if nSample < 0).

ExD 13. Orthogonal Sampling, LH with subspace density demands.

ExD 14-16. Random strategies, the |Percent| value gives the percentage size
of an ellipsoid, circle or rectangle around the so far sampled points that new
points are not allowed in. Range 1%-50%. Recommended values 10% - 20%.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.

X,F,CX The fields X,F,CX are used to define user given points. ExD = 5 (Percent =
0) needs this information. If ExD == 6-12,14-16 these points are included into
the design.

X A matrix of initial x values. One column for every x value. If ExD == 5,
size(X,2) ≥ dim(x)+1 needed.

F A vector of initial f(x) values. If any element is set to NaN it will be computed.

CX Optionally a matrix of nonlinear constraint c(x) values. If nonempty, then
size(CX,2) == size(X,2). If any element is set as NaN, the vector c(x) =
CX(:,i) will be recomputed.
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Prob Problem description structure. The following fields are used:, continued

RandState If ≥ 0, rand(′state′, RandState) is set to initialize the pseudo-random genera-
tor. If < 0, rand(′state′, 100 ∗ clock) is set to give a new set of random values
each run. If isnan(RandState), the random state is not initialized. RandState
will influence if a stochastic initial experimental design is applied, see input Per-
cent and nSample. RandState will also influence if using the multiMin solver,
but the random state seed is not reset in multiMin. The state of the random
generator is saved in the warm start output rngState, and the random genera-
tor is reinitialized with this state if warm start is used. Default RandState =
0.

AddMP If = 1, add the midpoint as extra point in the corner strategies. Default 1 for
any corner strategy, i.e. Percent is 900, 997, 998 or 999.

nTrial For experimental design CLH, the method generates M = max(10 ∗ d, nTrial)
trial points, and evaluate them until nSample feasible points are found. In
the random designs, nTrial is the maximum number of trial points randomly
generated for each new point to sample.

CLHMethod Different search strategies for finding feasible LH points. First of all, the least
infeasible point is added. Then the linear feasible points are considered. If
more points are needed still, the nonlinear infeasible points are added.
1 - Take the sampled infeasible points in order.
2 - Take a random sample of the infeasible points.
3 - Use points with lowest constraint error (cErr).

SCALE 0 - Original search space (default if any integer values).
1 - Transform search space to unit cube (default if no integers).

REPLACE 0 - No replacement, default for constrained problems.
1 - Large function values are replaced by the median.
> 1 - Large values Z are replaced by new values. The replacement is defined
as Z := FMAX + log10(Z − FMAX + 1), where FMAX = 10REPLACE , if
min(F ) < 0 and FMAX = 10(ceil(log10(min(F )))+REPLACE), if min(F ) ≥ 0. A
new replacement is computed in every iteration, because min(F ) may change.
Default REPLACE = 5, if no linear or nonlinear constraints.

LOCAL 0 - No local searches after global search. If RBF surface is inaccurate, might
be an advantage.
1 - Local search from best points after global search. If equal best function
values, up to 20 local searches are done.

SMOOTH 1 - The problem is smooth enough for local search using numerical gradient
estimation methods (default).
0 - The problem is nonsmooth or noisy, and local search methods using numer-
ical gradient estimation are likely to produce garbage search directions.
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Prob Problem description structure. The following fields are used:, continued

globalSolver Global optimization solver used for subproblem optimization. Default
glcCluster (SMOOTH=1) or glcDirect (SMOOTH=0). If the global-
Solver is glcCluster, the fields Prob.GO.maxFunc1, Prob.GO.maxFunc2,
Prob.GO.maxFunc3, Prob.GO.localSolver, Prob.GO.DIRECT and other fields
set in Prob.GO are used. See the help for these parameters in glcCluster.

localSolver Local optimization solver used for subproblem optimization. If not defined, the
TOMLAB default constrained NLP solver is used.

— Special RBF algorithm parameters in Prob.CGO —

rbfType Type of radial basis function: 1 - thin plate spline; 2 - Cubic Spline (default);
3 - Multiquadric; 4 - Inverse multiquadric; 5 - Gaussian; 6 - Linear.

idea Type of search strategy on the response surface.
idea = 1 - cycle of N+1 points in target value fnStar.
if fStarRule =3, then N=1 default, otherwise N=4 default.
By default idea =1, fStarRule =1, i.e. N =4. To change N, see below.
idea = 2 - cycle of 4 points (N+1, N=3 always) in alpha. alpha is a bound on
an algorithmic constraint that implicitly sets a target value fStar.

N Cycle length in idea 1 (default N=1 for fStarRule 3, otherwise default N=4) or
idea 2 (always N=3).

infStep If =1, add search step with target value −∞ first in cycle. Default 0. Always
=1 for the case idea =1, fStarRule =3.

fStarRule Global-Local search strategy in idea 1, where N is the cycle length. Define
minsn as the global minimum on the RBF surface. The following strategies
for setting the target value fStar is defined: 1: fStar = minsn − ((N − (n −
nInit))/N)2 ∗∆n (Default), 2: fStar = minsn − (N − (n − nInit))/N ∗∆n.
Strategy 1 and 2 depends on ∆ n estimate (see DeltaRule). If infStep =1, add
−∞-step first in cycle. 3: fStar = −∞-step, minsn−k∗0.1∗|minsn|k = N, ..., 0.
These strategies had the following names in Gutmanns thesis: III, II, I.

DeltaRule 1 = Skip large f(x) when computing f(x) interval ∆. 0 = Use all points. Default
1.

AddSurfMin Add up to AddSurfMin interior local minima on RBF surface as search points,
based on estimated Lipschitz constants. AddSurfMin=0 implies no additional
minimum added (Default). This option is only possible if globalSolver =
multiMin. Test for additional minimum is done in the local step (modN
== N) If these additional local minima are used, in the printout modN
= −2,−3,−4, ... are the iteration steps with these search points.
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Prob Problem description structure. The following fields are used:, continued

TargetMin Which minimum, if several minima found, to select in the target value problem:
=0 Use global minimum.
=1 Use best interior local minima, if none use global minimum.
=2 Use best interior local minima, if none use RBF interior minimum.
=3 Use best minimum with lowest number of coefficients on bounds.

Default is TargetMin = 3.

eps sn Relative tolerance used to test if the minimum of the RBF surface, minsn, is
sufficiently lower than the best point (fMin) found (default is 10−7).

MaxCycle Max number of cycles without progress before stopping, default 10.

GO Structure Prob.GO (Default values are set for all fields).
The following fields are used:

MaxFunc Maximal number of function evaluations in each global search.

MaxIter Maximal number of iterations in each global search.

DIRECT DIRECT solver used in glcCluster, either glcSolve or glcDirect(default).

maxFunc1 glcCluster parameter, maximum number of function evaluations in the first
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc2 glcCluster parameter, maximum number of function evaluations in the second
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc3 glcCluster parameter, maximum sum of function evaluations in repeated first
calls to DIRECT routine when trying to get feasible. Only used if globalSolver
is glcCluster, see help globalSolver.

localSolver The local solver used by glcCluster. If not defined, then Prob.CGO.localSolver
is used

MIP Structure in Prob, Prob.MIP.
Defines integer optimization parameters. Fields used:

IntVars If empty, all variables are assumed non-integer.
If islogical(IntVars) (=all elements are 0/1), then 1 = integer variable, 0 =
continuous variable. If any element > 1, IntVars is the indices for integer
variables.

varargin Other parameters directly sent to low level routines.
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Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with the best points as columns.
f k The best function value found so far.

Iter Number of iterations.
FuncEv Number of function evaluations.
ExitText Text string with information about the run.
ExitFlag Always 0.

CGO Subfield WarmStartInfo saves warm start information, the same information
as in cgoSave.mat, see below.

Inform Information parameter.
0 = Normal termination.
1 = Function value f(x) is less than fGoal.
2 = Error in function value f(x), |f − fGoal| ≤ fTol, fGoal = 0.
3 = Relative Error in function value f(x) is less than fTol, i.e. |f −
fGoal|/|fGoal| ≤ fTol.
4 = No new point sampled for MaxCycle iteration steps.
5 = All sample points same as the best point for MaxCycle last iterations.
6 = All sample points same as previous point for MaxCycle last iterations.
7 = All feasible integers tried.
8 = No progress for MaxCycle∗(N+1)+1 function evaluations (> MaxCycle

cycles, input CGO.MaxCycle).
9 = Max CPU Time reached.

cgoSave.mat To make a warm start possible, all CGO solvers saves information in the file
cgoSave.mat. The file is created independent of the solver, which enables the
user to call any CGO solver using the warm start information. cgoSave.mat
is a MATLAB mat-file saved to the current directory. If the parameter SAVE
is 1, the CGO solver saves the mat file every iteration, which enables the
user to break the run and restart using warm start from the current state.
SAVE = 1 is currently always set by the CGO solvers. If the cgoSave.mat file
fails to open for writing, the information is also available in the output field
Result.CGO.WarmStartInfo, if the run was concluded without interruption.
Through a call to WarmDefGLOBAL, the Prob structure can be setup for warm
start. In this case, the CGO solver will not load the data from cgoSave.mat.
The file contains the following variables:

Name Problem name. Checked against the Prob.Name field if doing a warmstart.
O Matrix with sampled points (in original space).
X Matrix with sampled points (in unit space if SCALE==1)
F Vector with function values (penalty added for costly Cc(x))
F m Vector with function values (replaced).
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Result Structure with result from optimization. The following fields are changed:, continued

F00 Vector of pure function values, before penalties.
Cc MMatrix with costly constraint values, Cc(x).
nInit Number of initial points.
Fpen Vector with function values + additional penalty if infeasible using the linear

constraints and noncostly nonlinear c(x).
fMinIdx Index of the best point found.
rngState Current state of the random number generator used.

Description
rbfSolve implements the Radial Basis Function (RBF) algorithm presented in [2] and based on the work by Gutmann
[8]. The RBF method is enhanced to handle linear equality and inequality constraints, and nonlinear equality and
inequality constraints, as well as mixed-integer problems, see [13].

A response surface based on radial basis functions is fitted to a collection of sampled points. The algorithm then
balances between minimizing the fitted function and adding new points to the set.

M-files Used
daceInit.m, iniSolve.m, endSolve.m, conAssign.m, glcAssign.m, snSolve.m, gnSolve.m, expDesign.m.

MEX-files Used
tomsol

See Also
ego.m

Warnings
Observe that when cancelling with CTRL+C during a run, some memory allocated by rbfSolve will not be deal-
located. To deallocate, do:

>> clear cgolib
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5.2 ego

Purpose
Solve general constrained mixed-integer global black-box optimization problems with costly objective functions.

The optimization problem is of the following form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

where f(x) ∈ R; xL, x, xU ∈ Rd; the m1 linear constraints are defined by A ∈ Rm1×d, bL, bU ∈ Rm1 ; and the m2

nonlinear constraints are defined by cL, c(x), cU ∈ Rm2 . The variables xI are restricted to be integers, where I
is an index subset of {1,. . . ,d}, possibly empty. It is assumed that the function f(x) is continuous with respect to
all variables, even if there is a demand that some variables only take integer values. Otherwise it would not make
sense to do the surrogate modeling of f(x) used by all CGO solvers.

f(x) is assumed to be a costly function while c(x) is assumed to be cheaply computed. Any costly constraints can
be treated by adding penalty terms to the objective function in the following way:

min
x

p(x) = f(x) +
∑
j

wj max
(

0, cj(x)− cjU , cjL − cj(x)
)
,

where weighting parameters wj have been added. The user then returns p(x) instead of f(x) to the CGO solver.

Calling Syntax
Result=ego(Prob,varargin)
Result = tomRun(’ego’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Name Name of the problem. Used for security when doing warm starts.
FUNCS.f Name of function to compute the objective function.
FUNCS.c Name of function to compute the nonlinear constraint vector.

x L Lower bounds on the variables. Must be finite.
x U Upper bounds on the variables. Must be finite.

b U Upper bounds for the linear constraints.
b L Lower bounds for the linear constraints.
A Linear constraint matrix.

c L Lower bounds for the nonlinear constraints.
c U Upper bounds for the nonlinear constraints.
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Prob Problem description structure. The following fields are used:, continued

WarmStart Set true (non-zero) to load data from previous run from cgoSave.mat and re-
sume optimization from where the last run ended. If Prob.CGO.WarmStartInfo
has been defined through a call to WarmDefGLOBAL, this field is used instead
of the cgoSave.mat file. All CGO solvers uses the same mat-file and structure
field and can read the output of one another.

MaxCPU Maximal CPU Time (in seconds) to be used.

user User field used to send information to low-level functions.

PriLevOpt Print level. 0 = silent. 1 = Summary, 2 = Printing each iteration, 3 = Info
about local / global solution, 4 = Progress in x.

PriLevSub Print Level in subproblem solvers.

optParam Structure with optimization parameters. The following fields are used:

MaxFunc Maximal number of costly function evaluations, default 300 for rbfSolve and
arbfMIP, and default 200 for ego. MaxFunc must be ≤ 5000. If WarmStart = 1
and MaxFunc ≤ nFunc (Number of f(x) used) then set MaxFunc := MaxFunc
+ nFunc.

IterPrint Print one information line each iteration, and the new x tried. Default IterPrint
= 1. fMinI means the best f(x) is infeasible. fMinF means the best f(x) is
feasible (also integer feasible).

fGoal Goal for function value, not used if inf or empty.
eps f Relative accuracy for function value, fTol == eps f . Stop if |f − fGoal| ≤

|fGoal| ∗ fTol , if fGoal 6= 0. Stop if |f − fGoal| ≤ fTol , if fGoal = 0. See
the output field maxTri.

bTol Linear constraint tolerance.
cTol Nonlinear constraint tolerance.
MaxIter Maximal number of iterations used in the local optimization on the re-

sponse surface in each step. Default 1000, except for pure IP problems, then
max(GO.MaxFunc, MaxIter);.

CGO Structure (Prob.CGO) with parameters concerning global optimization options.

The following general fields in Prob.CGO are used:
Percent Type of strategy to get the initial sampled values:

16



Prob Problem description structure. The following fields are used:, continued

Percent Experimental Design ExD
Corner strategies

900 All Corners 1
997 xL + xU + adjacent corners 2
998 xU + adjacent corners 3
999 xL + adjacent corners 4

Deterministic Strategies
0 User given initial points 5
94 DIRECT solver glbFast 6
95 DIRECT solver glcFast 6
96 DIRECT solver glbSolve 6
97 DIRECT solver glcSolve 6
98 DIRECT solver glbDirect 6
99 DIRECT solver glcDirect 6

Latin Based Sampling
1 Maximin LHD 1-norm 7
2 Maximin LHD 2-norm 8
3 Maximin LHD Inf-norm 9
4 Minimal Audze-Eglais 10
5 Minimax LHD (only 2 dim) 11
6 Latin Hypercube 12
7 Orthogonal Samling 13

Random Strategies (pp in %)
1pp Circle surrounding 14
2pp Ellipsoid surrounding 15
3pp Rectangle surrounding 16

Negative values of Percent result in constrained versions of the experimental
design methods 7-16. It means that all points sampled are feasible with respect
to all given constraints.
For ExD 5,6-12,14-16 user defined points are used.

nSample Number of sample points to be used in initial experimental design. nSample is
used differently dependent on the value of Percent:

17



Prob Problem description structure. The following fields are used:, continued

(n)Sample:
ExD < 0 = 0 > 0 [ ]

1 2d

6 |n| iterations
7-11 d+ 1 d+ 1 max (d+ 1, n) (d+ 1)(d+ 2)/2

12 LATIN(k)
13 |n|

14-16 d+ 1 ,
where LATIN = [21 21 33 41 51 65 65] and k = |nSample|. Otherwise nSample
as input does not matter.

Description of the experimental designs:

ExD 1, All Corners. Initial points is the corner points of the box given by
Prob.x L and Prob.x U. Generates 2d points, which results in too many points
when the dimension is high.

ExD 2, Lower and Upper Corner point + adjacent points. Initial points are
2 ∗ d + 2 corners: the lower left corner xL and its d adjacent corners xL +
(xU (i)−xL(i))∗ei, i = 1, ..., d and the upper right corner xU and its d adjacent
corners xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 3. Initial points are the upper right corner xU and its d adjacent corners
xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 4. Initial points are the lower left corner xL and its d adjacent corners
xL + (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 5. User given initial points, given as a matrix in CGO.X. Each column
is one sampled point. If d = length(Prob.x L), then size(X,1) = d, size(X,2) ≥
d+1. CGO.F should be defined as empty, or contain a vector of corresponding
f(x) values. Any CGO.F value set as NaN will be computed by solver routine.

ExD 6. Use determinstic global optimization methods to find the initial design.
Current methods available (all DIRECT methods), dependent on the value of
Percent:
99 = glcDirect, 98 = glbDirect, 97 = glcSolve, 96 = glbSolve, 95 = glcFast, 94
= glbFast.

ExD 7-11. Optimal Latin Hypercube Designs (LHD) with respect to different
norms. The following norms and designs are available, dependent on the value
of Percent:
1 = Maximin 1-Norm, 2 = Maximin 2-Norm, 3 = Maximin Inf-Norm, 4 =
Audze-Eglais Norm, 5 = Minimax 2-Norm.
All designs taken from: http://www.spacefillingdesigns.nl/
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Prob Problem description structure. The following fields are used:, continued

Constrained versions will try bigger and bigger designs up to M =
max(10 ∗ d, nTrial) different designs, stopping when it has found nSample fea-
sible points.

ExD 12. Latin hypercube space-filling design. For nSample < 0, k =
|nSample| should in principle be the problem dimension. The number of points
sampled is:

k : 2 3 4 5 6 > 6
Points : 21 33 41 51 65 65

The call made is: X = daceInit(abs(nSample),Prob.x L,Prob.x U);
Set nSample = [ ] to get (d+1)*(d+2)/2 sampled points:

d : 1 2 3 4 5 6 7 8 9 10
Points : 3 6 10 15 21 28 36 45 55 66

This is a more efficient number of points to use.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.
Constrained version of Latin hypercube only keep points that fulfill the
linear and nonlinear constraints. The algorithm will try up to M =
max(10 ∗ d, nTrial) points, stopping when it has found nSample feasible points
(d+ 1 points if nSample < 0).

ExD 13. Orthogonal Sampling, LH with subspace density demands.

ExD 14-16. Random strategies, the |Percent| value gives the percentage size
of an ellipsoid, circle or rectangle around the so far sampled points that new
points are not allowed in. Range 1%-50%. Recommended values 10% - 20%.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.

X,F,CX The fields X,F,CX are used to define user given points. ExD = 5 (Percent =
0) needs this information. If ExD == 6-12,14-16 these points are included into
the design.

X A matrix of initial x values. One column for every x value. If ExD == 5,
size(X,2) ≥ dim(x)+1 needed.

F A vector of initial f(x) values. If any element is set to NaN it will be computed.

CX Optionally a matrix of nonlinear constraint c(x) values. If nonempty, then
size(CX,2) == size(X,2). If any element is set as NaN, the vector c(x) =
CX(:,i) will be recomputed.
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Prob Problem description structure. The following fields are used:, continued

RandState If ≥ 0, rand(′state′, RandState) is set to initialize the pseudo-random genera-
tor. If < 0, rand(′state′, 100 ∗ clock) is set to give a new set of random values
each run. If isnan(RandState), the random state is not initialized. RandState
will influence if a stochastic initial experimental design is applied, see input Per-
cent and nSample. RandState will also influence if using the multiMin solver,
but the random state seed is not reset in multiMin. The state of the random
generator is saved in the warm start output rngState, and the random genera-
tor is reinitialized with this state if warm start is used. Default RandState =
0.

AddMP If = 1, add the midpoint as extra point in the corner strategies. Default 1 for
any corner strategy, i.e. Percent is 900, 997, 998 or 999.

nTrial For experimental design CLH, the method generates M = max(10 ∗ d, nTrial)
trial points, and evaluate them until nSample feasible points are found. In
the random designs, nTrial is the maximum number of trial points randomly
generated for each new point to sample.

CLHMethod Different search strategies for finding feasible LH points. First of all, the least
infeasible point is added. Then the linear feasible points are considered. If
more points are needed still, the nonlinear infeasible points are added.
1 - Take the sampled infeasible points in order.
2 - Take a random sample of the infeasible points.
3 - Use points with lowest constraint error (cErr).

SCALE 0 - Original search space (default if any integer values).
1 - Transform search space to unit cube (default if no integers).

REPLACE 0 - No replacement, default for constrained problems.
1 - Large function values are replaced by the median.
> 1 - Large values Z are replaced by new values. The replacement is defined
as Z := FMAX + log10(Z − FMAX + 1), where FMAX = 10REPLACE , if
min(F ) < 0 and FMAX = 10(ceil(log10(min(F )))+REPLACE), if min(F ) ≥ 0. A
new replacement is computed in every iteration, because min(F ) may change.
Default REPLACE = 5, if no linear or nonlinear constraints.

LOCAL 0 - No local searches after global search. If RBF surface is inaccurate, might
be an advantage.
1 - Local search from best points after global search. If equal best function
values, up to 20 local searches are done.

SMOOTH 1 - The problem is smooth enough for local search using numerical gradient
estimation methods (default).
0 - The problem is nonsmooth or noisy, and local search methods using numer-
ical gradient estimation are likely to produce garbage search directions.
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Prob Problem description structure. The following fields are used:, continued

globalSolver Global optimization solver used for subproblem optimization. Default
glcCluster (SMOOTH=1) or glcDirect (SMOOTH=0). If the global-
Solver is glcCluster, the fields Prob.GO.maxFunc1, Prob.GO.maxFunc2,
Prob.GO.maxFunc3, Prob.GO.localSolver, Prob.GO.DIRECT and other fields
set in Prob.GO are used. See the help for these parameters in glcCluster.

localSolver Local optimization solver used for subproblem optimization. If not defined, the
TOMLAB default constrained NLP solver is used.

— Special EGO algorithm parameters in Prob.CGO —

EGOAlg Main algorithm in the EGO solver (default EGOAlg == 1)
=1 Run expected improvement steps (modN=0,1,2,...). If no f(x) improve-
ment, use DACE surface minimum (modN=-1) in 1 step
=2 Run expected improvement steps (modN=0) until ExpI/—yMin— ¡ Tol-
ExpI for 3 successive steps (modN=1,2,3) without f(x) improvement (fRed
≤ 0), where yMin is fMin transformed by TRANSFORM After 2 such steps
(when modN=2), 1 step using the DACE surface minimum (modN=-1) is tried.
If then fRed ¿0, reset to modN=0 steps.

pEst 1 - Estimate d-vector, p parameters (default), 0 - fix p=2.
pEst Norm parameters, fixed or estimated, also see p0, pLow, pUpp (default pEst

= 0).
0 = Fixed constant p-value for all components (default, p0=1.99).
1 = Estimate one p-value valid for all components.
> 1 = Estimate d |||̇|p parameters, one for each component.

p0 Fixed p-value (pEst==0, default = 1.99) or initial p-value (pEst == 1, default
1.9) or d-vector of initial p-values (pEst > 1, default 1.9*ones(d,1))

pLow Lower bound on p.
If pEst == 0, not used
if pEst == 1, lower bound on p-value (default 1.0)
if pEst > 1, lower bounds on p (default ones(d,1))

pUpp Upper bound on p.
If pEst == 0, not used
if pEst == 1, upper bound on p-value (default 2.0)
if pEst > 1, upper bounds on p (default 2*ones(d,1))

TRANSFORM
Function value transformation.
0 - No transformation made.
1 - Median value transformation. Use REPLACE instead.
2 - log(y) transformation made.
3 - -log(-y) transformation made.
4 - -1/y transformation made.
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Prob Problem description structure. The following fields are used:, continued

Default EGO is computing the best possible transformation from the initial set
of data. Note! No check is made on illegal y if user gives TRANSFORM.

EITRANSFORM
Transformation of expected improvement function (default 1).
= 0 No transformation made.
= 1 − log(−f) transformation made.
= 2 −1/f transformation made.

TolExpI Convergence tolerance for expected improvement (default 10−6).

SAMPLEF Sample criterion function:
0 = Expected improvment (default)
1 = Kushner’s criterion (related option: KEPS)
2 = Lower confidence bounding (related option: LCBB)
3 = Generalized expected improvement (related option: GEIG)
4 = Maximum variance
5 = Watson and Barnes 2

KEPS The ε parameter in the Kushner’s criterion (default: −0.01).
If KEPS > 0, then ε = KEPS.
If KEPS < 0, then ε = |KEPS| ∗ fMin.

GEIG The exponent g in the generalized expected improvement function (default 2.0).

LCBB Lower Confidence Bounding parameter b (default 2.0).

GO Structure Prob.GO (Default values are set for all fields).
The following fields are used:

MaxFunc Maximal number of function evaluations in each global search.

MaxIter Maximal number of iterations in each global search.

DIRECT DIRECT solver used in glcCluster, either glcSolve or glcDirect(default).

maxFunc1 glcCluster parameter, maximum number of function evaluations in the first
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc2 glcCluster parameter, maximum number of function evaluations in the second
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc3 glcCluster parameter, maximum sum of function evaluations in repeated first
calls to DIRECT routine when trying to get feasible. Only used if globalSolver
is glcCluster, see help globalSolver.
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Prob Problem description structure. The following fields are used:, continued

localSolver The local solver used by glcCluster. If not defined, then Prob.CGO.localSolver
is used

MIP Structure in Prob, Prob.MIP.
Defines integer optimization parameters. Fields used:

IntVars If empty, all variables are assumed non-integer.
If islogical(IntVars) (=all elements are 0/1), then 1 = integer variable, 0 =
continuous variable. If any element > 1, IntVars is the indices for integer
variables.

varargin Other arguments sent directly to low level functions.

Description of Outputs

Result Structure with result from optimization.

x k Matrix with the best points as columns.
f k The best function value found so far.

Iter Number of iterations.
FuncEv Number of function evaluations.
ExitText Text string with information about the run.
ExitFlag Always 0.

CGO Subfield WarmStartInfo saves warm start information, the same information
as in cgoSave.mat, see below.

Inform Information parameter.
0 = Normal termination.
1 = Function value f(x) is less than fGoal.
2 = Error in function value f(x), abs(f − fGoal) <= fTol, fGoal=0.
3 = Relative Error in function value f(x) is less than fTol, i.e. abs(f −
fGoal)/abs(fGoal) <= fTol.
4 = No new point sampled for N iteration steps.
5 = All sample points same as the best point for N last iterations.
6 = All sample points same as previous point for N last iterations.
7 = All feasible integers tried.
9 = Max CPU Time reached.
10 = Expected improvement low for three iterations.
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Result Structure with result from optimization.

cgoSave.mat To make a warm start possible, all CGO solvers saves information in the file
cgoSave.mat. The file is created independent of the solver, which enables the
user to call any CGO solver using the warm start information. cgoSave.mat
is a MATLAB mat-file saved to the current directory. If the parameter SAVE
is 1, the CGO solver saves the mat file every iteration, which enables the
user to break the run and restart using warm start from the current state.
SAVE = 1 is currently always set by the CGO solvers. If the cgoSave.mat file
fails to open for writing, the information is also available in the output field
Result.CGO.WarmStartInfo, if the run was concluded without interruption.
Through a call to WarmDefGLOBAL, the Prob structure can be setup for warm
start. In this case, the CGO solver will not load the data from cgoSave.mat.
The file contains the following variables:

Name Problem name. Checked against the Prob.Name field if doing a warmstart.
O Matrix with sampled points (in original space).
X Matrix with sampled points (in unit space if SCALE==1)
F Vector with function values (penalty added for costly Cc(x))
F m Vector with function values (replaced).
F00 Vector of pure function values, before penalties.
Cc MMatrix with costly constraint values, Cc(x).
nInit Number of initial points.
Fpen Vector with function values + additional penalty if infeasible using the linear

constraints and noncostly nonlinear c(x).
fMinIdx Index of the best point found.
rngState Current state of the random number generator used.

Description
ego implements the algorithm EGO by D. R. Jones, Matthias Schonlau and William J. Welch presented in the
paper ”Efficient Global Optimization of Expensive Black-Box Functions” [4].

Please note that Jones et al. has a slightly different problem formulation. The TOMLAB version of ego treats
linear and nonlinear constraints separately.

ego samples points to which a response surface is fitted. The algorithm then balances between sampling new points
and minimization on the surface.

ego and rbfSolve use the same format for saving warm start data. This means that it is possible to try one solver
for a certain number of iterations/function evaluations and then do a warm start with the other. Example:

>> Prob = probInit(’glc_prob’,1); % Set up problem structure

>> Result_ego = tomRun(’ego’,Prob); % Solve for a while with ego

>> Prob.WarmStart = 1; % Indicate a warm start

>> Result_rbf = tomRun(’rbfSolve’,Prob); % Warm start with rbfSolve

M-files Used
iniSolve.m, endSolve.m, conAssign.m, glcAssign.m
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See Also
rbfSolve

Warnings
Observe that when cancelling with CTRL+C during a run, some memory allocated by ego will not be deallocated.
To deallocate, do:

>> clear cgolib
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5.3 arbfMIP

Purpose
Solve general constrained mixed-integer global black-box optimization problems with costly objective functions.

The optimization problem is of the following form

min
x

f(x)

s/t xL ≤ x ≤ xU
bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

xj ∈ N ∀j ∈ I ,

where f(x) ∈ R; xL, x, xU ∈ Rd; the m1 linear constraints are defined by A ∈ Rm1×d, bL, bU ∈ Rm1 ; and the m2

nonlinear constraints are defined by cL, c(x), cU ∈ Rm2 . The variables xI are restricted to be integers, where I
is an index subset of {1,. . . ,d}, possibly empty. It is assumed that the function f(x) is continuous with respect to
all variables, even if there is a demand that some variables only take integer values. Otherwise it would not make
sense to do the surrogate modeling of f(x) used by all CGO solvers.

f(x) is assumed to be a costly function while c(x) is assumed to be cheaply computed. Any costly constraints can
be treated by adding penalty terms to the objective function in the following way:

min
x

p(x) = f(x) +
∑
j

wj max
(

0, cj(x)− cjU , cjL − cj(x)
)
,

where weighting parameters wj have been added. The user then returns p(x) instead of f(x) to the CGO solver.

Calling Syntax
Result = arbfMIP(Prob,varargin)
Result = tomRun(’arbfMIP’, Prob);

Description of Inputs

Prob Problem description structure. The following fields are used:

Name Name of the problem. Used for security when doing warm starts.
FUNCS.f Name of function to compute the objective function.
FUNCS.c Name of function to compute the nonlinear constraint vector.

x L Lower bounds on the variables. Must be finite.
x U Upper bounds on the variables. Must be finite.

b U Upper bounds for the linear constraints.
b L Lower bounds for the linear constraints.
A Linear constraint matrix.

c L Lower bounds for the nonlinear constraints.
c U Upper bounds for the nonlinear constraints.
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Prob Problem description structure. The following fields are used:, continued

WarmStart Set true (non-zero) to load data from previous run from cgoSave.mat and re-
sume optimization from where the last run ended. If Prob.CGO.WarmStartInfo
has been defined through a call to WarmDefGLOBAL, this field is used instead
of the cgoSave.mat file. All CGO solvers uses the same mat-file and structure
field and can read the output of one another.

MaxCPU Maximal CPU Time (in seconds) to be used.

user User field used to send information to low-level functions.

PriLevOpt Print Level. 0 = silent. 1 = Summary 2 = Printing each iteration. 3 = Info
about local / global solution. 4 = Progress in x.

PriLevSub Print Level in subproblem solvers, see help in snSolve and gnSolve.

f Low Lower bound on the optimal function value. If defined, used to restrict the
target values into interval [f Low,min(surface)].

optParam Structure with optimization parameters. The following fields are used:

MaxFunc Maximal number of costly function evaluations, default 300 for rbfSolve and
arbfMIP, and default 200 for ego. MaxFunc must be ≤ 5000. If WarmStart = 1
and MaxFunc ≤ nFunc (Number of f(x) used) then set MaxFunc := MaxFunc
+ nFunc.

IterPrint Print one information line each iteration, and the new x tried. Default IterPrint
= 1. fMinI means the best f(x) is infeasible. fMinF means the best f(x) is
feasible (also integer feasible).

fGoal Goal for function value, not used if inf or empty.
eps f Relative accuracy for function value, fTol == eps f . Stop if |f − fGoal| ≤

|fGoal| ∗ fTol , if fGoal 6= 0. Stop if |f − fGoal| ≤ fTol , if fGoal = 0. See
the output field maxTri.

bTol Linear constraint tolerance.
cTol Nonlinear constraint tolerance.
MaxIter Maximal number of iterations used in the local optimization on the re-

sponse surface in each step. Default 1000, except for pure IP problems, then
max(GO.MaxFunc, MaxIter);.

CGO Structure (Prob.CGO) with parameters concerning global optimization options.
The following general fields in Prob.CGO are used:

Percent Type of strategy to get the initial sampled values:
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Prob Problem description structure. The following fields are used:, continued

Percent Experimental Design ExD
Corner strategies

900 All Corners 1
997 xL + xU + adjacent corners 2
998 xU + adjacent corners 3
999 xL + adjacent corners 4

Deterministic Strategies
0 User given initial points 5
94 DIRECT solver glbFast 6
95 DIRECT solver glcFast 6
96 DIRECT solver glbSolve 6
97 DIRECT solver glcSolve 6
98 DIRECT solver glbDirect 6
99 DIRECT solver glcDirect 6

Latin Based Sampling
1 Maximin LHD 1-norm 7
2 Maximin LHD 2-norm 8
3 Maximin LHD Inf-norm 9
4 Minimal Audze-Eglais 10
5 Minimax LHD (only 2 dim) 11
6 Latin Hypercube 12
7 Orthogonal Samling 13

Random Strategies (pp in %)
1pp Circle surrounding 14
2pp Ellipsoid surrounding 15
3pp Rectangle surrounding 16

Negative values of Percent result in constrained versions of the experimental
design methods 7-16. It means that all points sampled are feasible with respect
to all given constraints.
For ExD 5,6-12,14-16 user defined points are used.

nSample Number of sample points to be used in initial experimental design. nSample is
used differently dependent on the value of Percent:
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Prob Problem description structure. The following fields are used:, continued

(n)Sample:
ExD < 0 = 0 > 0 [ ]

1 2d

6 |n| iterations
7-11 d+ 1 d+ 1 max (d+ 1, n) (d+ 1)(d+ 2)/2

12 LATIN(k)
13 |n|

14-16 d+ 1 ,
where LATIN = [21 21 33 41 51 65 65] and k = |nSample|. Otherwise nSample
as input does not matter.

Description of the experimental designs:

ExD 1, All Corners. Initial points is the corner points of the box given by
Prob.x L and Prob.x U. Generates 2d points, which results in too many points
when the dimension is high.

ExD 2, Lower and Upper Corner point + adjacent points. Initial points are
2 ∗ d + 2 corners: the lower left corner xL and its d adjacent corners xL +
(xU (i)−xL(i))∗ei, i = 1, ..., d and the upper right corner xU and its d adjacent
corners xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 3. Initial points are the upper right corner xU and its d adjacent corners
xU − (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 4. Initial points are the lower left corner xL and its d adjacent corners
xL + (xU (i)− xL(i)) ∗ ei, i = 1, ..., d

ExD 5. User given initial points, given as a matrix in CGO.X. Each column
is one sampled point. If d = length(Prob.x L), then size(X,1) = d, size(X,2) ≥
d+1. CGO.F should be defined as empty, or contain a vector of corresponding
f(x) values. Any CGO.F value set as NaN will be computed by solver routine.

ExD 6. Use determinstic global optimization methods to find the initial design.
Current methods available (all DIRECT methods), dependent on the value of
Percent:
99 = glcDirect, 98 = glbDirect, 97 = glcSolve, 96 = glbSolve, 95 = glcFast, 94
= glbFast.

ExD 7-11. Optimal Latin Hypercube Designs (LHD) with respect to different
norms. The following norms and designs are available, dependent on the value
of Percent:
1 = Maximin 1-Norm, 2 = Maximin 2-Norm, 3 = Maximin Inf-Norm, 4 =
Audze-Eglais Norm, 5 = Minimax 2-Norm.
All designs taken from: http://www.spacefillingdesigns.nl/

29

http://www.spacefillingdesigns.nl/


Prob Problem description structure. The following fields are used:, continued

Constrained versions will try bigger and bigger designs up to M =
max(10 ∗ d, nTrial) different designs, stopping when it has found nSample fea-
sible points.

ExD 12. Latin hypercube space-filling design. For nSample < 0, k =
|nSample| should in principle be the problem dimension. The number of points
sampled is:

k : 2 3 4 5 6 > 6
Points : 21 33 41 51 65 65

The call made is: X = daceInit(abs(nSample),Prob.x L,Prob.x U);
Set nSample = [ ] to get (d+1)*(d+2)/2 sampled points:

d : 1 2 3 4 5 6 7 8 9 10
Points : 3 6 10 15 21 28 36 45 55 66

This is a more efficient number of points to use.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.
Constrained version of Latin hypercube only keep points that fulfill the
linear and nonlinear constraints. The algorithm will try up to M =
max(10 ∗ d, nTrial) points, stopping when it has found nSample feasible points
(d+ 1 points if nSample < 0).

ExD 13. Orthogonal Sampling, LH with subspace density demands.

ExD 14-16. Random strategies, the |Percent| value gives the percentage size
of an ellipsoid, circle or rectangle around the so far sampled points that new
points are not allowed in. Range 1%-50%. Recommended values 10% - 20%.
If CGO.X is nonempty, these points are verified as in ExD 5, and treated as al-
ready sampled points. Then nSample additional points are sampled, restricted
to be close to the given points.

X,F,CX The fields X,F,CX are used to define user given points. ExD = 5 (Percent =
0) needs this information. If ExD == 6-12,14-16 these points are included into
the design.

X A matrix of initial x values. One column for every x value. If ExD == 5,
size(X,2) ≥ dim(x)+1 needed.

F A vector of initial f(x) values. If any element is set to NaN it will be computed.

CX Optionally a matrix of nonlinear constraint c(x) values. If nonempty, then
size(CX,2) == size(X,2). If any element is set as NaN, the vector c(x) =
CX(:,i) will be recomputed.
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Prob Problem description structure. The following fields are used:, continued

RandState If ≥ 0, rand(′state′, RandState) is set to initialize the pseudo-random genera-
tor. If < 0, rand(′state′, 100 ∗ clock) is set to give a new set of random values
each run. If isnan(RandState), the random state is not initialized. RandState
will influence if a stochastic initial experimental design is applied, see input Per-
cent and nSample. RandState will also influence if using the multiMin solver,
but the random state seed is not reset in multiMin. The state of the random
generator is saved in the warm start output rngState, and the random genera-
tor is reinitialized with this state if warm start is used. Default RandState =
0.

AddMP If = 1, add the midpoint as extra point in the corner strategies. Default 1 for
any corner strategy, i.e. Percent is 900, 997, 998 or 999.

nTrial For experimental design CLH, the method generates M = max(10 ∗ d, nTrial)
trial points, and evaluate them until nSample feasible points are found. In
the random designs, nTrial is the maximum number of trial points randomly
generated for each new point to sample.

CLHMethod Different search strategies for finding feasible LH points. First of all, the least
infeasible point is added. Then the linear feasible points are considered. If
more points are needed still, the nonlinear infeasible points are added.
1 - Take the sampled infeasible points in order.
2 - Take a random sample of the infeasible points.
3 - Use points with lowest constraint error (cErr).

SCALE 0 - Original search space (default if any integer values).
1 - Transform search space to unit cube (default if no integers).

REPLACE 0 - No replacement, default for constrained problems.
1 - Large function values are replaced by the median.
> 1 - Large values Z are replaced by new values. The replacement is defined
as Z := FMAX + log10(Z − FMAX + 1), where FMAX = 10REPLACE , if
min(F ) < 0 and FMAX = 10(ceil(log10(min(F )))+REPLACE), if min(F ) ≥ 0. A
new replacement is computed in every iteration, because min(F ) may change.
Default REPLACE = 5, if no linear or nonlinear constraints.

LOCAL 0 - No local searches after global search. If RBF surface is inaccurate, might
be an advantage.
1 - Local search from best points after global search. If equal best function
values, up to 20 local searches are done.

SMOOTH 1 - The problem is smooth enough for local search using numerical gradient
estimation methods (default).
0 - The problem is nonsmooth or noisy, and local search methods using numer-
ical gradient estimation are likely to produce garbage search directions.
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Prob Problem description structure. The following fields are used:, continued

globalSolver Global optimization solver used for subproblem optimization. Default
glcCluster (SMOOTH=1) or glcDirect (SMOOTH=0). If the global-
Solver is glcCluster, the fields Prob.GO.maxFunc1, Prob.GO.maxFunc2,
Prob.GO.maxFunc3, Prob.GO.localSolver, Prob.GO.DIRECT and other fields
set in Prob.GO are used. See the help for these parameters in glcCluster.

localSolver Local optimization solver used for subproblem optimization. If not defined, the
TOMLAB default constrained NLP solver is used.

— Special RBF algorithm parameters in Prob.CGO —

rbfType Type of radial basis function: 1 - thin plate spline; 2 - Cubic Spline (default);
3 - Multiquadric; 4 - Inverse multiquadric; 5 - Gaussian; 6 - Linear.

idea Global search type, always idea = 1, i.e. use fnStar values.

if fStarRule =3, then N=1 default, otherwise N=4 default.
By default idea =1, fStarRule =1, i.e. N =4. To change N, see below.

N Cycle length in idea 1 (default N=1 for fStarRule 3, otherwise default N=4) or
idea 2 (always N=3).

infStep If =1, add search step with target value −∞ first in cycle. Default 0. Always
=1 for the case idea =1, fStarRule =3.

fStarRule Global-Local search strategy in idea 1, where N is the cycle length. Define
minsn as the global minimum on the RBF surface. The following strategies
for setting the target value fStar is defined: 1: fStar = minsn − ((N − (n −
nInit))/N)2 ∗∆n (Default), 2: fStar = minsn − (N − (n − nInit))/N ∗∆n.
Strategy 1 and 2 depends on ∆ n estimate (see DeltaRule). If infStep =1, add
−∞-step first in cycle. 3: fStar = −∞-step, minsn−k∗0.1∗|minsn|k = N, ..., 0.
These strategies had the following names in Gutmanns thesis: III, II, I.

DeltaRule 1 = Skip large f(x) when computing f(x) interval ∆. 0 = Use all points. Default
1.

eps sn Relative tolerance used to test if the minimum of the RBF surface, minsn, is
sufficiently lower than the best point (fMin) found (default is 10−7).

MaxCycle Max number of cycles without progress before stopping, default 10.

GO Structure Prob.GO (Default values are set for all fields).
The following fields are used:

MaxFunc Maximal number of function evaluations in each global search.
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Prob Problem description structure. The following fields are used:, continued

MaxIter Maximal number of iterations in each global search.

DIRECT DIRECT solver used in glcCluster, either glcSolve or glcDirect(default).

maxFunc1 glcCluster parameter, maximum number of function evaluations in the first
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc2 glcCluster parameter, maximum number of function evaluations in the second
call. Only used if globalSolver is glcCluster, see help globalSolver.

maxFunc3 glcCluster parameter, maximum sum of function evaluations in repeated first
calls to DIRECT routine when trying to get feasible. Only used if globalSolver
is glcCluster, see help globalSolver.

localSolver The local solver used by glcCluster. If not defined, then Prob.CGO.localSolver
is used

MIP Structure in Prob, Prob.MIP.
Defines integer optimization parameters. Fields used:

IntVars If empty, all variables are assumed non-integer.
If islogical(IntVars) (=all elements are 0/1), then 1 = integer variable, 0 =
continuous variable. If any element > 1, IntVars is the indices for integer
variables.

varargin Other parameters directly sent to low level routines.

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Matrix with the best points as columns.
f k The best function value found so far.

Iter Number of iterations.
FuncEv Number of function evaluations.
ExitText Text string with information about the run.
ExitFlag Always 0.

CGO Subfield WarmStartInfo saves warm start information, the same information
as in cgoSave.mat, see below.

Inform Information parameter.
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Result Structure with result from optimization. The following fields are changed:, continued

0 = Normal termination.
1 = Function value f(x) is less than fGoal.
2 = Error in function value f(x), |f − fGoal| ≤ fTol, fGoal = 0.
3 = Relative Error in function value f(x) is less than fTol, i.e. |f −
fGoal|/|fGoal| ≤ fTol.
4 = No new point sampled for MaxCycle iteration steps.
5 = All sample points same as the best point for MaxCycle last iterations.
6 = All sample points same as previous point for MaxCycle last iterations.
7 = All feasible integers tried.
9 = Max CPU Time reached.

cgoSave.mat To make a warm start possible, all CGO solvers saves information in the file
cgoSave.mat. The file is created independent of the solver, which enables the
user to call any CGO solver using the warm start information. cgoSave.mat
is a MATLAB mat-file saved to the current directory. If the parameter SAVE
is 1, the CGO solver saves the mat file every iteration, which enables the
user to break the run and restart using warm start from the current state.
SAVE = 1 is currently always set by the CGO solvers. If the cgoSave.mat file
fails to open for writing, the information is also available in the output field
Result.CGO.WarmStartInfo, if the run was concluded without interruption.
Through a call to WarmDefGLOBAL, the Prob structure can be setup for warm
start. In this case, the CGO solver will not load the data from cgoSave.mat.
The file contains the following variables:

Name Problem name. Checked against the Prob.Name field if doing a warmstart.
O Matrix with sampled points (in original space).
X Matrix with sampled points (in unit space if SCALE==1)
F Vector with function values (penalty added for costly Cc(x))
F m Vector with function values (replaced).
F00 Vector of pure function values, before penalties.
Cc MMatrix with costly constraint values, Cc(x).
nInit Number of initial points.
Fpen Vector with function values + additional penalty if infeasible using the linear

constraints and noncostly nonlinear c(x).
fMinIdx Index of the best point found.
rngState Current state of the random number generator used.

Description
arbfMIP implements the Adaptive Radial Basis Function (ARBF) algorithm presented in [11]. The ARBF method
handles linear equality and inequality constraints, and nonlinear equality and inequality constraints, as well as
mixed-integer problems, see [13].

M-files Used
daceInit.m, iniSolve.m, endSolve.m, conAssign.m, glcAssign.m, snSolve.m, gnSolve.m, expDesign.m.
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MEX-files Used
tomsol

See Also
rbfSolve.m and ego.m

Warnings
Observe that when cancelling with CTRL+C during a run, some memory allocated by arbfMIP will not be
deallocated. To deallocate, do:

>> clear cgolib
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6 rbfSolve description

Following is a detailed description of the rbfSolve algorithm.

6.1 Summary

The manual considers global optimization of costly objective functions, i.e. the problem of finding the global
minimum when there are several local minima and each function value takes considerable CPU time to compute.
Such problems often arise in industrial and financial applications, where a function value could be a result of a time-
consuming computer simulation or optimization. Derivatives are most often hard to obtain, and the algorithms
presented make no use of such information.

The emphasis is on a new method by Gutmann and Powell, A radial basis function method for global optimization.
This method is a response surface method, similar to the Efficient Global Optimization (EGO) method of Jones.
The TOMLAB implementation of the Radial Basis Function (RBF) method is described in detail.

6.2 Introduction

The task of global optimization is to find the set of parameters x in the feasible region Ω ⊂ Rd for which the
objective function f(x) obtains its smallest value. In other words, a point x∗ is a global optimizer to f(x) on Ω,
if f(x∗) ≤ f(x) for all x ∈ Ω. On the other hand, a point x̂ is a local optimizer to f(x), if f(x̂) ≤ f(x) for all x
in some neighborhood around x̂. Obviously, when the objective function has several local minima, there could be
solutions that are locally optimal but not globally optimal and standard local optimization techniques are likely
to get stuck before the global minimum is reached. Therefore, some kind of global search is needed to find the
global minimum with some reliability.

Previously a Matlab implementations of the DIRECT [3] has been made, the new constrained DIRECT [14] and the
Efficient Global Optimization (EGO) [4] algorithms. The implementations are part of the TOMLAB optimization
environment. The implementation of the DIRECT algorithm is further discussed and analyzed in Björkman, Holm-
ström [1]. Since the objective functions in our applications often are expensive to compute, we have to focus on
very efficient methods. At the IFIP TC7 Conference on System Modelling and Optimization in Cambridge 1999,
Hans-Martin Gutmann presented his work on the RBF algorithm [5]. The idea of the RBF algorithm is to use radial
basis function interpolation to define a utility function (Powell [17]). The next point, where the original objective
function should be evaluated, is determined by optimizing on this utility function. The combination of our need
for efficient global optimization software and the interesting ideas of Powell and Gutmann led to the development
of an improved RBF algorithm implemented in Matlab.

6.3 The RBF Algorithm

Our RBF algorithm is based on the ideas presented by Gutmann [5, 8], with some extensions and further develop-
ment. The algorithm is implemented in the Matlab routine rbfSolve.

The RBF algorithm deals with problems of the form

min
x

f(x)

s.t. xL ≤ x ≤ xU ,
(1)

where f ∈ R and x, xL, xU ∈ Rd. We assume that no derivative information is available and that each function
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evaluation is very expensive. For example, the function value could be the result of a time-consuming experiment
or computer simulation.

6.3.1 Description of the Algorithm

We now consider the question of choosing the next point where the objective function should be evaluated. The idea
of the RBF algorithm is to use radial basis function interpolation and a measure of ‘bumpiness’ of a radial function,
σ say. A target value f∗n is chosen that is an estimate of the global minimum of f . For each y /∈ {x1, . . . , xn} there
exists a radial basis function sy that satisfies the interpolation conditions

sy(xi) = f(xi), i = 1, . . . , n,
sy(y) = f∗n. (2)

The next point xn+1 is calculated as the value of y in the feasible region that minimizes σ(sy). It turns out that
the function y 7→ σ(sy) is much cheaper to compute than the original function.

Here, the radial basis function interpolant sn has the form

sn(x) =
n∑
i=1

λiφ (‖x− xi‖2) + bTx+ a, (3)

with λ1, . . . , λn ∈ R, b ∈ Rd, a ∈ R and φ is either cubic with φ(r) = r3 or the thin plate spline φ(r) = r2 log r.
Gutmann considers other choices of φ and of the additional polynomial in [6], but later in [7] concludes that the
situation in the multiquadric and Gaussian cases is disappointing.

The unknown parameters λi, b and a are obtained as the solution of the system of linear equations(
Φ P

PT 0

)(
λ

c

)
=
(
F

0

)
, (4)

where Φ is the n× n matrix with Φij = φ
(
‖xi − xj‖2

)
and

P =


xT1 1
xT2 1
. .

. .

xTn 1

 , λ =


λ1

λ2

.

.

λn

 , c =



b1
b2
.

.

bd
a


, F =


f(x1)
f(x2)
.

.

f(xn)

 . (5)

sy could be obtained accordingly, but there is no need to do that as one is only interested in σ(sy). In [15] Powell
shows that if the rank of P is d+ 1, then the matrix(

Φ P

PT 0

)
(6)

is nonsingular and the linear system (4) has a unique solution.

Gutmann defines σ in [8]. For sn in (3) it is

σ(sn) =
n∑
i=1

λisn(xi). (7)
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Further, it is shown that σ(sy) is

σ(sy) = σ(sn) + µn(y) [sn(y)− f∗n]2 , y /∈ {x1, . . . , xn}. (8)

Thus minimizing σ(sy) subject to constraints is equivalent to minimizing gn defined as

gn(y) = µn(y) [sn(y)− f∗n]2 , y ∈ Ω \ {x1, . . . , xn} , (9)

where µn(y) is the coefficient corresponding to y of the Lagrangian function L that satisfies L(xi) = 0, i = 1, . . . , n
and L(y) = 1. It can be computed as follows. Φ is extended to

Φy =
(

Φ φy
φTy 0

)
, (10)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n, and P is extended to

Py =
(

P

yT 1

)
. (11)

Then µn(y) is the (n+ 1)-th component of v ∈ Rn+d+2 that solves the system

(
Φy Py
PTy 0

)
v =

 0n
1
0d+1

 . (12)

We use the notation 0n and 0d+1 for column vectors with all entries equal to zero and with dimension n and (d+1),
respectively. The computation of µn(y) is done for many different y when minimizing gn(y). This requires O(n3)
operations if not exploiting the structure of Φy and Py. Hence it does not make sense to solve the full system each
time. A better alternative is to factorize the interpolation matrix and update the factorization for each y. An
algorithm that requires O(n2) operations is described in Section 6.3.3.

When there are large differences between function values, the interpolant has a tendency to oscillate strongly. It
might also happen that min sn(y) is much lower than the best known function value, which leads to a choice of f∗n
that overemphasizes global search. To handle these problems, large function values are in each iteration replaced
by the median of all computed function values.

Note that µn and gn are not defined at x1, . . . , xn and

lim
y→xi

µn(y) =∞, i = 1, . . . , n. (13)

This will cause problems when µn is evaluated at a point close to one of the known points. The function hn(x)
defined by

hn(x) =

{
1

gn(x) , x /∈ {x1, . . . , xn}
0, x ∈ {x1, . . . , xn}

(14)

is differentiable everywhere on Ω, and is thus a better choice as objective function. Instead of minimizing gn(y) in
(9) one may minimize −hn(y). In our implementation we instead minimize − log(hn(y)). By this we avoid a flat
minimum and numerical trouble when hn(y) is very small.

6.3.2 The Choice of f∗n

For the value of f∗n it should hold that

f∗n ∈
[
−∞,min

y∈Ω
sn(y)

]
. (15)
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The case f∗n = min
y∈Ω

sn(y) is only admissible if min
y∈Ω

sn(y) < sn(xi), i = 1, . . . , n. There are two special cases for the

choice of f∗n. In the case when f∗n = min
y∈Ω

sn(y), then minimizing (9) is equivalent to

min
y∈Ω

sn(y). (16)

In the case when f∗n = −∞, then minimizing (9) is equivalent to

min
y∈Ω\{x1,...,xn}

µn(y). (17)

So how should f∗n be chosen? If f∗n = −∞, then the algorithm will choose the new point in an unexplored
region, which is good from a global search point of view, but the objective function will not be exploited at
all. If f∗n = min

y∈Ω
sn(y), the algorithm will show good local behaviour, but the global minimum might be missed.

Therefore, there is a need for a mixture of values for f∗n close to and far away from min
y∈Ω

sn(y). Gutmann describes

two different strategies for the choice of f∗n in [8].

The first strategy, denoted idea 1, is to perform a cycle of length N + 1 and choose f∗n as

f∗n = min
y∈Ω

sn(y)−W ·
(

max
i
f(xi)−min

y∈Ω
sn(y)

)
, (18)

with

W =
[

(N − (n− ninit))mod(N + 1)
N

]2

, (19)

where ninit is the number of initial points. Here, N = 5 is fixed and max
i
f(xi) is not taken over all points, except

for the first step of the cycle. In each of the subsequent steps the n − nmax points with largest function value
are removed (not considered) when taking the maximum. Hence the quantity max

i
f(xi) is decreasing until the

cycle is over. Then all points are considered again and the cycle starts from the beginning. More formally, if
(n− ninit)mod(N + 1) = 0, nmax = n, otherwise

nmax = max {2, nmax − floor((n− ninit)/N)} . (20)

The second strategy, denoted idea 2, is to consider f∗n as the optimal value of

min f∗(y)
s.t. µn(y) [sn(y)− f∗(y)]2 ≤ α2

n

y ∈ Ω,
(21)

and then perform a cycle of length N + 1 on the choice of αn. Here, N = 3 is fixed and

αn = 1
2

(
max
i
f(xi)−min

y∈Ω
sn(y)

)
, n = n0, n0 + 1

αn0+2 = min
{

1, 1
2

(
max
i
f(xi)−min

y∈Ω
sn(y)

)}
αn0+3 = 0,

(22)

where n0 is set to n at the beginning of each cycle. For this strategy, max
i
f(xi) is taken over all points in all parts

of the cycle.

Consider equation (21). Note that for a fixed y the optimal f∗(y) is the one for which

µn(y) [sn(y)− f∗(y)]2 = α2
n. (23)
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Substituting this equality constraint into the objective of (21) simplifies the problem to the minimization of

f∗(y) = sn(y)− αn/
√
µn(y). (24)

Denoting the minimizer of (24) by y∗, and choosing f∗n = f∗(y∗), it is evident that y∗ minimizes µn(y) [sn(y)− f∗n]2

and hence gn(y) in (9).

For both strategies (idea 1 and idea 2), a check is performed when (n−ninit)mod(N + 1) = N . This is the stage
when a purely local search is performed, so it is important to make sure that the minimizer of sn is not one of the
interpolation points or too close to one. The test used is

fmin −min
y∈Ω

sn(y) ≤ 10−4 max {1, |fmin|} , (25)

where fmin is the best function value found so far, i.e. min
i
f(xi), i = 1, . . . , n. For the first strategy (idea 1), if

(25) is true, then
f∗n = min

y∈Ω
sn(y)− 10−2 max {1, |fmin|} , (26)

otherwise f∗n is set to 0. For the second strategy (idea 2), if (25) is true, then αn (or more correctly αn0+3) is set
to

αn0+3 = min
{

1,
1
2

(
max
i
f(xi)−min

y∈Ω
sn(y)

)}
, (27)

otherwise αn0+3 is set to 0.

6.3.3 Factorizations and Updates

In Powell [16] a factorization algorithm is presented for the solution of (4). The algorithm makes use of the
conditional definiteness of Φ, i.e. λTΦλ > 0, λ 6= 0 and PTλ = 0. If

P =
(
Y Z

)( R

0

)
(28)

is the QR decomposition of P , then the columns of Z span the null space of PT , and every λ with PTλ = 0 can
be expressed as λ = Zz for some vector z. Thus the conditional positive definiteness implies that

zTZTΦZz > 0, z ∈ Rn−d−1 \ {0}. (29)

This shows that ZTΦZ is positive definite, and thus its Cholesky factorization

ZTΦZ = LLT (30)

exists. This property can be used to solve (4) as follows. Consider the interpolation condition Φλ + Pc = F in
(4). Multiply from left by ZT and replace λ by Zz. Because ZTP = 0, the interpolation condition simplifies to

ZTΦZz = ZTF. (31)

Solving this system using the Cholesky factorization gives z. Then compute λ = Zz and solve

Pc = F − Φλ (32)

for c using the QR decomposition of P as
Rc = Y T(F − Φλ). (33)
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The same principle can be applied to solve (12) for a given y to get µn(y). In analogy to the discussion above, if
the extended matrices Φy and Py in (10) and (11), respectively, are given, and if

ZTy Py = 0 (34)

and
ZTy ΦyZy = LyL

T
y (35)

is the Cholesky factorization, then the vector
v = Zyz(y) (36)

yields µn(y) = vn+1, where z(y) solves

ZTy ΦyZyz = Zy

(
0n
1

)
. (37)

The Cholesky factorization is the most expensive part of this procedure. It requires O(n3) operations. As µn(y)
must be computed for many different y this is inacceptable. However, if one knows the QR factors of P and the
Cholesky factor of ZTΦZ, the QR factorization of Py and the new Cholesky factor Ly can be computed in O(n2)
operations.

The new Φ(y) is

Φy =
(

Φ φy
φTy 0

)
, (38)

where (φy)i = φ(‖y − xi‖2), i = 1, . . . , n. The new P (y) is

Py =
(

P

yT 1

)
. (39)

Compute the QR factorization of Py, defined in (10). Given P = QR, the QR factorization of Py may be written
as

Py = QyRy =
(
Q 0
0 1

)
HRy, (40)

where H is an orthogonal matrix obtained by d+ 1 Givens rotations and for i = d+ 2, . . . , n the i-th column of H
is the i-th unit vector. Denote B = QTΦQ. Using Φy as defined in (10) consider the expanded B matrix

By = QTy ΦyQy = HT

(
QT 0
0 1

)
Φy

(
Q 0
0 1

)
H =

= HT

(
B QTφy
φTyQ 0

)
H.

(41)

Multiplications from the right and left with H affects only the first (d+ 1) rows and columns and the last row and
the last columns of the matrix in the middle. (Remember, d is the dimension of the problem). Hence

By =

 ∗ ∗ ∗
∗ ZTΦZ v

∗ vT γ

 , (42)

where ∗ denotes entries not important for the moment. From the form of By it follows that

ZTy ΦZy =
(
ZTΦZ v

vT γ

)
(43)
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holds. The Cholesky factorization of ZTΦZ is already known. The new Cholesky Ly factor is found by solving
the lower triangular system Ll = v for l, computing β =

√
γ − lT l, and setting

Ly =
(

L 0
lT β

)
. (44)

It is easily seen that LyLTy = ZTy ΦyZy because

LyL
T
y =

(
L 0
lT β

)(
LT l

0 β

)
=
(
LLT Ll

lTL lT l + β2

)
=

=
(
ZTΦZ v

vT γ

)
= ZTy ΦyZy.

(45)

Note that in practice we do the following: First compute the factorization of P , i.e. Py = QyRy, using Givens
rotations. Then, since we are only interested in v and γ in (42), it is not necessary to compute the matrix By
in (41). Setting v̂ to the last column in Qy and computing ṽ = ΦTy v̂ = Φy v̂ (Φy is symmetric), gives v and γ by
multiplying the last (n− d) columns in Qy by ṽ, i.e.(

v

γ

)
= QTy·i ṽ, i = d+ 2, . . . , n+ 1. (46)

Using this algorithm, v and γ are computed using ((n + 1) + (n − d)) inner products instead of the two matrix
multiplications in (41).

Note that the factorization algorithm is a normal ‘null-space’ method for solving an optimization problem involving
linear equality constraints. The system of linear equations in (4) defines the necessary conditions for a stationary
point to the unconstrained quadratic programming (QP) problem

min
λ,c

1
2λ

TΦλ+ λT(Pc− F ). (47)

Viewing c as Lagrange multipliers for the linear equalities in (4), (47) is equivalent to the QP problem in λ defined
as

min
λ

1
2λ

TΦλ− FTλ subject to PTλ = 0. (48)

The first condition in the conditional positive definiteness definition is the same as saying that the reduced Hessian
must be positive definite at the solution of the QP problem if that solution is to be unique.

The type of update procedure described above is suitable each time an optimal point y = xn+1 is added. However,
when evaluating all candidates y an even more efficient algorithm can be formulated. What is needed is a black-box
procedure to solve linear systems with a general right-hand side:(

Φ P

PT 0

)(
λ

c

)
=

(
g

r

)
.

Using the QR-factorization in (28) the steps

RTv = r,

ZTΦZw = ZT(g − ΦY v),

λ = Y v + Zw,

Rc = Y T(g − Φλ)
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simplify when r = 0 as in (4), but all steps are useful for solving the extended system (49); see next.

For each of many vectors y, the extended system takes the form
Φ φ P

φT 0 pT

PT p 0



λ̄

µ

c̄

 =


0

1

0

 , (49)

where pT = ( yT 1 ). This permutes to 
Φ P φ

PT 0 p

φT pT 0



λ̄

c̄

µ

 =


0

0

1

 , (50)

which may be solved by block-LU factorization (also known as the Schur-complement method). It helps that most
of the right-hand side is zero. The solution is given by the steps(

Φ P

PT 0

)(
λ̂

ĉ

)
=

(
φ

p

)
,

µ = −1/(φTλ̂+ pTĉ),(
λ̄

c̄

)
= −µ

(
λ̂

ĉ

)
.

Thus, each y requires little more than solving for (λ̂, ĉ) using the current factorizations (two operations each with
Q, R and L). This is cheaper than updating the factors for each y, and should be reliable unless the matrix in (4)
is nearly singular. The updating procedure is best numerically, and it is still needed once when the final y = xn+1

is chosen.

6.3.4 A Compact Algorithm Description

Section 6.3.1-6.3.3 described all the elements of the RBF algorithm as implemented in our Matlab routine rbfSolve,
but our discussion has covered several pages. We now summarize everything in a compact step-by-step description.
Steps 2, 6 and 7 are different in idea 1 and idea 2.
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idea 1 idea 2
1: Choose n initial points x1, . . . , xn (normally

the 2d box corner points defined by the vari-
able bounds). Compute Fi = f(xi), i =
1, 2, . . . , n and set ninit = n.

2: Start a cycle of length 6. Start a cycle of length 4.
3: If the maximum number of function evalua-

tions reached, quit.
4: Compute the radial basis function interpolant

sn by solving the system of linear equations
(4).

5: Solve the minimization problem min
y∈Ω

sn(y).

6: Compute f∗n in (18) corresponding to the cur-
rent position in the cycle.

Compute αn in (22) corresponding to the
current position in the cycle.

7: New point xn+1 is the value of y that mini-
mizes gn(y) in (9).

New point xn+1 is the value of y that min-
imizes f∗(y) in (24).

8: Compute Fn+1 = f(xn+1) and set n = n+ 1.
9: If end of cycle, go to 2. Otherwise go to 4.

6.3.5 Some Implementation Details

The first question that arise is how to choose the points x1, . . . , xninit
to include in the initial set. We only consider

box constrained problems, and choose the corners of the box as initial points, i.e. ninit = 2d. Starting with other
points is likely to lead to the corners during the iterations anyway. But as Gutmann suggests, having a ”good”
point beforehand, one can include it in the initial set.

The subproblem
min
y∈Ω

sn(y) , (51)

is itself a problem which could have more than one local minima. To solve (51) (at least approximately), we start
from the interpolation point with the least function value, i.e. argminf(xi), i = 1, . . . , n, and perform a local search.
In many cases this leads to the minimum of sn. Of course, there is no guarantee that it does. We use analytical
expressions for the derivatives of sn and perform the local optimization using ucSolve in TOMLAB [9, 10] running
the inverse BFGS algorithm [12].

To minimize gn(y) for the first strategy, or f∗(y) for the second strategy, we use our Matlab routine glbSolve
implementing the DIRECT algorithm (see the TOMLAB manual). We run glbSolve for 500 function evaluations
and choose xn+1 as the best point found by glbSolve. When (n − ninit)mod(N + 1) = N (when a purely local
search is performed) and the minimizer of sn is not too close to any of the interpolation points, i.e. (25) is not
true, glbSolve is not used to minimize gn(y) or f∗(y). Instead, we choose the minimizer of (51) as the new point
xn+1. The TOMLAB routine AppRowQR is used to update the QR decomposition.

Our experience so far with the RBF algorithm shows that for the second strategy (idea2), the minimum of (24) is
very sensitive for the scaling of the box constraints. To overcome this problem we transform the search space to
the unit hypercube. This algorithm improvement is necessary to avoid rank deficiency in the interpolation matrix
for the train design problem.

In our implementation it is possible to restart the optimization with the final status of all parameters from the
previous run.
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Birkhäuser, Basel, 1999.

46


	Contents
	1 Introduction
	1.1 Overview
	1.2 Contents of this manual
	1.3 More information
	1.4 Prerequisites

	2 Using the Matlab Interface
	3 Setting CGO Options
	4 TOMLAB /CGO Test Examples
	5 TOMLAB /CGO Solver Reference
	5.1 rbfSolve
	5.2 ego
	5.3 arbfMIP

	6 rbfSolve description
	6.1 Summary
	6.2 Introduction
	6.3 The RBF Algorithm
	6.3.1 Description of the Algorithm
	6.3.2 The Choice of fn*
	6.3.3 Factorizations and Updates
	6.3.4 A Compact Algorithm Description
	6.3.5 Some Implementation Details


	References

