
USER’S GUIDE FOR TOMLAB /CPLEX v12.1 1

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4

August 14, 2009

1More information available at the TOMLAB home page: http://tomopt.com E-mail: tomlab@tomopt.com.
2Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Väster̊as,

Sweden, kenneth.holmstrom@mdh.se.
3Tomlab Optimization AB, Väster̊as Technology Park, Trefasgatan 4, SE-721 30 Väster̊as, Sweden, anders@tomopt.com.
4Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA, USA, medvall@tomopt.com.

1

http://tomopt.com
mailto:tomlab@tomopt.com
mailto:kenneth.holmstrom@mdh.se
mailto:anders@tomopt.com
mailto:medvall@tomopt.com

User’s Guide for TOMLAB /CPLEX v12.1 2

Contents

Contents 2

1 Introduction 5

1.1 Overview . 5

1.2 Contents of this Manual . 5

1.3 Prerequisites . 5

2 Installing TOMLAB /CPLEX 6

2.1 Windows Systems . 6

2.2 Unix/Linux Systems . 6

2.3 Troubleshooting . 7

3 Using the Matlab Interface 8

4 Callbacks in Matlab 9

5 Test Routines in Non-Tomlab Format 10

6 Test Routines in TOMLAB Format 11

A The Matlab Interface Routines - Main Routines 12

A.1 cplex . 12

A.2 cplexTL . 22

A.3 cplexStatus . 32

A.4 cpxRetVec . 35

B The Matlab Interface Routines - Utility Routines 39

B.1 cpx2mat . 39

B.2 abc2gap . 40

C The Matlab Interface Routines - Test Routines 41

C.1 cpxaircrew . 41

C.2 cpxbiptest . 42

C.3 cpxiptest . 43

C.4 cpxtomtest1 . 44

C.5 cpxtomtest2 . 44

C.6 cpxKnaps . 45

User’s Guide for TOMLAB /CPLEX v12.1 3

C.7 cpxKnapsTL . 46

C.8 cpxSolutionPool . 47

C.9 cpxSolverTuning . 48

C.10 cpxTest1 . 49

C.11 cpxTest2 . 50

C.12 cpxTest3 . 51

C.13 cpxTestQP1 . 52

C.14 cpxTestQP2 . 53

C.15 cpxTestConflict . 54

D The Matlab Interface Routines - Callback Routines 55

D.1 cpxcb BARRIER . 55

D.2 cpxcb DISJCUT . 55

D.3 cpxcb DUAL . 56

D.4 cpxcb DUALCROSS . 57

D.5 cpxcb FLOWMIR . 58

D.6 cpxcb FRACCUT . 58

D.7 cpxcb MIP . 59

D.8 cpxcb MIPPROBE . 60

D.9 cpxcb PRESOLVE . 61

D.10 cpxcb PRIM . 62

D.11 cpxcb PRIMCROSS . 62

D.12 cpxcb QPBARRIER . 63

D.13 cpxcb QPSIMPLEX . 64

D.14 cpxcb INCUMBENT . 64

D.15 cpxcb USERCUT . 65

D.16 cpxcb NET . 65

E TOMLAB /CPLEX Network Solver 66

E.1 cplexnet . 67

F Conflict refiner, IIS, SA and Warm Start 71

F.1 Conflict refiner . 71

F.1.1 cpxBuildConflict . 71

F.2 IIS . 72

F.3 SA . 73

F.4 Warm Start . 73

User’s Guide for TOMLAB /CPLEX v12.1 4

F.5 Solution Pool . 74

G CPLEX Parameters Interface 75

G.1 Setting CPLEX Parameters in Matlab . 75

G.2 The CPLEX Parameter Table . 76

G.3 Parallel mode . 104

References 106

User’s Guide for TOMLAB /CPLEX v12.1 5

1 Introduction

1.1 Overview

Welcome to the TOMLAB /CPLEX User’s Guide. TOMLAB /CPLEX includes the ILOG CPLEX 12.1 (hereafter
commonly referred to as CPLEX) solver and Matlab interfaces. The software allows for execution on any number
of shared memory cores or cpus on a computer.

The interface between ILOG CPLEX, Matlab and TOMLAB consists of two layers. The first layer gives direct
access from Matlab to CPLEX, via calling one Matlab function that calls a pre-compiled MEX file (DLL under
Windows, shared library in UNIX) that defines and solves the problem in CPLEX . The second layer is a Matlab
function that takes the input in the TOMLAB format, and calls the first layer function. On return the function
creates the output in the TOMLAB format.

CPLEX has a whole set of callback routines. There is one predefined Matlab routine for each callback. The user
is in control of which ones to use, and should add his own code in Matlab for each callback.

Conflict refining, SA, warm start and solution pool control are supported by in the package.

1.2 Contents of this Manual

• Read carefully Section 2 on how to install TOMLAB /CPLEX.

• Section 3 gives the basic information needed to run the Matlab interface.

• The more advanced feature, using callbacks, is described in Section 4.

• Some Matlab test routines are included, described in Section 5 (non-TOMLAB format) and Section 6
(TOMLAB format). All Matlab routines are described in Appendix A.

• Section E describes a special interface for network problems.

• Section F defines the features included in IIS (infeasibility analysis) and SA (sensitivity analysis) as well as
the warm start functionality.

1.3 Prerequisites

In this manual we assume that the user is familiar with CPLEX, the CPLEX Reference Manual, TOMLAB and
the Matlab language.

User’s Guide for TOMLAB /CPLEX v12.1 6

2 Installing TOMLAB /CPLEX

2.1 Windows Systems

TOMLAB /CPLEX is installed by the general TOMLAB exe installer and can be installed with or without the
TOMLAB Base Module. In either case, the folders tomlab\cplex and possibly also a tomlab\shared are created.

The tomlab\shared folder contains the cplex*.dll and must be installed on machine without an existing ILOG
CPLEX installation. The installer automatically adds the location of this folder to the Windows PATH variable.

If installing TOMLAB /CPLEX together with other TOMLAB packages, the tomlab\startup.m file will automat-
ically detect TOMLAB /CPLEX and set the MATLAB path accordingly.

You may also set the TOMLAB and TOMLAB /CPLEX paths permanently in the Matlab system. To find out
which paths are used, run the startup commands as described above, then use the path command to see what
paths TOMLAB created and set these permanently on your system. See the Matlab documentation on how to set
Matlab paths.

2.2 Unix/Linux Systems

TOMLAB /CPLEX is installed together with the rest of TOMLAB when extracting the tomlab-<arch>-setup.tar.gz
file. If ILOG CPLEX is not already installed on the computer, the user must set/modify the LD LIBRARY PATH

environment variable in order for the runtime linking to work as intended. Assuming that TOMLAB is extracted
to $HOME/tomlab/shared, do:

#

csh/tcsh shells:

#

setenv LD_LIBRARY_PATH $HOME/tomlab/shared:$LD_LIBRARY_PATH

#

bash and compatible shells:

#

export LD_LIBRARY_PATH=$HOME/tomlab/shared:$LD_LIBRARY_PATH

To use TOMLAB /CPLEX together with the TOMLAB Base Module, execute the tomlab/startup script, which
automatically recognizes the presence of the cplex subdirectory.

To use TOMLAB /CPLEX by itself, execute only the tomlab/cplex/startup script.

User’s Guide for TOMLAB /CPLEX v12.1 7

2.3 Troubleshooting

Error messages like the following:

>> cplexmex

Unable to load mex file: d:\program files\tomlab\cplex\cplexmex.dll.

The specified module could not be found.

??? Invalid MEX-file

or, on Unix systems:

>> cplexmex

Unable to load mex file: /home/user/tomlab/cplex/cplexmex.mexglx.

libcplex91.so: cannot open shared object file: No such file or

directory ??? Invalid MEX-file

indicate a problem with the PATH variable on Windows systems, or equivalently the $LD LIBRARY PATH
variable in Unix/Linux.

You can check from within Matlab that the path has been set correctly, by executing

>> getenv(’PATH’) % Windows

>> getenv(’LD_LIBRARY_PATH’) % Unix/Linux

The location of the tomlab/shared directory must be included in the result, OR, the location of the cplex*.dll
(libcplex*.so) file on systems where ILOG CPLEX is already installed.

User’s Guide for TOMLAB /CPLEX v12.1 8

3 Using the Matlab Interface

The two main routines in the two-layer design of the interface are shown in Table 1. Page and section references
are given to detailed descriptions on how to use the routines. Users not using the TOMLAB Prob format can skip
reading about the routine cplexTL. A normal user, not using callbacks, only has to read about how to call the
level 1 interface routine cplex.m.

Table 1: The interface routines.

Function Description Section Page
cplex The layer one Matlab interface routine, calls the MEX-file interface

cplexmex.dll

A.1 12

cplexTL The layer two TOMLAB interface routine that calls cplex.m. Con-
verts the input Prob format before calling cplex.m and converts back
to the output Result structure.

A.2 22

The CPLEX control parameters (Section G, 75 in this manual), are all possible to set from Matlab.

They could be set as input to the interface routine cplex, but also in the callback routines. The user sets fields in
a structure called cpxControl, where the subfield names are the same as the names of the control variables. The
following example shows how to set the values for one integer variable ITLIM, one double variable EPOPT, and
one character variable valued variable WORKDIR. TOMLAB /CPLEX does not use the prefix CPX PARAM in the
Matlab structures.

cpxControl.ITLIM = 50; % Setting maximal number of simplex iterations

cpxControl.EPOPT = 1E-5; % Changing reduced cost tolerance

cpxControl.WORKDIR = ’.’; % New work directory (’.’ for current directory)

Character valued variables should have ≤ 64 characters.

User’s Guide for TOMLAB /CPLEX v12.1 9

4 Callbacks in Matlab

Fifteen of the CPLEX callbacks are defined as Matlab m-files. A logical vector defines the callbacks to be used
in CPLEX. This vector is named callback and is one of the input variables to the level 1 interface routine cplex.m
(Section A.1). If the ith entry of the logical vector callback is set, the corresponding callback is defined.

The callback calls the m-file specified in Table 2. The user can edit this m-file directly, or make a new copy. It is
important that a new copy is placed in a directory that is searched before the cplex directory when Matlab goes
through the Matlab path.

Index m-file Called at: Section Page
1 cpxcb BARRIER.m D.1 55
2 cpxcb DISJCUT.m D.2 55
3 cpxcb DUAL.m D.3 56
4 cpxcb DUALCROSS.m D.4 57
5 cpxcb FLOWMIR.m D.5 58
6 cpxcb FRACCUT.m D.6 58
7 cpxcb MIP.m D.7 59
8 cpxcb MIPPROBE.m D.8 60
9 cpxcb PRESOLVE.m D.9 61
10 cpxcb PRIM.m D.10 62
11 cpxcb PRIMCROSS.m D.11 62
12 cpxcb QPBARRIER.m D.12 63
13 cpxcb QPSIMPLEX.m D.13 64
14 cpxcb INCUMBENT.m D.14 64

1 cpxcb NET.m D.16 65

Table 2: Matlab Callback routines

User’s Guide for TOMLAB /CPLEX v12.1 10

5 Test Routines in Non-Tomlab Format

A set of test routines have been defined illustrating the use of the cplex main routine. The test routines and
utilities are shown in Table 3.

It is easy to call the test routines, e.g.

x = cpxtest1;

x = cpxtest2;

x = cpxtest3;

will call the three routines solving GAP problems. The cpxaircrew test problem has no input parameters, just call:

cpxaircrew;

The knapsack test routine runs three test examples. It is possible to change the cut strategy (second input
parameter). To run the second test example, using aggressive cuts, the call is

cpxKnaps(2,2);

The first parameter selects the test problem. Calling without any parameters

cpxKnaps

is the same as the call

cpxKnaps(1,0);

Table 3: Test routines and utilities in non-Tomlab format.

Function Description Section Page
abc2gap Utility to convert a Generalized Assignment Problem (GAP) to stan-

dard form for CPLEX.
B.2 40

cpxbiptest Test of three large binary integer linear problems. C.2 42
cpxiptest Test of three large integer linear problems. C.3 43
cpxKnaps Test of knapsack problems. C.6 45
xptest1 Test of a Generalized Assignment Problem (GAP). C.10 49
cpxTest2 Test of the same GAP problem as cpxTest1, but using sos1 variables. C.11 50
cpxTest3 Test of a Generalized Assignment Problem (GAP). C.12 51

User’s Guide for TOMLAB /CPLEX v12.1 11

6 Test Routines in TOMLAB Format

A set of test routines have been defined illustrating the combined use of TOMLAB and CPLEX. The test routines
are shown in Table 4. The knapsack test routine cpxKnapsTL is similar to cpxKnaps discussed in the previous
subsection. It runs three knapsack test examples. It is possible to change the cut strategy. The problems are setup
using the TOMLAB Format.

Table 4: Test routines and utilities in TOMLAB format.

Function Description Section Page
cpxtomtest1 Tests of problems predefined in the TOMLAB IF format. LP, QP and

MIP problems are solved calling the driver routine tomRun.
C.4 44

cpxtomtest2 Tests of a simple MIP problem defined in the TOMLAB (TQ) format.
The problem is solved as an LP and MIP problem, with or without
slacks defined. tomRun.

C.5 44

cpxKnapsTL The same tests as in cpxKnaps, but the TOMLAB problem definition
format and is used.

C.7 46

User’s Guide for TOMLAB /CPLEX v12.1 12

A The Matlab Interface Routines - Main Routines

A.1 cplex

Purpose
CPLEX solves mixed-integer linear and quadratic programming (MILP, MIQP) and linear and quadratic program-
ming (LP, QP) interface. For users with a full license for the optimizer, the solver also handles problems with
quadratic constraints (MIQQ). CPLEX solves problems of the form

min
x

f(x) = 1
2xT Fx + cT x

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

xT Q(i)x + a(i)T x ≤ r
(i)
U , i = 1, . . . , nqc

xi integer i ∈ I

where c, x, xL, xU , a(i) ∈ Rn, F,Q(i) ∈ Rn×n, A ∈ Rm×n and bL, bU ∈ Rm. r
(i)
U is a scalar. The variables x ∈ I,

the index subset of 1, ..., n, are restricted to be integers.

If F is empty and no quadratic constraints are given, an LP or MILP problem is solved.

An additional set of logical constraints can also be defined. See the help for input parameter logcon.

Calling Syntax
[x, slack, v, rc, f k, ninf, sinf, Inform, basis, lpiter, glnodes, confstat, iconfstat, sa] = cplex(c, A, x L, x U, b L,
b U, cpxControl, callback, PriLev, Prob, IntVars, PI, SC, SI, sos1, sos2, F, logfile, savefile, savemode, qc, confgrps,
conflictFile, saRequest, basis, xIP, logcon);

Description of Inputs

The following inputs are used:

c Linear objective function cost coefficients, vector n× 1.

A Linear constraint matrix for linear constraints, dense or sparse matrix m× n.

x L Lower bounds on design parameters x. If empty assumed to be zero.
x U Upper bounds on design parameters x.

b L Lower bounds on the linear constraints.

The following parameters are optional:

b U Upper bounds on the linear constraints. If empty, then b U=b L is assumed, i.e. equality
constraints.

cpxControl Structure, where the fields are set to the CPLEX control parameters that the user wants to
specify values for.

User’s Guide for TOMLAB /CPLEX v12.1 13

The following inputs are used:, continued

callback 0− 1 vector defining which callbacks to use in CPLEX. If the ith entry of the logical vector
callback is set, the corresponding callback is defined. The callback calls the m-file specified
in Table 7 below. The user may edit this file, or make a new copy, which is put in a directory
that is searched before the cplex directory in the Matlab path.

PriLev Printing level in the cplex m-file and the CPLEX C-interface.
= 0 Silent
= 1 Summary information
= 2 More detailed information

Prob A structure. If cplex.m is called through cplexTL.m, for example when the user has used the
TOMLAB driver routine tomRun, then Prob is the standard TOMLAB problem structure.

Otherwise the user optionally may set: Prob.P = ProblemNumber; , where ProblemNum-
ber is some integer. If any callback is defined then problem arrays are set as fields in Prob,
and the Prob structure is always passed to the callback routines as the last parameter. The
defined fields are Prob.c, Prob.x L, Prob.x U, Prob.A, Prob.b L, Prob.b U and Prob.QP.F.
If the input structure is empty ([]), then Prob.P = 1 is set.

IntVars Defines which variables are integers, of the general type I or binary B. Variable indices
should be in the range [1,...,n]. If IntV ars is a logical vector then all variables xi where
IntV ars(i) > 0 are defined to be integers. If IntV ars is determined to be a vector of indices
then x(IntV ars) are defined as integers. If the input is empty ([]), then no integers of type
I or B are defined. The interface routine cplex checks which of the integer variables have
lower bound xL = 0 and upper bound xU = 1, i.e. are binary 0/1 variables.

PI Integer variables of type Partially Integer (PI), i.e. takes an integer value up to a specified
limit, and any real value above that limit. PI must be a structure array where:
PI.var is a vector of variable indices in the range [1, ..., n].
PI.lim is a vector of limit values for each of the variables specified in PI.var, i.e. for
variable i, that is the PI variable with index j in PI.var, then x(i) takes integer values in
[xL(i), P I.lim(j)] and values in [PI.lim(j), xU (i)].

SC A vector with indices for the integer variables of type Semi-continuous (SC), i.e. that takes
either the value 0 or a real value in the range [xL(i), xU (i)], assuming for some j, that
i = SC(j), where i is an variable number in the range [1, ..., n].

SI A vector with indices for the integer variables of type Semi-integer (SI), i.e. that takes
either the value 0 or an integer value in the range [xL(i), xU (i)], assuming for some j, that
i = SIe(j), where i is an variable number in the range [1, ..., n].

User’s Guide for TOMLAB /CPLEX v12.1 14

The following inputs are used:, continued

sos1 A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k sets
of type sos1, then sos1(k).var is a vector of indices for variables of type sos1 in set k.
sos1(k).row is the row number for the reference row identifying the ordering information
for the sos1 set, i.e. A(sos1(k).row,sos1(k).var) identifies this information. As ordering
information, also the objective function coefficients c could be used. Then as row number,
0 is instead given in sos1(k).row.

sos2 A structure defining the Special Ordered Sets of Type Two (sos2). Specified in the same way
as sos1 sets; see sos1 input variable description.

F Quadratic coefficient matrix. Dense or sparse Matlab matrix, size n × n. The matrix is
always converted to Matlab sparse format before ILOG CPLEX is invoked on the problem.

logfile Name of file to write the CPLEX log information to. If empty, no log is written.

savefile Name of a file to save the CPLEX problem object. This is useful for sending problems
to ILOG for analysis. The format of the file is controlled by the following parameters,
savemode. If empty, no file is written.

savemode The format of the file given in savefile is possible to choose by setting savemode to one of
the following values:

1 SAV Binary SAV format
2 MPS MPS format (ASCII)
3 LP CPLEX LP format (ASCII)
4 RMP MPS file with generic names
5 REW MPS file with generic names
6 RLP LP file with generic names

Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to
change the default row names in the first place.

qc Structure array defining quadratic constraints (”qc”).

Please note that CPLEX only handles single-sided bounds on quadratic constraints. An
arbitrary number of qc’s is set using the Prob.QP.qc structure array:

qc(1).Q = sparse(<quadratic coefficient nxn matrix>);
qc(1).a = full (<linear coefficient nx1 vector >);
qc(1).r U = <scalar upper bound>;

And similarly for qc(2), ... , qc(n qc).

User’s Guide for TOMLAB /CPLEX v12.1 15

The following inputs are used:, continued

The standard interpretation is x′ ∗ Q ∗ x + c′ ∗ x <= rU , but it is possible to define an
alternative sense x′ ∗ Q ∗ x + c′ ∗ x >= rL by setting qc(i).sense to a nonzero value and
specifying a lower bound in qc(i).rL.

Observe that the Q matrix must be sparse, non-empty and positive semi-definite for all qc’s.
The linear coefficient vector qc(i).a may be omitted or set empty, in which case all zeros are
assumed.

Likewise, if a bound r U or r L is empty or not present, it is assumed to be 0.0. Note
that this is contrary to the usual TOMLAB standard, where an empty or omitted bound is
assumed to be +/- Inf. The reason is that a single-sided constraint with an infinite bound
would have no meaning.

confgrps Conflict groups descriptor (cpxBuildConflict can be used to generate the input). Set this if
conflict refinement is desired in the case that infeasibility is detected by CPLEX.
A conflict group consists of lists of indices describing which of the following entities are part
of a group:

confgrps(i).lowercol Column (variable) lower bounds
confgrps(i).uppercol Column (variable) upper bounds
confgrps(i).linear Linear rows
confgrps(i).quad Quadratic constraints
confgrps(i).sos Special ordered sets
confgrps(i).indicator Indicator constraints

Additionally, the group’s priority value may be assigned in
confgrps(i).priority

Please refer to the TOMLAB /CPLEX User’s Guide for an example of Conflict Refinement.

conflictFile Name of a file to write the conflict refinement to. No file is written if this input parameter
is empty or if no conflict refinement is done.

saRequest Structure telling whether and how you want CPLEX to perform a sensitivity analysis (SA).
You can complete an SA on the objective function, right hand side vector, lower and upper
bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

.index contain indices to variables or constraints of which to return possible value ranges.

User’s Guide for TOMLAB /CPLEX v12.1 16

The following inputs are used:, continued

The .index array has to be sorted, ascending.

To get an SA of objective function on the four variables 120 to 123 (included) and variable
19, the saRequest structure would look like this:

saRequest.obj.index = [19 120 121 122 123];

The result is returned through the output parameter ’sa’.

basis Vector with CPLEX starting basis. If re-solving a similar problem several times, this can
be set to the ’basis’ output argument of an earlier call to cplex.m. The length of this vector
must be equal to the sum of the number of rows (m) and columns (n).

The first m elements contain row basis information, with the following possible values for
non-ranged rows:

0 associated slack/surplus/artificial variable nonbasic at value 0.0
1 associated slack/surplus/artificial variable basic

and for ranged rows (both upper and lower bounded)

0 associated slack/surplus/artificial variable nonbasic at its lower bound
1 associated slack/surplus/artificial variable basic
2 associated slack/surplus/artificial variable nonbasic at its upper bound

The last n elements, i.e. basis(m+1:m+n) contain column basis information:

0 variable at lower bound
1 variable is basic
2 variable at upper bound
3 variable free and nonbasic

xIP Vector with MIP starting solution, if known. Missing values may be set to NaN. Length
should be equal to number of columns in problem.

logcon Structure defining logical (or ”indicator”) constraints. This is a special type of linear con-
straint which is included in a mixed integer problem only if an associated binary variable is
equal to 1.

Note that when associating a variable with a logical constraint, the variable in question will
be forced to become a binary variable; even if it was a continuous or integer variable with
bounds other than 0-1.

Each element logcon(i) describes one logical constraint:

User’s Guide for TOMLAB /CPLEX v12.1 17

The following inputs are used:, continued

y− > row′ ∗ x <= rhs (also == and >= possible)

The following three fields (row,var,rhs) are mandatory:

The following fields are optional:

logcon(i).row: A dense or sparse row vector with the same length as the number of variables
in the problem.

logcon(i).var: The index of the variable y which should control whether the constraint is
”active” or not. Must be less than or equal to the number of variables in the problem.

logcon(i).rhs: The scalar value of the right hand side of the i:th logical constraint.

The following fields are optional in the description of a logical constraint:

logcon(i).sense Defines the sense of the i:th logical constraint:

0 or ’lt’ : implies row*x <= rhs
1 or ’eq’ : implies row*x == rhs
2 or ’gt’ : implies row*x >= rhs

logcon(i).comp: Complement flag. The default value 0 (empty field or left out entirely)
implies that the logical constraint is active when the associated variable is equal to 1. If
setting the comp field to a nonzero value, the binary variable is complemented and the
constraint will become active when the variable is zero.

logcon(i).name: A string containing a name for the i:th logical constraint. This is only used
if a save file is written.

branchprio A nonnegative vector of length n. A priority order assigns a branching priority to some or
all of the integer variables in a model. CPLEX performs branches on variables with a higher
assigned priority number before variables with a lower priority; variables not assigned an
explicit priority value by the user are treated as having a priority value of 0.

branchdir A vector with -1, 0, 1 entries of length n. -1 forces branching towards the lower end of the
integer, while 1 forces branching to the higher.

cpxSettings Structure with flags controlling various CPLEX features. Currently the following fields are
defined:

tune Flag to control the CPLEX Parameter Tuning feature. The following values are recognized:

0 - Disable parameter tuning (default).

User’s Guide for TOMLAB /CPLEX v12.1 18

The following inputs are used:, continued

1 - Enable parameter tuning and solve problem using the parameter set found by CPLEX.
2 - Enable parameter tuning and return without solving the problem. The only meaningful
output data will be the cpxControl output.

During parameter tuning, the settings in cpxControl are frozen and are not changed by
CPLEX. After parameter tuning has run, the complete set of modified CPLEX parameters
are returned in the cpxControl output argument.

presolve Flag controlling the CPLEX Presolve feature. The following values are recognized:

0 - No special treatment of presolve (default).
1 - Invoke CPLEX Presolve on problem before optimization begins and create information
about the changes made.
2 - As 1, but also returns the presolved problem, including linear constraints, objective and
bounds.

User’s Guide for TOMLAB /CPLEX v12.1 19

Description of Outputs

The following fields are used:

x Solution vector x with decision variable values (n× 1 vector).
slack Slack variables (m× 1 vector).
v Lagrangian multipliers (dual solution vector) (m× 1 vector).
rc Reduced costs. Lagrangian multipliers for simple bounds on x.
f k Objective function value at optimum.

ninf Number of infeasibilities.
sinf Sum of infeasibilities.

Inform See section A.3.
basis Basis status of constraints and variables, ((m + n)× 1 vector). See inputs for more informa-

tion.
lpiter Number of simplex iterations.
glnodes Number of nodes visited.

confstat Structure with extended conflict status information. This output is a replica of the
Prob.CPLEX.confgrps input argument with the added fields ’status’ and ’istat’. confs-
tat(k).status gives a text description of the status of conflict group k; the corresponding
istat field is the numeric value also available in iconfstat(k).

iconfstat Conflict status information. For an infeasible problem where at least one conflict group have
been supplied in the confgrps input argument, this output argument contains the status of
each conflict group, in the same order as given in the confgrps input.

The following values are possible:

-1 Excluded
0 Possible member
1 Possible LB
2 Possible UB
3 Member
4 Upper bound
5 Lower bound

If confstat is empty even though Conflict Refinement has been requested, there was a problem
in the refinement process.

sa Structure with information about the requested SA, if requested. The fields:

obj Ranges for the variables in the objective function.

rhs Ranges for the right hand side values.

User’s Guide for TOMLAB /CPLEX v12.1 20

The following fields are used:, continued

xl Ranges for the lower bound values.

xu Ranges for the upper bound values.

These fields are structures themselves. All four structures have identical field names:

status Status of the SA operation. Possible values:

1 = Successful.
0 = SA not requested.
-1 = Error: begin is greater than end.
-2 = Error: The selected range (begin...end) stretches out of available variables or con-
straints.
-3 = Error: No SA available.

lower The lower range.

upper The upper range.

cpxControl Structure with non-default CPLEX parameters generated during CPLEX Parameter Tuning.

presolve Structure with information about the changes CPLEX Presolve made to the problem before
solving. The amount of information depends on the value of the cpxSettings.presolve flag.

For cpxSettings.presolve=0, this output is empty.

For cpxSettings.presolve=1, the presolve output contains six arrays, pcstat, prstat, ocstat,
orstat, status and objoffset.

status Flag telling status of presolve results:

0: Problem was not presolved or no reductions were made
1: A presolved problem exists
2: The original problem was reduced to an empty problem

The remaining fields of presolve will contain useful information only if status==1.

pcstat Contains information about variables in the original problem. For each element pcstat(i):

>= 1: variable i corresponds to variable pcstat(i) in the presolved problem
-1: variable i is fixed to its lower bound
-2: variable i is fixed to its upper bound
-3: variable i is fixed to some other value
-4: variable i is aggregated out
-5: variable i is deleted or merged for some other reason

User’s Guide for TOMLAB /CPLEX v12.1 21

The following fields are used:, continued

prstat Contains information about constraints (rows) in the original problem. For each element
prstat(i):

>= 1: row i corresponds to row prstat(i) in the presolved problem
-1: row i is redundant
-2: row i is used for aggregation
-3: row i is deleted for some other reason

ocstat Contains information about variables in the presolved problem: For each element ocstat(i):

>= 1: variable i in the presolved problem corresponds to variable ocstat(i) in the original
problem.
-1: variable i corresponds to a linear combination of some variables in the original problem

orstat Contains information about constraints (rows) in the presolved problem. For each element
orstat(i):

>= 1: row i in the presolved problem corresponds to row orstat(i) in the original problem
-1: row i is created by, for example, merging two rows in the original problem

Description
The interface routine cplex calls CPLEX to solve LP, QP, MILP, MIQP and MIQQ problems. The matrices A and
F are transformed in cplex.m to the CPLEX sparse matrix format.

Error checking is made on the lengths of the vectors and matrices.

Table 7: Callback functions.

Index m-file Description
(1) cpxcb PRIM From primal simplex
(2) cpxcb DUAL From dual simplex
(3) cpxcb PRIMCROSS From primal crossover
(4) cpxcb DUALCROSS From dual crossover
(5) cpxcb BARRIER From barrier
(6) cpxcb PRESOLVE From presolve
(7) cpxcb MIP From mipopt
(8) cpxcb MIPPROBE From probing or clique merging
(9) cpxcb FRACCUT From gomory fractional cuts
(10) cpxcb DISJCUT From disjunctive cuts
(11) cpxcb FLOWMIR From mixed Integer Rounding cuts
(12) cpxcb QPBARRIER From quadratic Barrier
(13) cpxcb QPSIMPLEX From quadratic Simplex
(14) cpxcb INCUMBENT From MIP incumbent

User’s Guide for TOMLAB /CPLEX v12.1 22

A.2 cplexTL

Purpose
The TOMLAB /CPLEX MILP, MIQP, LP and QP solver. It solves linear programming (LP), quadratic pro-
gramming (QP) , mixed integer linear programming (MILP) and mixed integer quadratic programming problems
(MIQP). The solver also handles problems with quadratic constraints (MIQQ). cplexTL solves problems of the
form

min
x

f(x) = 1
2xT Fx + cT x

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

xT Q(i)x + a(i)T x ≤ r
(i)
U , i = 1, . . . , nqc

xi integer i ∈ I

where c, x, xL, xU , a(i) ∈ Rn, F,Q(i) ∈ Rn×n, A ∈ Rm×n and bL, bU ∈ Rm. r
(i)
U is a scalar. The variables x ∈ I,

the index subset of 1, ..., n, are restricted to be integers.

An additional set of logical constraints can also be defined. See the help for input parameter CPLEX.logcon.

Calling Syntax
Prob = ProbCheck(Prob, ’cplex’);
Result = cplexTL(Prob); or
Result = tomRun(’cplex’, Prob, 1);

Description of Inputs

Problem description structure. The following fields are used:

QP.c Linear objective function cost coefficients, vector n× 1.

QP.F Square n× n dense or sparse matrix. Empty if non-quadratic problem.

A Linear constraint matrix for linear constraints, dense or sparse m× n matrix.
b L Lower bounds on the linear constraints.
b U Upper bounds on the linear constraints.

x L Lower bounds on design parameters x. If empty assumed to be −Inf .
x U Upper bounds on design parameters x. If empty assumed to be Inf .

QP.qc Structure array defining quadratic constraints (”qc”).

Please note that CPLEX only handles single-sided bounds on qc’s. An arbitrary number of
qc’s is set using the Prob.QP.qc structure array:

qc(1).Q = sparse(<quadratic coefficient nxn matrix>);
qc(1).a = full (<linear coefficient nx1 vector >);
qc(1).r U = <scalar upper bound>;

And similarly for qc(2), ... , qc(n qc).

User’s Guide for TOMLAB /CPLEX v12.1 23

Problem description structure. The following fields are used:, continued

The standard interpretation is x′ ∗ Q ∗ x + c′ ∗ x <= rU , but it is possible to define an
alternative sense x′ ∗ Q ∗ x + c′ ∗ x >= rL by setting qc(i).sense to a nonzero value and
specifying a lower bound in qc(i).rL.

Observe that the Q matrix must be sparse, non-empty and positive semi-definite for all qc’s.
The linear coefficient vector qc(i).a may be omitted or set empty, in which case all zeros are
assumed.

Likewise, if a bound r U or r L is empty or not present, it is assumed to be 0.0. Note
that this is contrary to the usual TOMLAB standard, where an empty or omitted bound is
assumed to be +/- Inf. The reason is that a single-sided constraint with an infinite bound
would have no meaning.

PriLevOpt Printing level in cplex.m file and the CPLEX C-interface.
= 0 Silent
= 1 Warnings and Errors
= 2 Summary information
= 3 More detailed information
> 10 Pause statements, and maximal printing (debug mode)

optParam Structure with optimization parameters. The following fields are used:
MaxIter Limit of iterations. If a value is given here, it is set as cpxControl.ITLIM. Note that a value

given directly in Prob.MIP.cpxControl.ITLIM takes precedence.

MIP Structure holding information about mixed integer optimization. Also found here is the
cpxControl structure in which CPLEX parameter settings can be made. The fields used are:

cpxControl Structure, where fields are set to the CPLEX control parameters that the user wants to
specify values for. Please refer to Section G for more information on how to set the fields.

IntVars Defines which variables are integers, of the general type I or binary B. Variable indices
should be in the range [1,...,n]. If IntV ars is a logical vector then all variables i where
IntV ars(i) > 0 are defined to be integers. If IntV ars is determined to be a vector of
indices then x(IntV ars) are defined as integers. If the input is empty ([]), then no integers
of type I or B are defined. The interface routine cplex.m checks which of the integer variables
have lower bound xL = 0 and upper bound xU = 1, i.e. are binary 0/1 variables.

PI Integer variables of type Partially Integer (PI), i.e. takes an integer value up to a specified
limit, and any real value above that limit. PI must be a structure array where:
PI.var is a vector of variable indices in the range [1, ..., n].
PI.lim is a vector of limit values for each of the variables specified in PI.var, i.e. for
variable i, that is the PI variable with index j in PI.var, then x(i) takes integer values in
[xL(i), P I.lim(j)] and continuous values in [PI.lim(j), xU (i)].

User’s Guide for TOMLAB /CPLEX v12.1 24

Problem description structure. The following fields are used:, continued

SC A vector with indices for the integer variables of type Semi-continuous (SC), i.e. that takes
either the value 0 or a real value in the range [xL(i), xU (i)], assuming for some j, that
i = SC(j), where i is an variable number in the range [1, ..., n].

SI A vector with indices for the integer variables of type Semi-integer (SI), i.e. that takes
either the value 0 or an integer value in the range [xL(i), xU (i)], assuming for some j, that
i = SI(j), where i is an variable number in the range [1, ..., n].

sos1 A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k sets
of type sos1, then sos1(k).var is a vector of indices for variables of type sos1 in set k.
sos1(k).row is the row number for the reference row identifying the ordering information
for the sos1 set, i.e. A(sos1(k).row,sos1(k).var) identifies this information. As ordering
information, also the objective function coefficients c could be used. Then as row number,
0 is instead given in sos1(k).row.

sos2 A structure defining the Special Ordered Sets of Type Two (sos2). Specified exactly as sos1
sets, see MIP.sos1 input variable description.

basis Basis for warm start of solution process. See Section A.1 and F.4 for more information.

xIP Vector with MIP starting solution, if known. NaN can be used to indicate missing values.
Length should be equal to number of columns in problem. Values of continuous variables
are ignored.

callback Logical vector defining which callbacks to use in CPLEX. If the ith entry of the logical
vector callback is set, the corresponding callback is defined. The callback calls the m-file
specified in Table 10 below. The user may edit this file, or make a new copy, which is put
in a directory that is searched before the cplex directory in the Matlab path.

CPLEX Structure with solver specific parameters for logging and saving problems. The following
fields are used:

LogFile Name of file to write the CPLEX log information to. If empty, no log is written.

SaveFile Name of a file to save the CPLEX problem object. This is useful for sending problems to
ILOG for analysis. The format of the file is controlled by the Prob.CPLEX.SaveMode. If
empty, no file is written.

SaveMode The format of the file given in SaveFile is possible to choose by setting SaveMode to one of
the following values:

User’s Guide for TOMLAB /CPLEX v12.1 25

Problem description structure. The following fields are used:, continued

1 SAV Binary SAV format
2 MPS MPS format (ASCII)
3 LP CPLEX LP format (ASCII)
4 RMP MPS file with generic names
5 REW MPS file with generic names
6 RLP LP file with generic names

Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to
change the default row names.

confgrps Conflict groups descriptor (cpxBuildConflict can be used to generate the input). Set this if
conflict refinement is desired in the case that infeasibility is detected by CPLEX.
A conflict group consists of lists of indices describing which of the following entities are part
of a group:

confgrps(i).lowercol Column (variable) lower bounds
confgrps(i).uppercol Column (variable) upper bounds
confgrps(i).linear Linear rows
confgrps(i).quad Quadratic constraints
confgrps(i).sos Special ordered sets
confgrps(i).indicator Indicator constraints

Additionally, the group’s priority value may be assigned in
confgrps(i).priority

Please refer to the TOMLAB /CPLEX User’s Guide for an example of Conflict Refinement.

conflictFile Name of a file to write the conflict refinement to. No file is written if this input parameter
is empty or if no conflict refinement is done.

sa Structure telling whether and how you want CPLEX to perform a sensitivity analysis (SA).
You can complete an SA on the objective function, right hand side vector, lower and upper
bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

.index contain indices to variables or constraints of which to return possible value ranges.

The .index array has to be sorted, ascending.

User’s Guide for TOMLAB /CPLEX v12.1 26

Problem description structure. The following fields are used:, continued

To get an SA of objective function on the four variables 120 to 123 (included) and variable
19, the saRequest structure would look like this:

saRequest.obj.index = [19 120 121 122 123];

The result is returned through the output parameter ’sa’.

logcon Structure defining logical (or ”indicator”) constraints. This is a special type of linear con-
straint which is included in a mixed integer problem only if an associated binary variable is
equal to 1.

Note that when associating a variable with a logical constraint, the variable in question will
be forced to become a binary variable; even if it was a continuous or integer variable with
bounds other than 0-1.

Each element logcon(i) describes one logical constraint:

y− > row′ ∗ x <= rhs (also == and >= possible)

The following three fields (row,var,rhs) are mandatory:

The following fields are optional:

logcon(i).row: A dense or sparse row vector with the same length as the number of variables
in the problem.

logcon(i).var: The index of the variable y which should control whether the constraint is
”active” or not. Must be less than or equal to the number of variables in the problem.

logcon(i).rhs: The scalar value of the right hand side of the i:th logical constraint.

The following fields are optional in the description of a logical constraint:

logcon(i).sense Defines the sense of the i:th logical constraint:

0 or ’lt’ : implies row*x <= rhs
1 or ’eq’ : implies row*x == rhs
2 or ’gt’ : implies row*x >= rhs

logcon(i).comp: Complement flag. The default value 0 (empty field or left out entirely)
implies that the logical constraint is active when the associated variable is equal to 1. If
setting the comp field to a nonzero value, the binary variable is complemented and the
constraint will become active when the variable is zero.

User’s Guide for TOMLAB /CPLEX v12.1 27

Problem description structure. The following fields are used:, continued

logcon(i).name: A string containing a name for the i:th logical constraint. This is only used
if a save file is written.

BranchPrio A nonnegative vector of length n. A priority order assigns a branching priority to some or
all of the integer variables in a model. CPLEX performs branches on variables with a higher
assigned priority number before variables with a lower priority; variables not assigned an
explicit priority value by the user are treated as having a priority value of 0.

BranchDir A vector with -1, 0, 1 entries of length n. -1 forces branching towards the lower end of the
integer, while 1 forces branching to the higher.

Tune Flag controlling the CPLEX Parameter Tuning feature. The following values are recognized:

0 - Disable Parameter Tuning (default).
1 - Enable Parameter Tuning and solve problem after tuning.
2 - Enable Parameter Tuning and return after tuning. No solution will be generated.

The non-default CPLEX parameters found during Parameter Tuning is returned in Re-
sult.MIP.cpxControl together with any settings given in Prob.MIP.cpxControl. The settings
given as input are considered as constants during the tuning process.

Presolve Flag controlling the CPLEX Presolve feature. The following values are recognized:

0 - No special treatment of presolve (default).
1 - Invoke CPLEX Presolve on problem before optimization begins and create information
about the changes made.
2 - As 1, but also returns the presolved problem, including linear constraints, objective and
bounds.

The results of the presolve phase (when Presolve¿0) are returned in Result.CPLEX.Presolve.

Description of Outputs

Result structure. The following fields are used:

Iter Number of iterations, or nodes visited.

ExitFlag 0: OK.
1: Maximal number of iterations reached.
2: Unbounded feasible region.
4: No feasible point found.
5: Error of some kind.

ExitText Number of iterations, or nodes visited.

User’s Guide for TOMLAB /CPLEX v12.1 28

Result. The following fields are used:, continued

Inform Result of CPLEX run. See section A.3 for details on the ExitText and possible Inform
values.

x 0 Initial starting point not known, set as empty.

QP.B Optimal active set, basis vector, in TOMLAB QP standard.
B(i) = 1: Include variable x(i) is in basic set.
B(i) = 0: Variable x(i) is set on its lower bound.
B(i) = −1: Variable x(i) is set on its upper bound.

f k Function value at optimum, f(xk).
g k Gradient value at optimum, c or c + F ∗ x.
x k Optimal solution vector xk.
v k Lagrangian multipliers (for bounds and dual solution vector). Set as vk = [rc; v], where rc

is the n-vector of reduced costs and v holds the m dual variables.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality == 3;

Solver Solver used - CPLEX .
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to Iter.
Prob Problem structure used.

MIP.ninf Number of infeasibilities.
MIP.sinf Sum of infeasibilities.
MIP.slack Slack variables (m× 1 vector).
MIP.lpiter Number of LP iterations.
MIP.glnodes Number of nodes visited.
MIP.basis Basis status of constraints and variables ((m + n)× 1 vector) in the CPLEX format, fields

xState and bState has the same information in the TOMLAB format. See Section A.1 and
F.4 for more information.

MIP.cpxControl Structure with non-default CPLEX parameters generated during CPLEX Parameter Tuning.

CPLEX.sa Structure with information about the requested SA, if requested. The fields:

obj Ranges for the variables in the objective function.

rhs Ranges for the right hand side values.

xl Ranges for the lower bound values.

User’s Guide for TOMLAB /CPLEX v12.1 29

Result. The following fields are used:, continued

xu Ranges for the upper bound values.

These fields are structures themselves. All four structures have identical field names:

status Status of the SA operation. Possible values:

1 = Successful.
0 = SA not requested.
-1 = Error: begin is greater than end.
-2 = Error: The selected range (begin...end) stretches out of available variables or con-
straints.
-3 = Error: No SA available.

lower The lower range.

upper The upper range.

CPLEX.confstat Structure with extended conflict status information. This output is a replica of the
Prob.CPLEX.confgrps input argument with the added fields ’status’ and ’istat’. confs-
tat(k).status gives a text description of the status of conflict group k; the corresponding
istat field is the numeric value also available in iconfstat(k).

CPLEX.iconfstat Conflict status information. For an infeasible problem where at least one conflict group have
been supplied in the Prob.CPLEX.confgrps input argument, this output argument contains
the status of each conflict group, in the same order as given in the confgrps input.

The following values are possible:

-1 Excluded
0 Possible member
1 Possible LB
2 Possible UB
3 Member
4 Upper bound
5 Lower bound

If confstat is empty even though Conflict Refinement has been requested, there was a problem
in the refinement process.

CPLEX.Presolve Structure with information about the changes CPLEX Presolve made to the problem before
solving. The amount of information depends on the value of the Prob.CPLEX.Presolve flag.

For Prob.CPLEX.Presolve=0, this output is empty.

User’s Guide for TOMLAB /CPLEX v12.1 30

Result. The following fields are used:, continued

For Prob.CPLEX.Presolve=1, the presolve output contains six arrays, pcstat, prstat, ocstat,
orstat, status and objoffset.

status Flag telling status of presolve results:

0: Problem was not presolved or no reductions were made
1: A presolved problem exists
2: The original problem was reduced to an empty problem

The remaining fields of Result.CPLEX.Presolve will contain useful information only if sta-
tus==1.

pcstat Contains information about variables in the original problem. For each element pcstat(i):

>= 1: variable i corresponds to variable pcstat(i) in the presolved problem
-1: variable i is fixed to its lower bound
-2: variable i is fixed to its upper bound
-3: variable i is fixed to some other value
-4: variable i is aggregated out
-5: variable i is deleted or merged for some other reason

prstat Contains information about constraints (rows) in the original problem. For each element
prstat(i):

>= 1: row i corresponds to row prstat(i) in the presolved problem
-1: row i is redundant
-2: row i is used for aggregation
-3: row i is deleted for some other reason

ocstat Contains information about variables in the presolved problem: For each element ocstat(i):

>= 1: variable i in the presolved problem corresponds to variable ocstat(i) in the original
problem.
-1: variable i corresponds to a linear combination of some variables in the original problem

orstat Contains information about constraints (rows) in the presolved problem. For each element
orstat(i):

>= 1: row i in the presolved problem corresponds to row orstat(i) in the original problem
-1: row i is created by, for example, merging two rows in the original problem

Global Parameters Used

User’s Guide for TOMLAB /CPLEX v12.1 31

cpxCBInfo
cpxRetVec

Description
The TOMLAB CPLEX MILP, MIQP, QP and LP interface calls the interface routine cplex.m. Values > 1010 and
Inf values are set to 1010, and the opposite for negative numbers. An empty objective coefficient c-vector is set
to the zero-vector.

Examples
See mip prob

M-files Used
cplex.m

See Also
mipSolve

Table 10: Callback functions.

Index m-file Description
(1) cpxcb PRIM From primal simplex
(2) cpxcb DUAL From dual simplex
(3) cpxcb PRIMCROSS From primal crossover
(4) cpxcb DUALCROSS From dual crossover
(5) cpxcb BARRIER From barrier
(6) cpxcb PRESOLVE From presolve
(7) cpxcb MIP From mipopt
(8) cpxcb MIPPROBE From probing or clique merging
(9) cpxcb FRACCUT From gomory fractional cuts
(10) cpxcb DISJCUT From disjunctive cuts
(11) cpxcb FLOWMIR From mixed Integer Rounding cuts
(12) cpxcb QPBARRIER From quadratic Barrier
(13) cpxcb QPSIMPLEX From quadratic Simplex
(14) cpxcb INCUMBENT From MIP incumbent

User’s Guide for TOMLAB /CPLEX v12.1 32

A.3 cplexStatus

Purpose
cplexStatus analyzes the CPLEX output Inform code and returns the CPLEX solution status message in ExitText
and the TOMLAB exit flag in ExitFlag.

Calling Syntax
[ExitText, ExitF lag] = cplexStatus(Inform)

Description of Inputs

The following inputs are used:

Inform Result of CPLEX run. (S=Simplex, B=Barrier, MIP=Mixed-Integer)

1 (S,B) Optimal solution is available
2 (S,B) Model has an unbounded ray
3 (S,B) Model has been proved infeasible
4 (S,B) Model has been proved either infeasible or unbounded
5 (S,B) Optimal solution is available, but with infeasibilities after unscaling
6 (S,B) Solution is available, but not proved optimal, due to numeric difficulties
10 (S,B) Stopped due to limit on number of iterations
11 (S,B) Stopped due to a time limit
12 (S,B) Stopped due to an objective limit
13 (S,B) Stopped due to a request from the user
14 (S,B) Feasible relaxed sum found (FEASOPTMODE)
15 (S,B) Optimal relaxed sum found (FEASOPTMODE)
16 (S,B) Feasible relaxed infeasibility found (FEASOPTMODE)
17 (S,B) Optimal relaxed infeasibility found (FEASOPTMODE)
18 (S,B) Feasible relaxed quad sum found (FEASOPTMODE)
19 (S,B) Optimal relaxed quad sum found (FEASOPTMODE)
20 (B) Model has an unbounded optimal face
21 (B) Stopped due to a limit on the primal objective
22 (B) Stopped due to a limit on the dual objective
30 The model appears to be feasible; no conflict is available
31 The conflict refiner found a minimal conflict
32 A conflict is available, but it is not minimal
33 The conflict refiner terminated because of a time limit
34 The conflict refiner terminated because of an iteration limit
35 The conflict refiner terminated because of a node limit
36 The conflict refiner terminated because of an objective limit
37 The conflict refiner terminated because of a memory limit
38 The conflict refiner terminated because a user terminated the application

User’s Guide for TOMLAB /CPLEX v12.1 33

The following inputs are used:, continued

101 Optimal integer solution found
102 Optimal sol. within epgap or epagap tolerance found
103 Solution is integer infeasible
104 The limit on mixed integer solutions has been reached
105 Node limit exceeded, integer solution exists
106 Node limit exceeded, no integer solution
107 Time limit exceeded, integer solution exists
108 Time limit exceeded, no integer solution
109 Terminated because of an error, but integer solution exists
110 Terminated because of an error, no integer solution
111 Limit on tree memory has been reached, but an integer solution exists
112 Limit on tree memory has been reached; no integer solution
113 Stopped, but an integer solution exists
114 Stopped; no integer solution
115 Problem is optimal with unscaled infeasibilities
116 Out of memory, no tree available, integer solution exists
117 Out of memory, no tree available, no integer solution
118 Model has an unbounded ray
119 Model has been proved either infeasible or unbounded

User’s Guide for TOMLAB /CPLEX v12.1 34

The following inputs are used:, continued

120 (MIP) Feasible relaxed sum found (FEASOPTMODE)
121 (MIP) Optimal relaxed sum found (FEASOPTMODE)
122 (MIP) Feasible relaxed infeasibility found (FEASOPTMODE)
123 (MIP) Optimal relaxed infeasibility found (FEASOPTMODE)
124 (MIP) Feasible relaxed quad sum found (FEASOPTMODE)
125 (MIP) Optimal relaxed quad sum found (FEASOPTMODE)
126 (MIP) Relaxation aborted due to limit (FEASOPTMODE)
127 (MIP) Feasible solution found (FEASOPTMODE)
1001 Insufficient memory available
1014 CPLEX parameter is too small
1015 CPLEX parameter is too big
1100 Lower and upper bounds contradictory
1101 The loaded problem contains blatant infeasibilities or unboundedness
1106 The user halted preprocessing by means of a callback
1117 The loaded problem contains blatant infeasibilities
1118 The loaded problem contains blatant unboundedness
1123 Time limit exceeded during presolve.
1225 Numeric entry is not a double precision number (NAN)
1233 Data checking detected a number too large
1256 CPLEX cannot factor a singular basis
1261 No basic solution exists (use crossover)
1262 No basis exists (use crossover)
1719 No conflict is available
1805 MIP dynamic search incompatible with control callbacks.
3413 Tree memory limit exceeded
5002 Non-positive semidefinite matrix in quadratic problem
5012 Non-symmetric matrix in quadratic problem
32201 A licensing error has occurred
32024 Licensing problem: Optimization algorithm not licensed

Description of Outputs

The following fields are used:

ExitText Text interpretation of CPLEX result.
ExitFlag TOMLAB standard exit flag.

User’s Guide for TOMLAB /CPLEX v12.1 35

A.4 cpxRetVec

Purpose
cpxRetVec is a global variable that CPLEX can write more detailed solution information to. For all fields, the
default value is NaN and appears whenever the element in question is not available/not applicable for the problem
type.

Note about integer and double quality values:
Some quality values are present in both the integer and double lists. This is because these quality identifiers
have a meaning both as double and integer qualities. Example: The double interpretation is normally the largest
(absolute) value of the variables, while the integer interpretation is the first index where that value occurs.

Calling Syntax
global cpxRetVec
% Call cplex by tomRun or directly

CPLEX functions or parameter names in cpxRetVec

The following outputs are created:

Index Result of CPLEX run. (S=Simplex, B=Barrier, MIP=Mixed-Integer)

20 (S,B) Solver method (1 = Primal, 2 = Dual, 4 = Barrier)
1 Solution objective value
2 (MIP) The currently best known bound on the optimal solution value of a MIP prob-

lem. When a problem has been solved to optimality, this value matches the optimal
solution value. Otherwise, this value is computed for a minimization (maximiza-
tion) problem as the minimum (maximum) objective function value of all remaining
unexplored nodes.

3 (MIP) The MIP cutoff value being used during mixed integer optimization. The cutoff
is updated with the objective function value, each time an integer solution is found
during branch and cut.

4 (MIP) The node number of the best known integer solution.
7 (MIP) The cumulative number of simplex iterations used to solve a mixed integer

problem.
8 (MIP) The number of nodes used to solve a mixed integer problem.
9 (MIP) The number of unexplored nodes left in the branch and cut tree.

User’s Guide for TOMLAB /CPLEX v12.1 36

The following outputs are created:, continued

5 (S) The total number of simplex iterations to solve an LP problem, or the number of
crossover iterations in the case that the barrier optimizer is used.

10 (S,MIP) The number of dual super-basic variables in the current solution.
15 (S,MIP) The number of primal super-basic variables in the current solution.
6 (B) The total number of Barrier iterations to solve an LP problem.
16 (B) The number of dual exchange iterations in the crossover method. An exchange

occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a
bound.

17 (B) The number of dual push iterations in the crossover method. A push occurs when
a nonbasic variable switches bounds and does not enter the basis.

18 (B) The number of primal exchange iterations in the crossover method. An exchange
occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a
bound.

19 (B) The number of primal push iterations in the crossover method. A push occurs
when a nonbasic variable switches bounds and does not enter the basis.

12 (S) The number of Phase I iterations to solve a problem using the primal or dual
simplex method.

Double-type quality values:
21 The maximum primal infeasibility or, equivalently, the maximum bound violation

including slacks for the unscaled problem.
22 The maximum primal infeasibility or, equivalently, the maximum bound violation

including slacks for the scaled problem.
23 The sum of primal infeasibilities or, equivalently, the sum of bound violations for the

unscaled problem.
24 The sum of primal infeasibilities or, equivalently, the sum of bound violations for the

scaled problem.
25 (S,B) The maximum of dual infeasibility or, equivalently, the maximum reduced-cost

infeasibility for the unscaled problem.
26 (S,B) The maximum of dual infeasibility or, equivalently, the maximum reduced-cost

infeasibility for the scaled problem.
27 (S,B) The sum of dual infeasibilities or, equivalently, the sum of reduced-cost bound

violations for the unscaled problem .
28 (S,B) The sum of dual infeasibilities or, equivalently, the sum of reduced-cost bound

violations for the scaled problem .
29 (MIP) The maximum of integer infeasibility for the unscaled problem.
30 (MIP) The sum of integer infeasibilities for the unscaled problem.

User’s Guide for TOMLAB /CPLEX v12.1 37

The following outputs are created:, continued

31 The maximum of the vector |Ax− b| for the unscaled problem.
32 The maximum of the vector |Ax− b| for the scaled problem.
33 The sum of the elements of vector |Ax− b| for the unscaled problem.
34 The sum of the elements of vector |Ax− b| for the unscaled problem.
35 (S,B) The maximum dual residual value. For a simplex solution, this is the maximum

of the vector —c-B’pi—, and for a barrier solution, it is the maximum of the vector
—A’pi+rc-c— for the unscaled problem.

36 (S,B) The maximum dual residual value for the scaled problem.
37 (S,B) The sum of the absolute values of the dual residual vector for the unscaled

problem.
38 (S,B) The sum of the absolute values of the dual residual vector for the scaled problem.
39 (B) The maximum violation of the complementary slackness conditions for the un-

scaled problem.
41 (B) The sum of the violations of the complementary slackness conditions for the

unscaled problem.
43 The maximum absolute value in the primal solution vector for the unscaled problem.
44 The maximum absolute value in the primal solution vector for the scaled problem.

45 (S,B) The maximum absolute value in the dual solution vector for the unscaled prob-
lem.

46 (S,B) The maximum absolute value in the dual solution vector for the scaled problem.
47 The maximum absolute slack value for the unscaled problem.
48 The maximum absolute slack value for the scaled problem.
49 (S,B) The maximum absolute reduced cost value for the unscaled problem.
50 (S,B) The maximum absolute reduced cost value for the scaled problem.
51 The sum of the absolute values in the primal solution vector for the unscaled problem.
52 The sum of the absolute values in the primal solution vector for the scaled problem.

53 (S,B) The sum of the absolute values in the dual solution vector for the unscaled
problem.

54 (S,B) The sum of the absolute values in the dual solution vector for the scaled problem.
55 The sum of the absolute slack values for the unscaled problem.
56 The sum of the absolute slack values for the scaled problem.
57 (S,B) The sum of the absolute reduced cost values for the unscaled problem.
58 (S,B) The sum of the absolute reduced cost values for the unscaled problem.
59 (S) The estimated condition number of the scaled basis matrix.
60 (B) The objective value gap between the primal and dual objective value solution.
61 (B) The objective value relative to the dual barrier solution.
62 (B) The objective value relative to the primal barrier solution.

Integer-type quality values:

User’s Guide for TOMLAB /CPLEX v12.1 38

The following outputs are created:, continued

63 The lowest index of a column or row where the maximum primal infeasibility occurs
for the unscaled problem.

64 The lowest index of a column or row where the maximum primal infeasibility occurs
for the scaled problem.

65 (S,B) The lowest index where the maximum dual infeasibility occurs for the unscaled
problem.

66 (S,B) the lowest index where the maximum dual infeasibility occurs for the scaled
problem.

67 (MIP) The lowest index where the maximum integer infeasibility occurs for the un-
scaled problem.

68 (MIP) The lowest index where the maximum primal residual occurs for the unscaled
problem.

69 (MIP) The lowest index where the maximum primal residual occurs for the scaled
problem.

70 (S,B) The lowest index where the maximum dual residual occurs for the unscaled
problem .

71 (S,B) The lowest index where the maximum dual residual occurs for the scaled prob-
lem .

72 (B) The lowest index of a row or column with the largest violation of the complemen-
tary slackness conditions.

73 The lowest index where the maximum x value occurs for the unscaled problem.
74 The lowest index where the maximum x value occurs for the scaled problem.
75 (S,B) The lowest index where the maximum pi value occurs for the unscaled problem.
76 (S,B) The lowest index where the maximum pi value occurs for the scaled problem.
77 The lowest index where the maximum slack value occurs for the unscaled problem.
78 The lowest index where the maximum slack value occurs for the scaled problem.
79 (S,B) The lowest index where the maximum reduced cost value occurs for the unscaled

problem.
80 (S,B) The lowest index where the maximum reduced cost value occurs for the scaled

problem.
81 (MIP) The relative objective gap for a MIP optimization.

User’s Guide for TOMLAB /CPLEX v12.1 39

B The Matlab Interface Routines - Utility Routines

B.1 cpx2mat

Purpose
cpx2mat reads an (X)MPS file and more. The file is converted to matrices and vectors made available in MATLAB.
MPS and extended MPS for LP, MILP, QP and MIQP are the supported file types, however it is possible to supply
a wide range of file types.

Calling Syntax
[F, c, A, b L, b U, x L, x U, IntV ars] = cpx2mat(Name,PriLev);

Description of Input

Name Name of the MPS file with extension. cpx2mat can recognize many different file extensions,
e.g.: .mps, .lp, .mat, .qps.

PriLev Print level of cpx2mat. Set to 0 to have it silent, 1 to print warnings, and 2 to print debug
information.

Description of Output

F The quadratic term matrix. Empty for non-QP problems.
c The linear term vector.

A The constraint matrix.
b L The lower bounds of the constraints.
b U The upper bounds of the constraints.

x L The lower box bounds of x.
x U The upper box bounds of x.

IntVars Logical vector describing what variables that are integer or binary variables. Empty if the
problem is not a mixed integer problem.

User’s Guide for TOMLAB /CPLEX v12.1 40

B.2 abc2gap

Purpose
Converting a general assignment problem (GAP) to a standard form suitable for a MIP solver.

The GAP problem is formulated as

min
xij

f(x) =
∑m

i=1

∑n
j=1 cij ∗ xij

s/t
∑n

j=1 xij = 1 , i = 1, ...,m∑m
i=1 aij ∗ xij ≤ bj , j = 1, .., n

x ∈ Bm×n, B = {0, 1}.

Calling Syntax
[c, x L, x U, b L, b U, a, sos1] = abc2gap(A, b, C, SOS1);

Description of Input

A A m× n constraint matrix for GAP constraints.
b A m× 1 right hand side vector.
C A m× n cost matrix for GAP constraints.
SOS1 Logical variable, default false. If true, generate output for sos1 handling with CPLEX.

Otherwise generate output giving an equivalent formulation with standard integer variables.

Description of Output

c Linear objective function cost coefficients, vector m ∗ n× 1.
x L Lower bounds on design parameters x.
x U Upper bounds on design parameters x.
b L Lower bounds on the m + n linear constraints.
b U Upper bounds on the linear constraints.
a Sparse m + n×m ∗ n matrix for linear constraints.
sos1 If input variable SOS1 is true, structure with sos1 variable information in the form suitable

for the Matlab CPLEX interface routine cplex.m, otherwise empty.

Description
Converting a general assignment problem (GAP) to standard form suitable for a mixed-integer programming solver.

Either binary or sos1 variables are used.

User’s Guide for TOMLAB /CPLEX v12.1 41

C The Matlab Interface Routines - Test Routines

C.1 cpxaircrew

Purpose
Test of an air-crew schedule generation problem.

Calling Syntax
cpxaircrew

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Test of an air-crew schedule generation problem. Based on D.M.Ryan, Airline Industry, Encyclopedia of Opera-
tions Research and Management Science. Two subfunctions are used (defined at the end of the cpxaircrew.m file):
The function generateToDs create ToDs, i.e. Tours of Duty. The function sectordata generates some test data.

M-files Used
abc2gap.m, cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 42

C.2 cpxbiptest

Purpose
Test of TOMLAB /CPLEX level 1 interface solving three larger binary integer linear optimization problems calling
the CPLEX solver.

Calling Syntax
function cpxbiptest(Cut, PreSolve, cpxControl)

Description of Input

Cut Value of the cut strategy control parameter, default Cut = −1.
Cut = −1, auto select of Cut = 1 or Cut = 2.
Cut = 0, no cuts.
Cut = 1, conservative cut strategy.
Cut = 2, aggressive cut strategy
The cut strategy choice is implemented by setting the following parameters (omitting prefix
“CPX PARAM)”:
CLIQUES, COVERS, DISCJUTS, FLOWCOVERS, FLOWPATHS, FRACCUTS, GUBCOVERS,

IMPLED, MIRCUTS in the cpxControl structure.

PreSolve Value of the PRESOLVE control parameter, default PreSolve = 1.
PreSolve = 0: no presolve.
PreSolve = 1, do presolve.

cpxControl The initial CPLEX parameter structure. Here the user may set additional control parame-
ters. Default empty.

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Test of three larger binary integer linear optimization problems calling the CPLEX solver. The test problem 1
and 2 have 1956 variables, 23 equalities and four inequalities with both lower and upper bounds set.

Test problem 1, in bilp1.mat, is randomly generated. It has several minima with optimal zero value. CPLEX
runs faster if avoiding the use of a cut strategy, and skipping presolve. Test problem 2, in bilp2.mat, has a unique
minimum. Runs faster if avoiding the use of presolve.

Test problem 3, in bilp1211.mat, has 1656 variables, 23 equalities and four inequalities with lower and upper
bounds set. Runs very slow without the use of cuts. A call cpxbiptest(0, 0) gives the fastest execution for the first
two problems, but will be extremely slow for the third problem.

Timings are made with the Matlab functions tic and toc.

M-files Used
cplex.m, cpxPrint.m

User’s Guide for TOMLAB /CPLEX v12.1 43

C.3 cpxiptest

Purpose
Test of the TOMLAB /CPLEX level 1 interface solving three larger integer linear optimization problems calling
the CPLEX solver.

Calling Syntax
function cpxiptest(Cut, PreSolve, cpxControl)

Description of Input

Cut Value of the cut strategy parameters, default Cut = −1.
Cut = −1, auto select of Cut = 1 or Cut = 2.
Cut = 0, no cuts. Cut = 1, conservative cut strategy.
Cut = 2, aggressive cut strategy
See cpxbiptest, page 42.

PreSolve Value of the PRESOLVE control parameter, default PreSolve = 1.
PreSolve = 0, no presolve.
PreSolve = 1, do presolve.

cpxControl The initial cpxControl structure. Here the user may set additional control parameter. De-
fault empty.

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Test of three larger integer linear optimization problems calling the CPLEX solver. The test problems have 61
variables and 138 linear inequalities. 32 of the 138 inequalities are just zero rows in the matrix A. The three
problems are stored in ilp061.mat, ilp062.mat and ilp063.mat.

Code is included to remove the 32 zero rows, and compute better upper bounds using the positivity of the matrix
elements, right hand side and the variables. But this does not influence the timing much, the CPLEX presolve
will do all these problem changes.

Timings are made with the Matlab functions tic and toc.

M-files Used
cplex, xprinti, cpxPrint

User’s Guide for TOMLAB /CPLEX v12.1 44

C.4 cpxtomtest1

Purpose
Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB IF format.

Calling Syntax
cpxtomtest1

Description
Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB IF format. The examples show the
solution of LP, QP and MILP problems.

M-files Used
tomRun.

See Also
cplexTL.

C.5 cpxtomtest2

Purpose
Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB TQ format.

Calling Syntax
cpxtomtest2

Description
Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB TQ format. The routine mipAssign

is used to define the problem. A simple problem is solved with CPLEX both as an LP problem and as a MILP
problem. The problem is solved both with and without explicitly defining the slack variables.

M-files Used
mipAssign, tomRun and PrintResult.

See Also
cplexTL and cplex.

User’s Guide for TOMLAB /CPLEX v12.1 45

C.6 cpxKnaps

Purpose
CPLEX Matlab Level 1 interface Knapsack test routine

Calling Syntax
cpxKnaps(P, Cut)

Description of Input

P Problem number 1-3. Default 1.

Cut Cut strategy. 0 = no cuts, 1 = cuts, 2 = aggressive cuts. Default 0.

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
The CPLEX Matlab level 1 interface knapsack test routine runs three different test problems. It is possible to
change cut strategy and use heuristics defined in callbacks.

Currently defined knapsack problems:

Problem Name Knapsacks Variables
1 Weingartner 1 2 28
2 Hansen, Plateau 1 4 28
3 PB 4 2 29

M-files Used
cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 46

C.7 cpxKnapsTL

Purpose
CPLEX Matlab Level 2 interface Knapsack test routine

Calling Syntax
cpxKnapsTL(P, Cut)

Description of Input

P Problem number 1-3. Default 1.
Cut Cut strategy. 0 = no cuts, 1 = cuts, 2 = aggressive cuts. Default 0.

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
The CPLEX Matlab level 2 interface knapsack test routine runs three different test problems. It is possible to
change cut strategy.

Currently defined knapsack problems:

Problem Name Knapsacks Variables
1 Weingartner 1 2 28
2 Hansen, Plateau 1 4 28
3 PB 4 2 29

M-files Used
cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 47

C.8 cpxSolutionPool

Purpose
Test of TOMLAB /CPLEX solution pool capabilities.

Calling Syntax
[x,f] = cpxSolutionPool;

Description
Exemplifies the use of the solution pool features in TOMLAB /CPLEX and the parameters associated with this,
SOLNPOOLCAPACITY, SOLNPOOLGAP, SOLNPOOLINTENSITY and SOLNPOOLREPLACE.

User’s Guide for TOMLAB /CPLEX v12.1 48

C.9 cpxSolverTuning

Purpose
Test of TOMLAB /CPLEX solver tuning capabilities.

Calling Syntax
[cpxControl1, cpxControl2] = cpxSolverTuning;

Description
Exemplifies the use of the solver tuning features in TOMLAB /CPLEX and the parameters associated with this,
TUNINGDISPLAY, TUNINGREPEAT, TUNINGTILIM and TUNINGMEASURE.

User’s Guide for TOMLAB /CPLEX v12.1 49

C.10 cpxTest1

Purpose
Test routine 1, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax
x = cpxTest1

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Running a generalized assignment problem (GAP) from Wolsey [1, 9.8.16, pp165]. In this test the linear sos1
constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), cxpTest1 is using the utility abc2gap to reformulate the problem
into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy.

M-files Used
abc2gap.m,cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 50

C.11 cpxTest2

Purpose
Test routine 2, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax
x = cpxTest2

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Running a generalized assignment problem (GAP) from Wolsey [1, 9.8.16, pp165]. In this test sos1 variables are
used.

Given the matrices A (constraints) and C (costs), cpxTest2 is using the utility abc2gap to reformulate the problem
into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy is applied.

M-files Used
abc2gap.m, cplex.m

See Also
cpxTest3.m

User’s Guide for TOMLAB /CPLEX v12.1 51

C.12 cpxTest3

Purpose
Test routine 3, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax
x = cpxTest3

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Running a generalized assignment problem (GAP) from Wolsey [1, 9.6, pp159]. In this test the linear sos1
constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), cpxTest1 is using the utility abc2gap to reformulate the problem
into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and no cut strategy is used.

M-files Used
abc2gap.m, cplex.m

See Also
cpxTest2

User’s Guide for TOMLAB /CPLEX v12.1 52

C.13 cpxTestQP1

Purpose
Simple test of calling CPLEX Matlab level 1 interface to solve a QP problem.

Calling Syntax
x = cpxTestQP1(MIP,DEFPARAM)

Description of Input

MIP If MIP = 1, run as a MIQP problem, trying to make the third variable integer valued.
Otherwise run as a pure QP problem. Default MIP = 0.

DEFPARAM If 1, use default CPLEX parameters for fastest execution.
If 0, disable cuts and presolve for slower execution.

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Simple test of calling CPLEX Matlab level 1 interface to solve a QP or MIQP problem. The problem is

min
x

f(x) = x2
1 + x2

2 + x2
3

subject to x1 + 2x2 − x3 = 4
x1 − x2 + x3 = −2

−10 ≤ xi ≤ 10, i = 1, 2, 3
x3 integer if MIP 6= 0

M-files Used
cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 53

C.14 cpxTestQP2

Purpose
Simple test of calling CPLEX Matlab level 1 interface to solve a mixed integer quadratic (MIQP) problem.

Calling Syntax
x = cpxTestQP2(MIP)

Description of Input

MIP If MIP = 1 (default), run as a MIQP problem, trying to make the first variable integer
valued, otherwise run as a pure QP problem.

DEFPARAM If 1, use default parameters, presolve, cuts, dual simplex for fastest execution.
If 0, do not use presolve or cuts. Choose Primal Simplex for slower execution.
Default: 0

Global Parameters Used

MAX x Maximal number of x elements printed in output statements. Default 20.
MAX c Maximal number of constraint elements printed in output statements. Default 20.

Description
Simple test of MIQP problem running CPLEX . The problem is defined as

min
x

f(x) = 2x2
1 − 2x1x2 + 2x2

2 − 6x1

s/t 0 ≤ x1, x2 ≤ ∞
x1 + x2 ≤ 1.9

x1 integer if MIP 6= 0.

M-files Used
cplex.m

User’s Guide for TOMLAB /CPLEX v12.1 54

C.15 cpxTestConflict

Purpose
Demonstration of the TOMLAB /CPLEX Conflict Refinement feature.

Calling Syntax
x = cpxTestConflict()

Description
Define the linear sos1 constraints explicitly. Modify a bound to produce an infeasibility and invoke CPLEX again
with Conflict Refinement enabled.

User’s Guide for TOMLAB /CPLEX v12.1 55

D The Matlab Interface Routines - Callback Routines

D.1 cpxcb BARRIER

CPLEX Barrier callback.

Called from TOMLAB /CPLEX when solving linear problems using the barrier algorithm.

This callback is enabled by setting callback(5) = 1 in the call to cplex.m, or Prob.MIP.callback(5) = 1 if using
tomRun(’cplex’,...).

cpxcb BARRIER is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb BARRIER, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.2 cpxcb DISJCUT

CPLEX Disjunctive cut callback.

Called from TOMLAB /CPLEX during disjunctive cuts processing.

This callback is enabled by setting callback(10) = 1 in the call to cplex.m, or Prob.MIP.callback(10) = 1 if using
tomRun(’cplex’,...).

cpxcb DISJCUT is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

User’s Guide for TOMLAB /CPLEX v12.1 56

1 BEST_INTEGER - obj. value of best integer solution

2 BEST_REMAINING - obj. value of best remaining node

3 NODE_COUNT - total number of nodes solved

4 NODES_LEFT - number of remaining nodes

5 MIP_ITERATIONS - total number of MIP iterations

6 MIP_FEAS - returns 1 if feasible solution exists; otherwise, 0

7 CUTOFF - updated cutoff value

8 CLIQUE_COUNT - number of clique cuts added

9 COVER_COUNT - number of cover cuts added

10 DISJCUT_COUNT - number of disjunctive cuts added

11 FLOWCOVER_COUNT - number of flow cover cuts added

12 FLOWPATH_COUNT - number of flow path cuts added

13 FRACCUT_COUNT - number of Gomory fractional cuts added

14 GUBCOVER_COUNT - number of GUB cover cuts added

15 IMPLBD_COUNT - number of implied bound cuts added

16 MIRCUT_COUNT - number of mixed integer rounding cuts added

17 PROBE_PHASE - current phase of probing (0-3)

18 PROBE_PROGRESS - fraction of probing phase completed (0.0-1.0)

19 FRACCUT_PROGRESS - fraction of Gomory cut generation for the pass completed (0.0 - 1.0)

20 DISJCUT_PROGRESS - fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)

21 FLOWMIR_PROGRESS - fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)

22 MY_THREAD_NUM - identifier of the parallel thread making this call (always 0)

23 USER_THREADS - total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb DISJCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.3 cpxcb DUAL

CPLEX Dual simplex callback.

Called from TOMLAB /CPLEX when solving linear problems using the dual simplex algorithm.

This callback is enabled by setting callback(2) = 1 in the call to cplex.m, or Prob.MIP.callback(2) = 1 if using
tomRun(’cplex’,...).

cpxcb DUAL is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

User’s Guide for TOMLAB /CPLEX v12.1 57

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb DUAL, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.4 cpxcb DUALCROSS

CPLEX Dual crossover callback.

Called from TOMLAB /CPLEX during the dual crossover algorithm.

This callback is enabled by setting callback(4) = 1 in the call to cplex.m, or Prob.MIP.callback(4) = 1 if using
tomRun(’cplex’,...).

cpxcb DUALCROSS is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb DUALCROSS, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

User’s Guide for TOMLAB /CPLEX v12.1 58

D.5 cpxcb FLOWMIR

CPLEX Mixed integer rounding cut callback.

Called from TOMLAB /CPLEX during Mixed integer rounding cuts processing.

This callback is enabled by setting callback(11) = 1 in the call to cplex.m, or Prob.MIP.callback(11) = 1 if using
tomRun(’cplex’,...).

cpxcb FLOWMIR is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1 BEST_INTEGER - obj. value of best integer solution

2 BEST_REMAINING - obj. value of best remaining node

3 NODE_COUNT - total number of nodes solved

4 NODES_LEFT - number of remaining nodes

5 MIP_ITERATIONS - total number of MIP iterations

6 MIP_FEAS - returns 1 if feasible solution exists; otherwise, 0

7 CUTOFF - updated cutoff value

8 CLIQUE_COUNT - number of clique cuts added

9 COVER_COUNT - number of cover cuts added

10 DISJCUT_COUNT - number of disjunctive cuts added

11 FLOWCOVER_COUNT - number of flow cover cuts added

12 FLOWPATH_COUNT - number of flow path cuts added

13 FRACCUT_COUNT - number of Gomory fractional cuts added

14 GUBCOVER_COUNT - number of GUB cover cuts added

15 IMPLBD_COUNT - number of implied bound cuts added

16 MIRCUT_COUNT - number of mixed integer rounding cuts added

17 PROBE_PHASE - current phase of probing (0-3)

18 PROBE_PROGRESS - fraction of probing phase completed (0.0-1.0)

19 FRACCUT_PROGRESS - fraction of Gomory cut generation for the pass completed (0.0 - 1.0)

20 DISJCUT_PROGRESS - fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)

21 FLOWMIR_PROGRESS - fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)

22 MY_THREAD_NUM - identifier of the parallel thread making this call (always 0)

23 USER_THREADS - total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb FLOWMIR, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.6 cpxcb FRACCUT

CPLEX Gomory fractional cut callback.

Called from TOMLAB /CPLEX during Gomory fractional cuts processing

User’s Guide for TOMLAB /CPLEX v12.1 59

This callback is enabled by setting callback(9) = 1 in the call to cplex.m, or Prob.MIP.callback(9) = 1 if using
tomRun(’cplex’,...).

cpxcb FRACCUT is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1 BEST_INTEGER - obj. value of best integer solution

2 BEST_REMAINING - obj. value of best remaining node

3 NODE_COUNT - total number of nodes solved

4 NODES_LEFT - number of remaining nodes

5 MIP_ITERATIONS - total number of MIP iterations

6 MIP_FEAS - returns 1 if feasible solution exists; otherwise, 0

7 CUTOFF - updated cutoff value

8 CLIQUE_COUNT - number of clique cuts added

9 COVER_COUNT - number of cover cuts added

10 DISJCUT_COUNT - number of disjunctive cuts added

11 FLOWCOVER_COUNT - number of flow cover cuts added

12 FLOWPATH_COUNT - number of flow path cuts added

13 FRACCUT_COUNT - number of Gomory fractional cuts added

14 GUBCOVER_COUNT - number of GUB cover cuts added

15 IMPLBD_COUNT - number of implied bound cuts added

16 MIRCUT_COUNT - number of mixed integer rounding cuts added

17 PROBE_PHASE - current phase of probing (0-3)

18 PROBE_PROGRESS - fraction of probing phase completed (0.0-1.0)

19 FRACCUT_PROGRESS - fraction of Gomory cut generation for the pass completed (0.0 - 1.0)

20 DISJCUT_PROGRESS - fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)

21 FLOWMIR_PROGRESS - fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)

22 MY_THREAD_NUM - identifier of the parallel thread making this call (always 0)

23 USER_THREADS - total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb FRACCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.7 cpxcb MIP

CPLEX MIP callback.

Called from TOMLAB /CPLEX during mixed integer optimization.

This callback is enabled by setting callback(7) = 1 in the call to cplex.m, or Prob.MIP.callback(7) = 1 if using
tomRun(’cplex’,...).

cpxcb MIP is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

User’s Guide for TOMLAB /CPLEX v12.1 60

i cpxCBInfo(i) - Value

1 BEST_INTEGER - obj. value of best integer solution

2 BEST_REMAINING - obj. value of best remaining node

3 NODE_COUNT - total number of nodes solved

4 NODES_LEFT - number of remaining nodes

5 MIP_ITERATIONS - total number of MIP iterations

6 MIP_FEAS - returns 1 if feasible solution exists; otherwise, 0

7 CUTOFF - updated cutoff value

8 CLIQUE_COUNT - number of clique cuts added

9 COVER_COUNT - number of cover cuts added

10 DISJCUT_COUNT - number of disjunctive cuts added

11 FLOWCOVER_COUNT - number of flow cover cuts added

12 FLOWPATH_COUNT - number of flow path cuts added

13 FRACCUT_COUNT - number of Gomory fractional cuts added

14 GUBCOVER_COUNT - number of GUB cover cuts added

15 IMPLBD_COUNT - number of implied bound cuts added

16 MIRCUT_COUNT - number of mixed integer rounding cuts added

17 PROBE_PHASE - current phase of probing (0-3)

18 PROBE_PROGRESS - fraction of probing phase completed (0.0-1.0)

19 FRACCUT_PROGRESS - fraction of Gomory cut generation for the pass completed (0.0 - 1.0)

20 DISJCUT_PROGRESS - fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)

21 FLOWMIR_PROGRESS - fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)

22 MY_THREAD_NUM - identifier of the parallel thread making this call (always 0)

23 USER_THREADS - total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb MIP, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.8 cpxcb MIPPROBE

CPLEX MIP Probe and Clique Merging callback.

Called from TOMLAB /CPLEX during MIP Probing and Clique Merging.

This callback is enabled by setting callback(8) = 1 in the call to cplex.m, or Prob.MIP.callback(8) = 1 if using
tomRun(’cplex’,...).

cpxcb MIPPROBE is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1 BEST_INTEGER - obj. value of best integer solution

User’s Guide for TOMLAB /CPLEX v12.1 61

2 BEST_REMAINING - obj. value of best remaining node

3 NODE_COUNT - total number of nodes solved

4 NODES_LEFT - number of remaining nodes

5 MIP_ITERATIONS - total number of MIP iterations

6 MIP_FEAS - returns 1 if feasible solution exists; otherwise, 0

7 CUTOFF - updated cutoff value

8 CLIQUE_COUNT - number of clique cuts added

9 COVER_COUNT - number of cover cuts added

10 DISJCUT_COUNT - number of disjunctive cuts added

11 FLOWCOVER_COUNT - number of flow cover cuts added

12 FLOWPATH_COUNT - number of flow path cuts added

13 FRACCUT_COUNT - number of Gomory fractional cuts added

14 GUBCOVER_COUNT - number of GUB cover cuts added

15 IMPLBD_COUNT - number of implied bound cuts added

16 MIRCUT_COUNT - number of mixed integer rounding cuts added

17 PROBE_PHASE - current phase of probing (0-3)

18 PROBE_PROGRESS - fraction of probing phase completed (0.0-1.0)

19 FRACCUT_PROGRESS - fraction of Gomory cut generation for the pass completed (0.0 - 1.0)

20 DISJCUT_PROGRESS - fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)

21 FLOWMIR_PROGRESS - fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)

22 MY_THREAD_NUM - identifier of the parallel thread making this call (always 0)

23 USER_THREADS - total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb MIPPROBE, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.9 cpxcb PRESOLVE

CPLEX Presolve callback.

Called at regular intervals from TOMLAB /CPLEX during presolve.

This callback is enabled by setting callback(6) = 1 in the call to cplex.m, or Prob.MIP.callback(6) = 1 if using
tomRun(’cplex’,...).

cpxcb PRESOLVE is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1 PRESOLVE_ROWSGONE - number of rows eliminated

2 PRESOLVE_COLSGONE - number of columns eliminated

3 PRESOLVE_AGGSUBST - number of aggregator substitutions

4 PRESOLVE_COEFFS - number of modified coefficients

User’s Guide for TOMLAB /CPLEX v12.1 62

By returning a nonzero value from cpxcb PRESOLVE, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.10 cpxcb PRIM

CPLEX Primal simplex callback

Called from TOMLAB /CPLEX when solving linear problems using the primal simplex algorithm.

This callback is enabled by setting callback(1) = 1 in the call to cplex.m, or Prob.MIP.callback(1) = 1 if using
tomRun(’cplex’,...).

cpxcb PRIM is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb PRIM, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.11 cpxcb PRIMCROSS

CPLEX Primal crossover callback

Called from TOMLAB /CPLEX during the primal crossover algorithm.

This callback is enabled by setting callback(3) = 1 in the call to cplex.m, or Prob.MIP.callback(3) = 1 if using
tomRun(’cplex’,...).

cpxcb PRIMCROSS is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

User’s Guide for TOMLAB /CPLEX v12.1 63

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb PRIMCROSS, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.12 cpxcb QPBARRIER

CPLEX Quadratic Barrier callback.

Called from TOMLAB /CPLEX when solving quadratic problems using the barrier algorithm.

This callback is enabled by setting callback(12) = 1 in the call to cplex.m, or Prob.MIP.callback(12) = 1 if using
tomRun(’cplex’,...).

cpxcb QPBARRIER is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb QPBARRIER, the user can terminate the optimization.

User’s Guide for TOMLAB /CPLEX v12.1 64

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.13 cpxcb QPSIMPLEX

CPLEX Quadratic Simplex callback.

Called from TOMLAB /CPLEX when solving quadratic problems using the simplex algorithm.

This callback is enabled by setting callback(13) = 1 in the call to cplex.m, or Prob.MIP.callback(13) = 1 if using
tomRun(’cplex’,...).

cpxcb QPSIMPLEX is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i cpxCBInfo(i) - Value

1 PRIMAL_OBJ - primal objective value

2 DUAL_OBJ - dual objective value

3 PRIMAL_INFMEAS - measure of primal infeasibility

4 DUAL_INFMEAS - measure of dual infeasibility

5 PRIMAL_FEAS - 1 if primal feasible, 0 if not

6 DUAL_FEAS - 1 if dual feasible, 0 if not

7 ITCOUNT - iteration count

8 CROSSOVER_PPUSH - primal push crossover itn. count

9 CROSSOVER_PEXCH - primal exchange crossover itn. count

10 CROSSOVER_DPUSH - dual push crossover itn. count

11 CROSSOVER_DEXCH - dual exchange crossover itn. count

By returning a nonzero value from cpxcb QPSIMPLEX, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.14 cpxcb INCUMBENT

CPLEX MIP Incumbent callback.

Called from TOMLAB /CPLEX during mixed integer optimization when a new integer solution has been found
but before this solution has replaced the current best known integer solution.

This file can be used to perform any desired analysis of the new integer solution and return a status flag to the
solver deciding whether to stop or continue the optimization, and also whether to accept or discard the newly
found solution.

This callback is enabled by setting callback(14)=1 in the call to cplex.m, or Prob.MIP.callback(14) = 1 if using
tomRun(’cplex’,...).

cpxcb INCUMBENT is called by the solver with three arguments:

User’s Guide for TOMLAB /CPLEX v12.1 65

• x - The new integer solution

• f - The objective value at x

• Prob - The TOMLAB problem structure

cpxcb INCUMBENT should return one of the following scalar values:

• 0 - Continue optimization and accept new integer solution

• 1 - Continue optimization but discard new integer solution

• 2 - Stop optimization and accept new integer solution

• 3 - Stop optimization and discard new integer solution

Any other return value will be interpreted as 0.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path.

D.15 cpxcb USERCUT

CPLEX MIP User cut callback.

The User Cut Callback is enabled by setting callback(15) = 1 in the call to cplex.m, or Prob.MIP.callback(15) = 1
if using tomRun(’cplex’,...)

This callback is called by CPLEX during MIP branch & cut for every node that has an LP optimal solution with
objective value below the cutoff and is integer infeasible. CPLEX also calls the callback when comparing an integer
feasible solution, including one provided by a MIP start before any nodes exist, against lazy constraints.

The callback routine can add globally valid cuts to the LP subproblem. A cut is a constraint of the following form:

c1 ∗ x(1) + c2 ∗ x(2) + ... + cn ∗ x(n) <? > rhs

where <? > is exactly one of the relations <=, >= or = and rhs is a scalar right hand side limit.

By returning a nonzero value from cpxcb USERCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB
path. See help cpxcb USERCUT for more information.

D.16 cpxcb NET

Further details to be added.

User’s Guide for TOMLAB /CPLEX v12.1 66

E TOMLAB /CPLEX Network Solver

The TOMLAB /CPLEX network solver is a special interface for network problems described by a set of nodes and
arcs. The TOMLAB format is not applicable for these types of problem. See cplexnet for information on calling
the solver.

A network-flow problem finds the minimal-cost flow through a network, where a network consists of a set N of
nodes and a set A of arcs connecting the nodes. An arc a in the set A is an ordered pair (i, j) where i and j are
nodes in the set N; node i is called the tail or the from-node and node j is called the head or the to-node of the
arc a. Not all the pairs of nodes in a set N are necessarily connected by arcs in the set A. More than one arc may
connect a pair of nodes; in other words, a1 = (i, j) and a2 = (i, j) may be two different arcs in A, both connecting
the nodes i and j in N.

Each arc a may be associated with four values:

• xa is the flow value, that is, the amount passing through the arc a from its tail (or from-node) to its head
(or to-node). The flow values are the modeling variables of a network-flow problem. Negative values are
allowed; a negative flow value indicates that there is flow from the head to the tail.

• la, the lower bound, determines the minimum flow allowed through the arc a. By default, the lower bound
on an arc is 0 (zero).

• ua, the upper bound, determines the maximum flow allowed through the arc a. By default, the upper bound
on an arc is positive infinity.

• ca, the objective value, determines the contribution to the objective function of one unit of flow through the
arc.

Each node n is associated with one value:

• sn is the supply value at node n.

By convention, a node with strictly positive supply value (that is, sn > 0) is called a supply node or a source,
and a node with strictly negative supply value (that is, sn < 0) is called a demand node or a sink. A node where
sn = 0 is called a transshipment node. The sum of all supplies must match the sum of all demands; if not, then
the network flow problem is infeasible.

Tn is the set of arcs whose tails are node n; Hn is the set of arcs whose heads are node n. The usual form of a
network problem looks like this:

min
x

∑
a∈A

caxa

s/t
∑

a∈Ta

xa −
∑

a∈Ha

xa = sn∀n ∈ N

la ≤ xa ≤ ua

(1)

A test routines that illustrates a simple problem is included in the TOMLAB distribution. Figure 1 shows the
network problem solved:

The following code will call the network solver and deliver the optimal solution.

User’s Guide for TOMLAB /CPLEX v12.1 67

Figure 1: Network problem in cpxNetTest1.m

x = cpxNetTest1;

It is possible to call the TOMLAB /CPLEX solver using a special non-MATLAB input format. Example
cpxNetTest2 illustrates how to load and solve the problem described in nexample.net.

E.1 cplexnet

Purpose
The Network Interface. It solves network programming (NP) problems. Equation 1 describes the problem structure.

Calling Syntax
[x, slack, v, rc, f k, Inform, Iter] = cplexnet(obj, ub, lb, tail, head, supply, callback, PriLev, BIG, cpxControl,
logfile, savefile, savemode, netfile);

Description of Inputs

Problem inputs. The following fields are used:

obj Objective function cost coefficients for the arcs.

ub Upper bounds for the arcs.
lb Lower bounds for the arcs.

tail Indices for the tails (start).
head Indices for the heads (end).

User’s Guide for TOMLAB /CPLEX v12.1 68

Problem inputs. The following fields are used:, continued

supply The supply and demand vector for the nodes.

The following parameters are optional:

callback Logical scalar defining if callback is used in CPLEX callback = 1 activates the callback. See
TOMLAB /CPLEX User’s Guide. The callback calls the m-file specified below. The user
may edit this file, or make a new copy, which is put before in the Matlab path.

PriLev Printing level in cplex.m file and the CPLEX C-interface.
= 0 Silent
= 1 Warnings and Errors
= 2 Summary information
= 3 More detailed information

BIG Defines default lower and upper bounds, default 1E20.
= 0 Silent
= 1 Warnings and Errors
= 2 Summary information
= 3 More detailed information
> 10 Pause statements, and maximal printing (debug mode)

cpxControl Structure, where the fields are set to the CPLEX parameters that the user wants to specify
values for. The following parameters are the only ones of general interest. Default values
are recommended:

NETITLIM Limits the number of iterations that the network optimizer performs. Default BIGINT.
NETEPOPT Optimality tolerance for the network optimizer. The optimality tolerance specifies the

amount a reduced cost may violate the criterion for an optimal solution. Default 1e-6.
Valid values from 1e-11 to 1e-1.

NETEPRHS Feasibility tolerance for the network optimizer. The feasibility tolerance specifies the de-
gree to which a problem’s flow value may violate its bounds. This tolerance influences the
selection of an optimal basis and can be reset to a higher value when a problem is having
difficulty maintaining feasibility during optimization. You may also wish to lower this toler-
ance after finding an optimal solution if there is any doubt that the solution is truly optimal.
If the feasibility tolerance is set too low, CPLEX may falsely conclude that a problem is
infeasible. If you encounter reports of infeasibility in the optimization, a small adjustment
in the feasibility tolerance may improve performance. Default 1e-6. Valid values from 1e-11
to 1e-1.

NETPPRIIND Pricing algorithm for the network optimizer. On the rare occasions when the network
optimizer seems to take too long to find a solution, you may want to change the pricing
algorithm to try to speed up computation. All the choices use variations of partial reduced-
cost pricing.
NETPPRIIND = 0: automatic, default (same as 3)
NETPPRIIND = 1: Partial pricing.
NETPPRIIND = 2: Multiple partial pricing.
NETPPRIIND = 3: Multiple partial pricing with sorting.

User’s Guide for TOMLAB /CPLEX v12.1 69

Problem inputs. The following fields are used:, continued

NETFIND The CPLEX network extractor searches an LP constraint matrix for a submatrix with the
following characteristics:
- the coefficients of the submatrix are all 0 (zero), 1 (one), or -1 (minus one);
- each variable appears in at most two rows with at most one coefficient of +1 and at most
one coefficient of -1.
CPLEX can perform different levels of extraction. The level it performs depends on the
NETFIND parameter.
NETFIND = 1: CPLEX extracts only the obvious network; it uses no scaling; it scans rows
in their natural order; it stops extraction as soon as no more rows can be added to the
network found so far.
NETFIND = 2: Default. CPLEX also uses reflection scaling (that is, it multiplies rows by
-1) in an attempt to extract a larger network.
NETFIND = 3: CPLEX uses general scaling, rescaling both rows and columns, in an attempt
to extract a larger network.
In terms of total solution time expended, it may or may not be advantageous to extract
the largest possible network. Characteristics of your problem will determine the tradeoff
between network size and the number of simplex iterations required to finish solving the
model after solving the embedded network.
Even if your problem does not conform precisely to network conventions, the network op-
timizer may still be advantageous to use. When it is possible to transform the original
statement of a linear program into network conventions by these algebraic operations:
- changing the signs of coefficients.
- multiplying constraints by constants.
- rescaling columns.
- adding or eliminating redundant relations.
then CPLEX will carry out such transformations automatically if you set the NETFIND
parameter appropriately.

PREPASS If your LP problem includes network structures, there is a possibility that CPLEX pre-
processing may eliminate those structures from your model. For that reason, you should
consider turning off preprocessing before you invoke the network optimizer on a problem.
PREPASS = -1: Default. Determined automatically.
PREPASS = 0: Do not use Presolve.

logfile Name of file to write the CPLEX log information to. If empty, no log is written.

savefile Name of a file to save the CPLEX problem object. This is useful for sending problems to
ILOG for analysis. The format of the file is controlled by the savemode. If empty, no file is
written.

savemode The format of the file given in savefile is possible to choose by setting savemode to one of
the following values:

User’s Guide for TOMLAB /CPLEX v12.1 70

Problem inputs. The following fields are used:, continued

1 SAV Binary SAV format
2 MPS MPS format (ASCII)
3 LP CPLEX LP format (ASCII)
4 RMP MPS file with generic names
5 REW MPS file with generic names
6 RLP LP file with generic names

Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to
change the default row names.

netfile File for input.

Description of Outputs

Result structure. The following fields are used:

x Solution vector x with decision variable values (n× 1 vector).
slack Slack variables (m× 1 vector).
v Lagrangian multipliers (dual solution vector) (m× 1 vector).
rc Reduced costs. Lagrangian multipliers for simple bounds on x.
f k Objective function value f(x) = cT ∗ x at optimum.

Inform Result of CPLEX run. See the m-file help.
Iter Number of iterations.

User’s Guide for TOMLAB /CPLEX v12.1 71

F Conflict refiner, IIS, SA and Warm Start

It is possible to perform infeasibility and sensitivity analysis with TOMLAB /CPLEX. The inputs and outputs
are described in detail in Section A.1 and A.2.

F.1 Conflict refiner

A conflict is a set of mutually contradictory constraints and bounds within a model. Given an infeasible model,
TOMLAB /CPLEX can identify conflicting constraints and bounds within it. TOMLAB /CPLEX refines an
infeasible model by examining elements that can be removed from the conflict to arrive at a minimal conflict. A
conflict smaller than the full model may make it easier for the user to analyze the source of infeasibilities in the
original model.

If the model happens to contain multiple independent causes of infeasibility, it may be necessary for the user to
repair one cause and then repeat the process with a further refinement.

A file included in the TOMLAB distribution to enable easy use of the feature.

F.1.1 cpxBuildConflict

Purpose
cpxBuildConflict provides a shortcut for generating conflict refinement groups, for use with the Conflict Refinement
feature of TOMLAB /CPLEX.

Calling Syntax
(1) function confgrps = cpxBuildConflict(Prob,mode)
OR
(2) function confgrps = cpxBuildConflict(n,m lin,m quad,m sos,m ind,’mode’)

Description of Inputs

The following inputs are used:

Inputs for (1): function confgrps = cpxBuildConflict(Prob,mode

Prob TOMLAB problem structure, describing a LP/QP/MILP/MIQP/MIQQ problem.

mode String indicating which type of conflict group set is desired.
A ’full’ conflict group set will consist of one group for each individual variable (upper+lower
bound), linear, quadratic, sos and indicator constraint in the problem. This will be very
large group set.
A ’minimal’ set consists of at the most 6 groups: one each for all variable lower+upper
bounds, linear, sos, indicator, quad constraints.

Inputs for (2): function confgrps = cpxBuildConflict(n,m lin,m quad,m sos,m ind,’mode’)

User’s Guide for TOMLAB /CPLEX v12.1 72

The following inputs are used:, continued

n Number of variables
m lin Number of linear constraints
m quad Number of quadratic constraints
m sos Number of SOS constraints
m ind Number of indicator constraints
mode Mode indicator as described above

Description
The confgrps is used as an input to cplex.m or cplexTL.m.

F.2 IIS

IIS is obsolete in the latest version of TOMLAB /CPLEX.

If TOMLAB /CPLEX reports that your problem is infeasible, then you can invoke the TOMLAB /CPLEX
infeasibility finder to help you analyze the source of the infeasibility. This diagnostic tool computes a set of
infeasible constraints and column bounds that would be feasible if one of them (a constraint or variable) were
removed. Such a set is known as an irreducibly inconsistent set (IIS).

To work, the infeasibility finder must have a problem that satisfies two conditions:

• the problem has been optimized by the primal or dual simplex optimizer or by the barrier optimizer with
crossover, and

• the optimizer has terminated with a declaration of infeasibility.

Correcting Multiple Infeasibilities

The infeasibility finder will find only one irreducibly inconsistent set (IIS), though a given problem may contain
many independent IISs. Consequently, even after you detect and correct one such IIS in your problem, it may still
remain infeasible. In such a case, you need to run the infeasibility finder more than once to detect those multiple
causes of infeasibility in your problem.

Interpreting IIS Output

The size of the IIS reported by TOMLAB /CPLEX depends on many factors in the model. If an IIS contains
hundreds of rows and columns, you may find it hard to determine the cause of the infeasibility. Fortunately, there
are tactics to help you interpret IIS output:

• Consider selecting an alternative IIS algorithm. The default algorithm emphasizes computation speed, and
it may give rise to a relatively large IIS. See parameter IISIND.

• If the problem contains equality constraints, examine the cumulative constraint consisting of the sum of the
equality rows.

• Try preprocessing with the TOMLAB /CPLEX presolver and aggregator. The presolver may even detect
infeasibility by itself. If not, running the infeasibility finder on the presolved problem may help by reducing

User’s Guide for TOMLAB /CPLEX v12.1 73

the problem size and removing extraneous constraints that do not directly cause the infeasibility but still
appear in the IIS. Similarly, running the infeasibility finder on an aggregated problem may help because the
aggregator performs substitutions that may remove extraneous variables that clutter the IIS output. More
generally, if you perform substitutions, you may simplify the output so that it can be interpreted more easily.

• Other simplifications of the constraints in the IIS, such as combining variables, multiplying constraints by
constants, and rearranging sums, may make it easier to interpret the IIS.

F.3 SA

The availability of a basis for an LP allows you to perform sensitivity analysis for your model, if it is an LP.
Such analysis tells you by how much you can modify your model without affecting the solution you found. The
modifications supported by the sensitivity analysis function include bound changes, changes of the right hand side
vector and changes of the objective function.

F.4 Warm Start

When solving a large number of small and similar LP problems with the same size it is recommended to use
TOMLAB /CPLEX in a slightly different manner to avoid unnecessary overhead and preserve memory.

This objective is achieved by calling cplexmex directly as done internally in cplex.

A call to cplexmex will return a basis, which can be used to efficiently warm start the solution process of a modified
problem. The following code exemplifies the process. In general it is recommended to use the TOMLAB format
as well and compare solutions to make sure that the problem is correctly entered.

% See cplex.m to backtrack the inputs.

%

Prob = lpAssign(...);

PriLev = 0;

basis = [];

[x, slack, v, rc, f_k, ninf, sinf, Inform, basis] = ...

cplexmex(Prob.QP.c, sparse([]), sparse(Prob.A), zeros(12,1) , ...

Prob.x_L, Prob.x_U, Prob.b_L, Prob.b_U, 1e20, 1, PriLev, Prob, ...

zeros(Prob.N,1), [], [], [], [], [], [], [], ...

[], [], [], [], [], [], [], basis, [], []);

% Change the problem and input the basis returned above

Prob.x_L(1) = 2;

[x, slack, v, rc, f_k, ninf, sinf, Inform, basis] = ...

cplexmex(Prob.QP.c, sparse([]), sparse(Prob.A), zeros(12,1) , ...

Prob.x_L, Prob.x_U, Prob.b_L, Prob.b_U, 1e20, 1, PriLev, Prob, ...

zeros(Prob.N,1), [], [], [], [], [], [], [], ...

[], [], [], [], [], [], [], basis, [], []);

User’s Guide for TOMLAB /CPLEX v12.1 74

F.5 Solution Pool

The solution pool is used for storing multiple solutions to a mixed integer programming problem (MILP, MIQP
and MIQQ). Typically the feature is used for obtaining multiple solutions to help facilitate a selection based on
post-processing criteria.

The parameters of interest are listed in Section G and start with SOLNPOOL* (also POPULATELIM is relevant).
To enable the collection the following code could be used:

% Store up to 20 solutions.

Prob.MIP.cpxControl.SOLNPOOLCAPACITY = 20;

% Use very aggressive collection

Prob.MIP.cpxControl.SOLNPOOLINTENSITY = 4;

% Build diverse set

Prob.MIP.cpxControl.SOLNPOOLREPLACE = 3;

The effect of SOLNPOOLINTENSITY is to increase the amount of effort spent setting up the branch and cut tree
to prepare for the solution generation.

The details about the settings are as follows:

• Its default value, 0 (zero), lets CPLEX choose which intensity to apply.

• For value 1 (one), the performance of MIP optimization is not affected. There is no slowdown and no
additional consumption of memory due to this setting. However, populate will quickly generate only a small
number of solutions. Generating more than a few solutions with this setting will be slow. When you are
looking for a larger number of solutions, use a higher value of this parameter.

• For value 2, some information is stored in the branch and cut tree so that it is easier to generate a larger
number of solutions. This storage has an impact on memory used but does not lead to a slowdown in the
performance of MIP optimization.

• For value 3, the algorithm is more aggressive in computing and storing information in order to generate a
large number of solutions. Compared to values 1 (one) and 2, this value will generate a larger number of
solutions, but it will slow MIP optimization and increase memory consumption. Use this value only if setting
this parameter to 2 does not generate enough solutions.

• For value 4, the algorithm generates all solutions to your model. Even for small models, the number of
possible solutions is likely to be huge; thus enumerating all of them will take time and consume a large
quantity of memory. In this case, remember to set the populate limit parameter (POPULATELIM) to a
value appropriate for your model; otherwise, the populate procedure will stop prematurely because of this
stopping criterion instead of enumerating all solutions.

The solutions are stores in Result.x k column-wise, with corresponding objective functions in Result.f k.

User’s Guide for TOMLAB /CPLEX v12.1 75

G CPLEX Parameters Interface

G.1 Setting CPLEX Parameters in Matlab

The behavior of the CPLEX solver is controlled by means of a large number of parameters. It is possible to set all
of these parameters from Matlab.

If using the cplexTL interface for solving problems defined in a TOMLAB Prob structure, the field Prob.MIP.cpxControl
is used to set values for parameters. The user needs to set only those parameters that he/she wants to change.

The non-TOMLAB format cplex.m interface has a corresponding input parameter, cpxControl.

When setting parameter values in the cpxControl structure, this prefix should be omitted. For example, to set the
iterations for the dual simplex optimizer do:

>> cpxControl.ITLIM = 1000;

>> cpxControl.LPMETHOD = 2;

The complete list of CPLEX parameters are given in Table 17 on pages 76–104.

User’s Guide for TOMLAB /CPLEX v12.1 76

G.2 The CPLEX Parameter Table

Table 17: CPLEX Parameters Overview

TOMLAB parameter Value

cpxControl.ADVIND 0 Off: do not use advanced start information
1 On: CPLEX will use an advanced basis
supplied by the user
2 On: CPLEX will crush an advanced basis
or starting vector supplied by the user

Default: 0
Description: An indicator which, if set to 1 or 2, uses advanced starting information when optimization is
initiated. Setting 2 may be effective for MIPs in which the percentage of integer constraints is low. It may also
reduce the solution time of fixed MIPs.

cpxControl.AGGCUTLIM Any non-negative integer.

Default: 3
Description: Constraint aggregation limit for cut generation. Limits the number of constraints that can be
aggregated for generating flow cover and mixed integer rounding cuts

cpxControl.AGGFILL Any non-negative integer

Default: 10
Description: Preprocessing aggregator fill. Limits variable substitutions by the aggregator. If the net result
of a single substitution is more nonzeros than this value, the substitution is not made.

cpxControl.AGGIND -1 Automatic (1 for LP, infinite for MIP)
0 Do not use any aggregator
Any positive integer

Default: -1
Description: Preprocessing aggregator application limit. Invokes the aggregator to use substitution where
possible to reduce the number of rows and columns before the problem is solved. If set to a positive value, the
aggregator is applied the specified number of times or until no more reductions are possible.

cpxControl.BARALG 0 Default setting
1 Infeasibility-estimate start
2 Infeasibility-constant start
3 Standard barrier

Default: 0
Description: Barrier algorithm.
The default setting 0 uses the ”infeasibility - estimate start” algorithm (setting 1) when solving sub-problems
in a Mixed Integer Programming problem, and the standard barrier algorithm (setting 3) in other cases. The
standard barrier algorithm is almost always fastest. However, on problems that are primal or dual infeasible
(common for Mixed Integer sub-problems), the standard algorithm may not work as well as the alternatives.
The two alternative algorithms (settings 1 and 2) may eliminate numerical difficulties related to infeasibility,
but are generally slower.

User’s Guide for TOMLAB /CPLEX v12.1 77

TOMLAB parameter Value

cpxControl.BARCOLNZ 0 Dynamically calculated or,
any positive integer

Default: 0
Description: Barrier column nonzeros.
Used in the recognition of dense columns. If columns in the presolved and aggregated problem exist with more
entries than this value, such columns are considered dense and are treated specially by the CPLEX Barrier
Optimizer to reduce their effect. If the problem contains fewer than 400 rows, dense column handling is NOT
initiated.

cpxControl.BARCROSSALG -1 No crossover
0 Automatic
1 Primal crossover
2 Dual crossover

Default: 0
Description: Barrier crossover method.
Determines which, if any, crossover method is performed at the end of a Barrier optimization.

cpxControl.BARDISPLAY 0 No progress information
1 Normal setup and iteration information
2 Diagnostic information

Default: 1
Description: Barrier display information.
Determines the level of barrier information to be displayed.

cpxControl.BAREPCOMP Any positive number ≥ 10−12

Default: 10−8

Description: Convergence tolerance for LP and QP problems.
For problems with quadratic constraints (QCP), see BARQCPEPCOMP. Sets the tolerance on complementarity
for convergence. The barrier algorithm terminates with an optimal solution if the relative complementarity is
smaller than this value. Changing this tolerance to a smaller value may result in greater numerical precision
of the solution, but also increases the chance of a convergence failure in the algorithm and consequently may
result in no solution at all. Therefore, caution is advised in deviating from the default setting.

cpxControl.BARGROWTH 1.0 or greater.

Default: 108

Description: Barrier growth.
Used to detect unbounded optimal faces. At higher values, the barrier algorithm is less likely to conclude that
the problem has an unbounded optimal face, but more likely to have numerical difficulties if the problem has
an unbounded face.

cpxControl.BARITLIM 0 No Barrier iterations
or, any positive integer

Default: Large (varies by computer)

User’s Guide for TOMLAB /CPLEX v12.1 78

TOMLAB parameter Value
Description: Barrier iteration limit.
Sets the number of Barrier iterations before termination. When set to 0, no Barrier iterations occur, but problem
”setup” occurs and information about the setup is displayed (such as Cholesky factorization information).

cpxControl.BARMAXCOR -1 Automatically determined
0 None
or, any positive integer

Default: -1
Description: Barrier maximum correction limit.
Sets the maximum number of centering corrections done on each iteration. An explicit value greater than 0
may improve the numerical performance of the algorithm at the expense of computation time.

cpxControl.BAROBJRNG Any positive number

Default: 1020

Description: Barrier objective range.
Sets the maximum absolute value of the objective function. The barrier algorithm looks at this limit to detect
unbounded problems.

cpxControl.BARORDER 0 Automatic
1 Approximate minimum degree (AMD)
2 Approximate minimum fill (AMF)
3 Nested dissection (ND)

Default: 0 values
Description: Barrier ordering algorithm.
Sets the algorithm to be used to permute the rows of the constraint matrix in order to reduce fill in the Cholesky
factor.

cpxControl.BARQCPEPCOMP Any positive number ≥ 10−12

Default: 10−6

Description: Convergence tolerance for QCP problems. That is, for quadratically constrained problems. For
LPs and for QPs (that is, when all the constraints are linear) see BAREPCOMP. Sets the tolerance on complementar-
ity for convergence. The barrier algorithm terminates with an optimal solution if the relative complementarity
is smaller than this value. Changing this tolerance to a smaller value may result in greater numerical precision
of the solution, but also increases the chance of a convergence failure in the algorithm and consequently may
result in no solution at all. Therefore, caution is advised in deviating from the default setting.

cpxControl.BARSTARTALG 1 Dual is 0
2 Estimate dual
3 Average of primal estimate, dual 0
4 Average of primal estimate, estimate dual

Default: 1
Description: Barrier starting point algorithm.
Sets the algorithm to be used to compute the initial starting point for the barrier optimizer.

User’s Guide for TOMLAB /CPLEX v12.1 79

TOMLAB parameter Value

cpxControl.BBINTERVAL 0 Best estimate node always selected
or, any positive integer

Default: 7
Description: MIP strategy bbinterval.
When using nodeselect 2, the bbinterval is the interval at which the best bound node, instead of the best
estimate node, is selected from the tree. A bbinterval of 0 means to never select the best bound node. A
bbinterval of 1 means to always select the best bound node, and is thus equivalent to nodeselect 1. Higher
values of bbinterval mean that the best bound node will be selected less frequently; experience has shown it to
be beneficial to occasionally select the best bound node, and therefore the default bbinterval is 7.

cpxControl.BNDSTRENIND -1 Automatically determined
0 Do not apply bound strengthening
1 Apply bound strengthening

Default: -1
Description: Bound strengthening indicator.
Used when solving mixed integer programs. Bound strengthening tightens the bounds on variables, perhaps
to the point where the variable can be fixed and thus removed from consideration during branch & cut. This
reduction is usually beneficial, but occasionally, due to its iterative nature, takes a long time.

cpxControl.BRDIR -1 Down branch selected first
0 Automatically determined
1 Up branch selected first

Default: 0
Description: MIP branching direction.
Used to decide which branch, the up or the down branch, should be taken first at each node.

cpxControl.BTTOL Any number from 0.0 to 1.0

Default: 0.9999
Description: Backtracking tolerance.
Controls how often backtracking is done during the branching process. The decision when to backtrack depends
on three values that change during the course of the optimization:
- the objective function value of the best integer feasible solution (”incumbent”)
- the best remaining objective function value of any unexplored node (”best node”)
- the objective function value of the most recently solved node (”current objective”).
If a cutoff tolerance (see CUTUP and CUTLO) has been set by the user then that value is used as the incumbent until
an integer feasible solution is found. The ”target gap” is defined to be the absolute value of the difference between
the incumbent and the best node, multiplied by this backtracking parameter. CPLEX does not backtrack until
the absolute value of the difference between the current objective and the best node is at least as large as
the target gap. Low values of this backtracking parameter thus tend to increase the amount of backtracking,
which makes the search process more of a pure best-bound search. Higher parameter values tend to decrease
backtracking, making the search more of a pure depth-first search. The backtracking value has effect only after
an integer feasible solution is found or when a cutoff has been specified. Note that this backtracking value
merely permits backtracking but does not force it; CPLEX may choose to continue searching a limb of the tree
if it seems a promising candidate for finding an integer feasible solution.

User’s Guide for TOMLAB /CPLEX v12.1 80

TOMLAB parameter Value

cpxControl.CLIQUES -1 Do not generate clique cuts
0 Automatically determined
1 Generate clique cuts moderately
2 Generate clique cuts aggressively

Default: 0
Description: MIP cliques indicator.
Determines whether or not clique cuts should be generated for the problem. Setting the value to 0, the default,
indicates that the attempt to generate cliques should continue only if it seems to be helping.

cpxControl.CLOCKTYPE 1 CPU time
2 Wall clock time (total physical time elapsed)

Default: 1
Description: Computation time reporting.
Determines how computation times are measured.

cpxControl.COEREDIND 0 Do not use coefficient reduction
1 Reduce only to integral coefficients
2 Reduce all potential coefficients

Default: 2
Description: Coefficient reduction setting.
Determines how coefficient reduction is used. Coefficient reduction improves the objective value of the initial
(and subsequent) LP relaxations solved during branch & cut by reducing the number of non-integral vertices.

cpxControl.COLREADLIM Any integer from 0 to 268 435 450

Default: Varies by computer.
Description: Variable (column) read limit.
Sets the number of variables that can be read.

cpxControl.COVERS -1 Do not generate cover cuts
0 Automatically determined
1 Generate cover cuts moderately
2 Generate cover cuts aggressively
3 Generate cover cuts very aggressively

Default: 0
Description: MIP covers indicator.
Determines whether or not cover cuts should be generated for the problem. Setting the value to 0, the default,
indicates that the attempt to generate covers should continue only if it seems to be helping.

User’s Guide for TOMLAB /CPLEX v12.1 81

TOMLAB parameter Value

cpxControl.CRAIND LP Primal:
0 Ignore objective coefficients during crash
-1 or 1 Alternate ways of using objective coef-
ficients
LP Dual:
1 Default starting basis
0 or -1 Aggressive starting basis
QP Primal:
-1 Slack basis
0 Ignore Q terms and use LP solver for crash
1 Ignore objective and use LP solver for crash
QP Dual:
-1 Slack basis
0 or 1 Use Q terms for crash

Description: Simplex crash ordering.
Determines how CPLEX orders variables relative to the objective function when selecting an initial basis.

cpxControl.CUTLO Any number

Default: −1075

Description: Lower cutoff.
When the problem is a maximization problem, the LOWERCUTOFF parameter is used to cut off any nodes
that have an objective value below the lower cutoff value. On a continued mixed integer optimization, the
larger of these values and the updated cutoff found during optimization are used during the next mixed integer
optimization. A too-restrictive value for the LOWERCUTOFF parameter may result in no integer solutions
being found.

cpxControl.CUTPASS -1 None
0 Automatically determined
Positive values give number of passes to
perform

Default: 0
Description: Number of cutting plane passes.
Sets the upper limit on the number of passes CPLEX performs when generating cutting planes on a MIP model.

cpxControl.CUTSFACTOR Any non-negative number.

Default: 4.0
Description: Row multiplier factor for cuts.
Limits the number of cuts that can be added. The number of rows in the problem with cuts added is limited
to CUTSFACTOR times the original number of rows. If the problem is presolved, the original number of rows
is that from the presolved problem.
A CUTSFACTOR of 1.0 or less means that no cuts will be generated. Because cuts can be added and removed
during the course of optimization, CUTSFACTOR may not correspond directly to the number of cuts seen
during the node log or in the summary table at the end of optimization.

User’s Guide for TOMLAB /CPLEX v12.1 82

TOMLAB parameter Value

cpxControl.CUTUP Any number.

Default: 1075.
Description: Upper cutoff.
Cuts off any nodes that have an objective value above the upper cutoff value, when the problem is a minimization
problem. When a mixed integer optimization problem is continued, the smaller of these values and the updated
cutoff found during optimization are used during the next mixed integer optimization. A too-restrictive value
for the UPPERCUTOFF parameter may result in no integer solutions being found.

cpxControl.DATACHECK 0 Off (do not check)
1 On (check)

Default: 0
Description: Data consistency checking indicator.
When set to 1 (On), extensive checking is performed on data in the array arguments, such as checking that
indices are within range, that there are no duplicate entries and that values are valid for the type of data or are
valid numbers. This is useful for debugging applications.

cpxControl.DEPIND 0 Off (do not use dependency checker)
1 On (use dependency checker)

Default: 0
Description: Dependency indicator.
Determines whether to activate the ”dependency checker”. If on, the dependency checker searches for dependent
rows during preprocessing. If off, dependent rows are not identified.

cpxControl.DISJCUTS -1 Do not generate disjunctive cuts
0 Automatically determined
1 Generate disjunctive cuts moderately
2 Generate disjunctive cuts aggressively
3 Generate disjunctive cuts very aggressively

Default: 0
Description: MIP disjunctive cuts indicator.
Determines whether or not disjunctive cuts should be generated for the problem. Setting the value to 0, the
default, indicates that the attempt to generate disjunctive cuts should continue only if it seems to be helping.

cpxControl.DIVETYPE 0 automatic
1 traditional dive
2 probing dive
3 guided dive

Default: 0

User’s Guide for TOMLAB /CPLEX v12.1 83

TOMLAB parameter Value
Description: MIP dive strategy.
The MIP traversal strategy occasionally performs probing dives, where it looks ahead at both children nodes
before deciding which node to choose. The default (automatic) setting lets CPLEX choose when to perform a
probing dive, 1 directs CPLEX never to perform probing dives, 2 always to probe, 3 spend more time exploring
potential solutions that are similar to the current incumbent. Setting 2, always to probe, is helpful for finding
integer solutions.

cpxControl.DPRIIND 0 Determined automatically
1 Standard dual pricing
2 Steepest-edge pricing
3 Steepest-edge pricing in slack space
4 Steepest-edge pricing, unit initial norms
5 Devex pricing

Default: 0
Description: Dual simplex pricing algorithm.
The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate
settings.

cpxControl.EACHCUTLIM 0 No cuts
N+ Limit each type of cut

Default: 2.1e9
Description: Type of cut limit.
Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a
each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform;
that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit
certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in
such large number that the limit on the total number of all types of cuts is reached before other types of cuts
have an opportunity to be created. This parameter does not influence the number of Gomory cuts.

cpxControl.EPAGAP Any non-negative number.

Default: 10−6.
Description: Absolute mipgap tolerance.
Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re-
maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization
is stopped.

cpxControl.EPGAP Any number from 0.0 to 1.0

Default: 10−4

User’s Guide for TOMLAB /CPLEX v12.1 84

TOMLAB parameter Value
Description: Relative mipgap tolerance.
Sets a relative tolerance on the gap between the best integer objective and the objective of the best node
remaining. When the value

|bestnode− bestinteger|
10−10 + |bestinteger|

falls below the value of the MIPGAP parameter, the mixed integer optimization is stopped. For example, to
instruct CPLEX to stop as soon as it has found a feasible integer solution proved to be within five percent of
optimal, set the relative mipgap tolerance to 0.05.

cpxControl.EPINT Any number from 10−9 to 0.5.

Default: 10−5

Description: Integrality tolerance.
Specifies the amount by which an integer variable can be different from an integer and still be considered feasible.

cpxControl.EPMRK Any number from 0.0001 to 0.99999

Default: 0.01
Description: Markowitz tolerance.
Influences pivot selection during basis factorization. Increasing the Markowitz threshold may improve the
numerical properties of the solution.

cpxControl.EPOPT Any number from 10−9 to 10−1

Default: 10−6

Description: Optimality tolerance.
Influences the reduced-cost tolerance for optimality. This parameter governs how closely CPLEX must approach
the theoretically optimal solution.

cpxControl.EPPER Any positive number ≥ 10−8

Default: 10−6

Description: Perturbation constant.
Sets the amount by which CPLEX perturbs the upper and lower bounds on the variables when a problem is
perturbed. This parameter can be set to a smaller value if the default value creates too large a change in the
problem.

cpxControl.EPRELAX Any positive number

Default: 10−6

Description: FeasOpt tolerance.
Sets epsilon used to measure relaxation in FeasOpt.

cpxControl.EPRHS Any number from 10−9 to 10−1

Default: 10−6

User’s Guide for TOMLAB /CPLEX v12.1 85

TOMLAB parameter Value
Description: Feasibility tolerance.
The feasibility tolerance specifies the degree to which a problem’s basic variables may violate their bounds.
FEASIBILITY influences the selection of an optimal basis and can be reset to a higher value when a problem
is having difficulty maintaining feasibility during optimization. You may also wish to lower this tolerance after
finding an optimal solution if there is any doubt that the solution is truly optimal. If the feasibility tolerance is
set too low, CPLEX may falsely conclude that a problem is infeasible. If you encounter reports of infeasibility
during Phase II of the optimization, a small adjustment in the feasibility tolerance may improve performance.

cpxControl.FEASOPTMODE 0 Minimize the sum of all required relaxations
in first phase only
1 Minimize the sum of all required relaxations
in first phase and execute second phase to
find optimum among minimal relaxations
2 Minimize the number of constraints and
bounds requiring relaxation in first phase
only
3 Minimize the number of constraints and
bounds requiring relaxation in first phase and
execute second phase to find optimum among
minimal relaxations
4 Minimize the sum of squares of required
relaxations in first phase only
5 Minimize the sum of squares of required
relaxations in first phase and execute second
phase to find optimum among minimal relax-
ations

Default: 0
Description: FeasOpt settings.
FeasOpt works in two phases. In its first phase, it attempts to minimize its relaxation of the infeasible model.
That is, it attempts to find a feasible solution that requires minimal change. In its second phase, it finds an
optimal solution among those that require only as much relaxation as it found necessary in the first phase.

cpxControl.FLOWCOVERS -1 Do not generate flow cover cuts
0 Automatically determined
1 Generate flow cover cuts moderately
2 Generate flow cover cuts aggressively

Default: 0
Description: MIP flow cover cuts indicator.
Determines whether or not to generate flow cover cuts for the problem. Setting the value to 0, the default,
indicates that the attempt to generate flow cover cuts should continue only if it seems to be helping.

User’s Guide for TOMLAB /CPLEX v12.1 86

TOMLAB parameter Value

cpxControl.FLOWPATHS -1 Do not generate flow path cuts
0 Automatically determined
1 Generate flow path cuts moderately
2 Generate flow path cuts aggressively

Default: 0
Description: MIP flow path cut indicator.
Determines whether or not flow path cuts should be generated for the problem. Setting the value to 0, the
default, indicates that the attempt to generate flow path cuts should continue only if it seems to be helping.

cpxControl.FPHEUR -1 Do not apply the feasibility pump heuristic
0 Automatic: let CPLEX choose
1 Apply the feasibility pump heuristic with
an emphasis on finding a feasible solution
2 Apply the feasibility pump heuristic with
an emphasis on finding a feasible solution
with a good objective value

Default: 0
Description: Feasibility pump switch.
Turns on or off the feasibility pump heuristic. At the default setting 0 (zero), CPLEX automatically chooses
whether or not to apply the feasibility pump heuristic on the basis of characteristics of the model. To turn
off the feasibility pump heuristic, set the parameter to -1 (minus one). If the parameter is set to 1 (one),
the feasibility pump tries to find a feasible solution without taking the objective function into account. If the
parameter is set to 2, the heuristic usually finds solutions of better objective value, but is more likely to fail to
find a feasible solution.

cpxControl.FRACCAND Any positive integer.

Default: 200
Description: Candidate limit for generating Gomory fractional cuts.
Limits the number of candidate variables for generating Gomory fractional cuts.

cpxControl.FRACCUTS -1 Do not generate Gomory fractional cuts
0 Automatically determined
1 Generate Gomory fractional cuts moder-
ately
2 Generate Gomory fractional cuts aggres-
sively

Default: 0
Description: MIP Gomory fractional cuts indicator.
Determines whether or not Gomory fractional cuts should be generated for the problem. Setting the value to
0, the default, indicates that the attempt to generate Gomory fractional cuts should continue only if it seems
to be helping.

User’s Guide for TOMLAB /CPLEX v12.1 87

TOMLAB parameter Value

cpxControl.FRACPASS 0 Automatic
or, any positive integer

Default: 0
Description: Pass limit for generating Gomory fractional cuts.
Limits the number of passes for generating Gomory fractional cuts. At the default setting of 0, CPLEX decides.
The parameter is ignored if the Gomory fractional cut parameter, FRACCUTS, is set to a nonzero value.

cpxControl.GUBCOVERS -1 Do not generate GUB cuts
0 Automatically determined
1 Generate GUB cuts moderately
2 Generate GUB cuts aggressively

Default: 0
Description: MIP GUB cuts indicator.
Determines whether or not to generate GUB cuts for the problem. Setting the value to 0, the default, indicates
that the attempt to generate GUB cuts should continue only if it seems to be helping.

cpxControl.HEURFREQ -1 None
0 Automatic
or, any positive integer

Default: 0
Description: MIP heuristic frequency.
Determines how often to apply the periodic heuristic. Setting the value to -1 turns off the periodic heuristic.
Setting the value to 0, the default, applies the periodic heuristic at an interval chosen automatically. Setting
the value to a positive number applies the heuristic at the requested node interval. For example, setting
HEURISTICFREQ to 20 dictates that the heuristic be called at node 0, 20, 40, 60, etc.
cpxControl.IMPLBD -1 Do not generate implied bound cuts

0 Automatically determined
1 Generate implied bound cuts moderately
2 Generate implied bound cuts aggressively

Default: 0
Description: MIP implied bound cuts indicator.
Determines whether or not to generate implied bound cuts for the problem. Setting the value to 0, the default,
indicates that the attempt to generate implied bound cuts should continue only if it seems to be helping.

cpxControl.INTSOLLIM Any positive integer

Default: Large (varies by computer)
Description: MIP solution limit.
Set the number of MIP solutions to be found before stopping.

cpxControl.ITLIM Any non-negative integer.

Default: Large (varies by computer)

User’s Guide for TOMLAB /CPLEX v12.1 88

TOMLAB parameter Value
Description: Simplex maximum iteration limit.
Sets the maximum number of iterations to be performed before the algorithm terminates without reaching
optimality.

cpxControl.LBHEUR 0 Off
1 On

Default: 0
Description: Local branching heuristic.
This parameter lets you control whether CPLEX applies a local branching heuristic to try to improve new
incumbents found during a MIP search. By default, this parameter is false; that is, it is off by default. If you
turn it on, CPLEX will invoke a local branching heuristic only when it finds a new incumbent. If CPLEX finds
multiple incumbents at a single node, the local branching heuristic will be applied only to the last one found.

cpxControl.LPMETHOD 0 Automatic
1 Primal Simplex
2 Dual Simplex
3 Network Simplex
4 Barrier
5 Sifting
6 Concurrent Dual, Barrier and Primal

Default: 0
Description: Method for linear optimization.
Determines which algorithm is used. Currently, the behavior of the Automatic setting is that CPLEX almost
always invokes the dual simplex method. The one exception is when solving the relaxation of an MILP model
when multiple threads have been requested. In this case, the Automatic setting will use the concurrent opti-
mization method. The Automatic setting may be expanded in the future so that CPLEX chooses the method
based on additional problem characteristics.

cpxControl.MEMORYEMPHASIS 0 Off: Do not emphasize conservation of
memory
1 On: Emphasize conservation of memory

Default: Off
Description: Memory setting.
Some information (that require a basis) may be unavailable when using this parameter.
cpxControl.MIPDISPLAY 0 No display

1 Display integer feasible solutions
2 Display nodes under MIPINTERVAL
3 Same as 2 with information on node cuts
4 Same as 3 with LP subproblem information
at root
5 Same as 4 with LP subproblem information
at nodes

Default: 2

User’s Guide for TOMLAB /CPLEX v12.1 89

TOMLAB parameter Value
Description: MIP node log display information.
Determines what CPLEX reports to the screen during mixed integer optimization. The amount of information
displayed increases with increasing values of this parameter.
A setting of 0 causes no node log to be displayed until the optimal solution is found. A setting of 1 displays an
entry for each integer feasible solution found. Each entry contains the objective function value, the node count,
the number of unexplored nodes in the tree, and the current optimality gap. A setting of 2 also generates an
entry for every nth node (where n is the setting of the MIP INTERVAL parameter). A setting of 3 addition-
ally generates an entry for every nth node giving the number of cuts added to the problem for the previous
INTERVAL nodes. A setting of 4 additionally generates entries for the LP root relaxation according to the
SIMDISPLAY setting. A setting of 5 additionally generates entries for the LP subproblems, also according to
the SIMDISPLAY setting.

cpxControl.MIPEMPHASIS 0 [BALANCED] Balance optimality and feasi-
bility
1 [FEASIBILITY] Emphasize feasibility over
optimality
2 [OPTIMALITY] Emphasize optimality over
feasibility
3 [BESTBOUND] Emphasize moving best
bound
4 [HIDDENFEAS] Emphasize hidden feasibility

Default: 0
Description: MIP emphasis indicator.
With the default setting of BALANCED, CPLEX works toward a rapid proof of an optimal solution, but
balances that with effort toward finding high quality feasible solutions early in the optimization. When set to
FEASIBILITY, CPLEX frequently will generate more feasible solutions as it optimizes the problem, at some
sacrifice in the speed to the proof of optimality. When set to OPTIMALITY, less effort may be applied to finding
feasible solutions early. With the setting BESTBOUND, even greater emphasis is placed on proving optimality
through moving the best bound value, so that the detection of feasible solutions along the way becomes almost
incidental. When set to HIDDENFEAS, the MIP optimizer works hard to find high quality feasible solutions
that are otherwise very difficult to find, so consider this setting when the FEASIBILITY emphasis has difficulty
finding solutions of acceptable quality.

cpxControl.MIPINTERVAL Any positive integer

Default: 100
Description: MIP node log interval
Controls the frequency of node logging when MIPDISPLAY is set higher than 1.

cpxControl.MIPORDIND 0 Off (do not use order information)
1 On (use order information if it exists)

Default: 1
Description: MIP priority order indicator.
When set to on, uses the priority order (if it exists) for the next mixed integer optimization.

User’s Guide for TOMLAB /CPLEX v12.1 90

TOMLAB parameter Value

cpxControl.MIPORDTYPE 0 Do not generate a priority order
1 Use decreasing cost
2 Use increasing bound range
3 Use increasing cost per coefficient count

Default: 0
Description: MIP priority order generation.
Used to select the type of generic priority order to generate when no priority order is present.

cpxControl.MIPSEARCH 0 Automatic: let CPLEX choose.
1 Apply traditional branch and cut strategy;
disable dynamic search
2 Apply dynamic search

Default: 0
Description: MIP dynamic search switch.
Sets the search strategy for a mixed integer program (MIP). By default, CPLEX chooses whether to apply
dynamic search or conventional branch and cut based on characteristics of the model and presence (or absence)
of callbacks. To benefit from dynamic search, a MIP must not include query callbacks.

cpxControl.MIQCPSTRAT 0 Automatic: let CPLEX choose.
1 Solve a QCP node relaxation at each node
2 Solve an LP node relaxation at each node

Default: 0
Description: MIQQ strategy switch.
Sets the strategy that CPLEX uses to solve a quadratically constrained mixed integer program (MIQQ). When
you set this parameter to the value 1 (one), you tell CPLEX to solve a QCP node relaxation of the model at
each node. When you set this parameter to the value 2, you tell CPLEX to attempt to solve only an LP node
relaxation of the model at each node.

cpxControl.MIRCUTS -1 Do not generate MIR cuts
0 Automatically determined
1 Generate MIR cuts moderately
2 Generate MIR cuts aggressively

Default: 0
Description: MIP MIR (mixed integer rounding) cut indicator.
Determines whether or not to generate MIR cuts for the problem. Setting the value to 0, the default, indicates
that the attempt to generate MIR cuts should continue only if it seems to be helping.

cpxControl.MPSLONGNUM 0: Write file in standard MPS format
1 Write with full precision (up to 15 digits)

Default: 1

User’s Guide for TOMLAB /CPLEX v12.1 91

TOMLAB parameter Value
Description: Degree of precision displayed in output files (MPS).
When this parameter is set to its default value 1 (one), numbers are written to MPS files in full-precision; that
is, up to 15 significant digits may be written. The setting 0 (zero) writes files that correspond to the standard
MPS format, where at most 12 characters can be used to represent a value. This limit may result in loss of
precision.

cpxControl.NETDISPLAY 0 No display
1 Display true objective values
2 Display penalized objective values

Default: 2
Description: Network logging display indicator.
Settings 1 and 2 differ only during Phase I. Setting 2 shows monotonic values, whereas 1 usually does not.

cpxControl.NETEPOPT Any number from 10−11 to 10−1

Default: 10−6

Description: Optimality tolerance for the network optimizer.
The optimality tolerance specifies the amount a reduced cost may violate the criterion for an optimal solution.

cpxControl.NETEPRHS Any number from 10−11 to 10−1

Default: 10−6

Description: Feasibility tolerance for the network optimizer.
The feasibility tolerance specifies the degree to which a problem’s flow value may violate its bounds. This
tolerance influences the selection of an optimal basis and can be reset to a higher value when a problem is
having difficulty maintaining feasibility during optimization. You may also wish to lower this tolerance after
finding an optimal solution if there is any doubt that the solution is truly optimal. If the feasibility tolerance is
set too low, CPLEX may falsely conclude that a problem is infeasible. If you encounter reports of infeasibility
during Phase II of the optimization, a small adjustment in the feasibility tolerance may improve performance.

cpxControl.NETFIND 1 Extract pure network only
2 Try reflection scaling
3 Try general scaling

Default: 2 values
Description: Simplex network extraction level.
Establishes the level of network extraction for network simplex optimizations. The default value is suitable for
recognizing commonly used modeling approaches when representing a network problem within an LP formula-
tion.

cpxControl.NETITLIM Any non-negative integer

Default: Large (varies by computer)
Description: Network Simplex iteration limit.
Sets the maximum number of iterations to be performed before the algorithm terminates without reaching
optimality.

User’s Guide for TOMLAB /CPLEX v12.1 92

TOMLAB parameter Value

cpxControl.NETPPRIIND 0 Automatic
1 Partial pricing
2 Multiple partial pricing
3 Multiple partial pricing with sorting

Default: 0
Description: Network Simplex pricing algorithm.
The default (0) shows best performance for most problems, and currently is equivalent to 3.

cpxControl.NODEFILEIND 0 No node file
1 Node file in memory and compressed
2 Node file on disk
3 Node file on disk and compressed

Default: 1
Description: Node storage file indicator.
Used when working memory, WORKMEM, has been exceeded by the size of the tree. If the node file parameter
is set to zero when the tree memory limit is reached, optimization is terminated. Otherwise, a group of nodes
is removed from the in-memory set as needed. By default, CPLEX transfers nodes to node files when the
in-memory set is larger than 128 MBytes, and it keeps the resulting node ‘files’ in compressed form in memory.
At settings 2 and 3, the node files are transferred to disk, in compressed and uncompressed form respectively,
into a directory named by the WORKDIR parameter, and CPLEX actively manages which nodes remain in
memory for processing. The use of node files is described in more detail in the CPLEX User’s Manual.

cpxControl.NODELIM Any non-negative integer

Default: Large (varies by computer)
Description: MIP node limit.
Sets the maximum number of nodes solved before the algorithm terminates, without reaching optimality. When
this parameter is set to 0 (zero), CPLEX completes processing at the root; that is, cuts are created and heuristics
are applied at the root, but no nodes are created. When the parameter is set to 1 (one), CPLEX branches at
the root; that is, nodes are created but not solved.

cpxControl.NODESEL 0 Depth-first search
1 Best-bound search
2 Best-estimate search
3 Alternative best-estimate search

Default: 1
Description: MIP node selection strategy.
Used to set the rule for selecting the next node to process when backtracking. The depth-first search strategy
chooses the most recently created node. The best-bound strategy chooses the node with the best objective
function for the associated LP relaxation. The best-estimate strategy selects the node with the best estimate
of the integer objective value that would be obtained from a node once all integer infeasibilities are removed.
An alternative best-estimate search is also available.

User’s Guide for TOMLAB /CPLEX v12.1 93

TOMLAB parameter Value

cpxControl.NUMERICALEMPHASIS 0 Off: Do not emphasize extreme caution in
computation
1 On: Emphasize extreme caution in compu-
tation

Default: Off
Description: Numerical emphasis.

cpxControl.NZREADLIM Any integer from 0 to 268 435 450

Default: 500
Description: Nonzero element read limit.
Sets the number of nonzeros that can be read.

cpxControl.OBJDIF Any number

Default: −1075

Description: Absolute objective difference cutoff.
Used to update the cutoff each time a mixed integer solution is found. This absolute value is subtracted from
(added to) the newly found integer objective value when minimizing (maximizing). This forces the mixed integer
optimization to ignore integer solutions that are not at least this amount better than the one found so far. The
OBJDIFFERENCE parameter can be adjusted to improve problem solving efficiency by limiting the number of
nodes; however, setting this parameter at a value other than zero (the default) can cause some integer solutions,
including the true integer optimum, to be missed. Negative values for this parameter can result in some integer
solutions that are worse than or the same as those previously generated, but does not necessarily result in the
generation of all possible integer solutions.

cpxControl.OBJLLIM Any number

Default: −1075

Description: Lower objective value limit.
Setting a lower objective function limit causes CPLEX to halt the optimization process once the minimum
objective function value limit has been exceeded. This limit applies only during Phase II of the simplex method.

cpxControl.OBJULIM Any number

Default: 1075

Description: Upper objective value limit.
Setting an upper objective function limit causes CPLEX to halt the optimization process once the maximum
objective function value limit has been exceeded. This limit applies only during Phase II of the simplex method.
cpxControl.PARALLELMODE -1 Enable opportunistic parallel search mode

0 Automatic: let CPLEX decide whether to
invoke deterministic or opportunistic search,
depending on the threads parameter
1 Automatic: Enable deterministic parallel
search mode

Default: 0

User’s Guide for TOMLAB /CPLEX v12.1 94

TOMLAB parameter Value
Description: Parallel mode switch.
See Section G.3.
cpxControl.PERIND 0 Off

1 On

Default: 0
Description: Simplex perturbation indicator.
Setting this parameter to 1 causes all problems to be automatically perturbed as optimization begins. A setting
of 0 allows CPLEX to determine dynamically, during solution, whether progress is slow enough to merit a
perturbation. The situations in which a setting of 1 helps are rare and restricted to problems that exhibit
extreme degeneracy.

cpxControl.PERLIM 0 Determined automatically
or, any positive integer

Default: 0
Description: Simplex perturbation limit.
Sets the number of stalled iterations before perturbation is performed.

cpxControl.POLISHTIME Any positive number in seconds

Default: 0
Description: Polishing best solution.
Regulates the amount of time spent on polishing the best solution found. During solution polishing, CPLEX
applies its effort to improve the best feasible solution. Polishing can yield better solutions in some situations.
The default value of the polishing time parameter is 0 (zero); that is, spend no time polishing.

cpxControl.POPULATELIM Any nonnegative integer

Default: 20
Description: Limit on number of solutions generated for the solution pool.
Limits the number of solutions generated for the solution pool during each call to the populate procedure.
Populate stops when it has generated POPULATELIM solutions. A solution is counted if it is valid for all
filters, consistent with the relative and absolute pool gap parameters, and has not been rejected by the incumbent
callback (if any exists), whether or not it improves the objective of the model.

cpxControl.PPRIIND -1 Reduced-cost pricing
0 Hybrid reduced-cost & devex pricing
1 Devex pricing
2 Steepest-edge pricing
3 Steepest-edge pricing with slack initial
norms
4 Full pricing

Default: 0
Description: Primal Simplex pricing algorithm.
The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternative
settings

User’s Guide for TOMLAB /CPLEX v12.1 95

TOMLAB parameter Value

cpxControl.PREDUAL -1 Off
0 Automatic
1 On

Default: 0
Description: Presolve dual setting.
Determines whether CPLEX Presolve should pass the primal or dual linear programming problem to the linear
programming optimization algorithm. By default, CPLEX chooses automatically. If the DUAL indicator is set
to 1, the CPLEX presolve algorithm is applied to the primal problem, but the resulting dual linear program is
passed to the optimizer. This is a useful technique for problems with more constraints than variables.
cpxControl.PREIND 0 Off (do not use presolve)

1 On (use presolve)

Default: 1
Description: Presolve indicator.
When set to 1, invokes the CPLEX Presolve to simplify and reduce problems.

cpxControl.PRELINEAR 0 Only linear reductions
1 Full reductions
Default: 1

Description: Linear reduction indicator.
If only linear reductions are performed, each variable in the original model can be expressed as a linear form of
variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to
the presolved model.

cpxControl.PREPASS -1 Determined automatically
0 Do not use Presolve
or, any positive integer
Default: -1

Description: Limit on the number of Presolve passes made.
When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a
positive value, the Presolve is applied the specified number of times, or until no more reductions are possible.
At the default value of -1, Presolve should continue only if it seems to be helping.

cpxControl.PRESLVND -1 No node presolve
0 Automatic
1 Force node presolve
2 Probes all integer-infeasible variables at
each node to find those that can be fixed

Default: 0
Description: Node presolve selector.
Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution.
Node presolve can significantly reduce solution time for some models. The default setting is generally effective
at determining whether to apply node presolve, although runtimes can be reduced for some models by turning
node presolve off.

User’s Guide for TOMLAB /CPLEX v12.1 96

TOMLAB parameter Value

cpxControl.PRICELIM 0 Determined automatically
or, any positive integer

Default: 0 values
Description: Simplex pricing candidate list size.
Sets the maximum number of variables kept in the pricing candidate list.

cpxControl.PROBE -1 No probing
0 Automatic
1-3 Probing level

Default: 0
Description: MIP probe.
Determines the amount of probing on variables to be performed before MIP branching. Higher settings perform
more probing. Probing can be very powerful but very time consuming at the start. Setting the parameter to
values above the default of 0 (automatic) can result in dramatic reductions or dramatic increases in solution
time, depending on the model.

cpxControl.PROBETIME Any positive number in seconds

Default: 1e75
Description: Amount of time spent on probing.

cpxControl.QPMAKEPSDIND 0 Off
1 On

Default: On
Description: Indefinite MIQP indicator.
Determines whether CPLEX will attempt to adjust a MIQP formulation, in which all the variables appearing
in the quadratic term are binary. When this feature is active, adjustments will be made to the elements of
a quadratic matrix that is not nominally positive semi-definite (”PSD”, as required by CPLEX for all QP
formulations), to make it PSD, and will also attempt to tighten an already PSD matrix for better numerical
behavior. The default setting of 1 means ”yes” but you can turn it off if necessary; most models should benefit
from the default setting.

cpxControl.QPMETHOD 0 Automatic
1 Primal Simplex
2 Dual Simplex
3 Network Simplex
4 Barrier

Default: 0
Description: Method for continuous quadratic optimization.
Determines algorithm. Currently, the behavior of the Automatic setting is that CPLEX invokes the barrier
method for continuous QP models, and the dual simplex method for root relaxations of MIQP models. The
Automatic setting may be expanded in the future so that CPLEX chooses the method based on additional
problem characteristics.

User’s Guide for TOMLAB /CPLEX v12.1 97

TOMLAB parameter Value

cpxControl.QPNZREADLIM Any integer from 0 to 268 435 450

Default: 500
Description: QP Q matrix nonzero read limit.
Sets the number of Q matrix nonzeros that can be read.

cpxControl.REDUCE 0 No primal and dual reductions
1 Only primal reductions
2 Only dual reductions
3 Both primal and dual reductions

Default: 3 values
Description: Primal and dual reduction type.
Determines whether primal reductions, dual reductions, or both, are performed during preprocessing.

cpxControl.REINV 0 Determined automatically
or, any integer from 1 to 10 000
Default: 0

Description: Simplex refactorization frequency.
Sets the number of iterations between refactorizations of the basis matrix.

cpxControl.RELAXPREIND -1 Determined automatically
0 Off (do not use presolve on initial relax-
ation)
1 On (use presolve on initial relaxation)

Default: -1
Description: Relaxed LP presolve indicator.
Determines whether LP presolve is applied to the root relaxation in a mixed integer program. Sometimes
additional reductions can be made beyond any MIP presolve reductions that were already done.

cpxControl.RELOBJDIF Any integer from 0.0 to 1.0
Description: Relative objective difference cutoff.
Used to update the cutoff each time a mixed integer solution is found. The value is multiplied by the absolute
value of the integer objective and subtracted from (added to) the newly found integer objective when minimizing
(maximizing). This forces the mixed integer optimization to ignore integer solutions that are not at least this
amount better than the one found so far. The relative objective difference parameter can be adjusted to improve
problem solving efficiency by limiting the number of nodes; however, setting this parameter at a value other
than zero (the default) can cause some integer solutions, including the true integer optimum, to be missed. If
both RELOBJDIFFERENCE and OBJDIFFERENCE are nonzero, the value of OBJDIFFERENCE is used.

cpxControl.REPAIRTRIES Any positive integer

Default: 1
Description: Repair tries.
If a user provides a MIP start (full or partial) that cannot be extended into a feasible solution, CPLEX will try
to repair it.

User’s Guide for TOMLAB /CPLEX v12.1 98

TOMLAB parameter Value

cpxControl.REPEATPRESOLVE -1 Automatic: Let CPLEX choose whether
to re-apply presolve
0 Turn off repeat presolve
1 Repeat presolve without cuts
2 Repeat presolve with cuts
3 Repeat presolve with cuts and allow new
root cuts

Default: -1
Description: MIP presolve setting.
How to re-apply the MIP presolve techniques of the preprocessor to a MIP model at the root after preprocessing
has otherwise finished (that is, after cut generation at the root).

cpxControl.RINSHEUR -1 None
0 Automatic (default)
or, any positive integer
Default: 0

Description: Relaxation induced neighborhood search heuristic determines how often to apply the relaxation
induced neighborhood search heuristic (RINS heuristic). Setting the value to -1 turns off the RINS heuristic.
Setting the value to 0, the default, applies the RINS heuristic at an interval chosen automatically by CPLEX.
Setting the value to a positive number applies the RINS heuristic at the requested node interval. For example,
setting RINSHEUR to 20 dictates that the RINS heuristic be called at node 0, 20, 40, 60, etc.

cpxControl.ROWREADLIM Any integer from 0 to 268 435 450

Default: Varies by computer
Description:

cpxControl.SCAIND -1 No scaling
0 Equilibrium scaling method
1 More aggressive scaling

Default: 0
Description: Scale parameter.
Sets the method to be used for scaling the problem matrix.

cpxControl.SCRIND 0 Off
1 On

Default: On
Description: Messages to screen indicator.
Indicates whether or not results messages are displayed on screen.

User’s Guide for TOMLAB /CPLEX v12.1 99

TOMLAB parameter Value

cpxControl.SIFTALG 0 Automatic
1 Primal Simplex
2 Dual Simplex
3 Network Simplex
4 Barrier

Default: 0
Description: Sifting subproblem algorithm.
Sets the algorithm to be used for solving sifting subproblems.

cpxControl.SIFTDISPLAY 0 No display
1 Display major iterations
2 Display LP subproblem information within
each sifting iteration

Default: 1
Description: Sifting display information.
Determines the amount of sifting progress information to be displayed.

cpxControl.SIFTITLIM Any nonnegative integer

Default: BIGINT
Description: Upper limit on sifting iterations.
Sets the maximum number of sifting iterations that may be performed if convergence to optimality has not been
reached.

cpxControl.SIMDISPLAY 0 No iteration messages until solution
1 Iteration info after each refactorization
2 Iteration info for each iteration

Default: 1
Description: Simplex iteration display information.
Determines how often CPLEX reports during simplex optimization.

cpxControl.SINGLIM Any positive integer
Default: 10

Description: Simplex singularity repair limit.
Restricts the number of times CPLEX attempts to repair the basis when singularities are encountered. Once
this limit is exceeded, CPLEX replaces the current basis with the best factorizable basis that has been found.

cpxControl.SOLNPOOLAGAP Any nonnegative real number.

Default: 1.0e+75
Description: Absolute gap for solution pool.
Sets an absolute tolerance on the objective bound for the solutions in the solution pool. Solutions that are
worse (either greater in the case of a minimization, or less in the case of a maximization) than the objective of
the incumbent solution according to this measure are not kept in the solution pool.

User’s Guide for TOMLAB /CPLEX v12.1 100

TOMLAB parameter Value

cpxControl.SOLNPOOLCAPACITY Any nonnegative integer; 0 (zero) turns off all
features of the solution pool.

Default: 0
Description: Limit on the number of solutions kept in the solution pool.
Limits the number of solutions kept in the solution pool. At most, SOLNPOOLCAPACITY solutions will be
stored in the pool. Superfluous solutions are managed according to the replacement strategy set by the solution
pool replacement parameter (SOLNPOOLREPLACE). If the solution pool replacement parameter is set to
its default value then the value that the user sets for the solution pool capacity parameter will be increased
automatically in cases where the pool is extended.

cpxControl.SOLNPOOLGAP Any nonnegative real number.

Default: 1.0e+75
Description: Relative gap for the solution pool.
Sets a relative tolerance on the objective bound for the solutions in the solution pool. Solutions that are worse
(either greater in the case of a minimization, or less in the case of a maximization) than the incumbent solution
by this measure are not kept in the solution pool.

cpxControl.SOLNPOOLINTENSITY 0 Automatic: let CPLEX choose
1 Mild: generate few solutions quickly
2 Moderate: generate a larger number of
solutions
3 Aggressive: generate many solutions and
expect performance penalty
4 Very aggressive: enumerate all practical
solutions

Default: 0
Description: Controls the trade-off between the number of solutions generated for the solution pool and the
amount of time or memory consumed. This parameter applies both to MIP optimization and to the populate
procedure.
Values from 1 (one) to 4 invoke increasing effort to find larger numbers of solutions. Higher values are more
expensive in terms of time and memory but are likely to yield more solutions.

cpxControl.SOLNPOOLREPLACE 0 Extend the pool if necessary to accommo-
date more solutions
1 Replace the first solution by the most recent
solution; first in, first out
2 Replace the solution which has the worst
objective
3 Replace solutions in order to build a set of
diverse solutions

Default: 0
Description: Solution pool replacement strategy.
Designates the strategy for replacing a solution in the solution pool when the solution pool has reached its
capacity.

User’s Guide for TOMLAB /CPLEX v12.1 101

TOMLAB parameter Value

cpxControl.STARTALG 0 Automatic
1 Primal Simplex
2 Dual Simplex
3 Network Simplex
4 Barrier
5 Sifting
6 Concurrent Dual, Barrier and Primal

Default: 0
Description: MIP starting LP algorithm.
Determines which LP algorithm should be used to solve the initial relaxation of the MIP.

cpxControl.STRONGCANDLIM Any positive number

Default: 10
Description: MIP candidate list
Controls the length of the candidate list when using the ”strong branching” variable selection setting (VARSEL
3).

cpxControl.STRONGITLIM Any positive number

Default: 0
Description: MIP simplex iterations
Controls the number of simplex iterations performed on each variable in the candidate list when using the
”strong branching” variable selection setting (VARSEL 3). The default setting 0 chooses the iteration limit
automatically.

cpxControl.SUBALG 1 Primal Simplex
2 Dual Simplex
3 Network Simplex
4 Barrier
5 Sifting

Default: 2
Description: MIP subproblem LP algorithm.
Sets the algorithm to be used on MIP subproblems.

cpxControl.SUBMIPNODELIM Any positive integer.

Default: 500
Description: MIP subnode limit. Restricts the number of nodes searched, during application of the relaxation
induced neighborhood search (RINS) heuristic.

User’s Guide for TOMLAB /CPLEX v12.1 102

TOMLAB parameter Value

cpxControl.SYMMETRY -1 Determines automatically
0 Off
1 Moderate
2 Aggressive
3 Very aggressive
4 Highly aggressive
5 Extremely aggressive ++

Default: -1
Description: Symmetry breaking cuts.
Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model.

cpxControl.THREADS Minimum: 1
Maximum: determined by computer

Default: 0 (Determined by CPLEX)
Description: Global default thread count.
Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel
optimizer. This provides a convenient way to control parallelism with a single parameter setting.

cpxControl.TILIM Any non-negative number

Default: 1075

Description: Global time limit.
Sets the maximum time, in seconds, for computations before termination, as measured according to the setting
of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed
integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover
operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit
includes preprocessing time. For ‘hybrid’ optimizations (such as network optimization followed by dual or
primal simplex, barrier optimization followed by crossover), the cumulative time applies.

cpxControl.TRELIM Any non-negative number

Default: 1075

Description: Tree memory limit.
Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded,
CPLEX terminates optimization.
cpxControl.TUNINGDISPLAY 0 Turn off display

1 Display standard, minimal reporting
2 Display standard report plus parameter
settings being tried
3 Display exhaustive report and log

Default: 1
Description: Tuning information display.
Specifies the level of information reported by the tuning tool as it works.

User’s Guide for TOMLAB /CPLEX v12.1 103

TOMLAB parameter Value
cpxControl.TUNINGMEASURE 1 Mean average of time to compare different

parameter sets
2 Minmax approach to compare the time of
different parameter sets

Default: 1
Description: Tuning measure.
Controls the measure for evaluating progress when a model is being tuned.

cpxControl.TUNINGREPEAT Any non-negative number

Default: 1
Description: Tuning repeater.
Specifies the number of times tuning is to be repeated on perturbed versions of a given problem. The problem
is perturbed automatically by CPLEX permuting its rows and columns. This repetition is helpful when only
one problem is being tuned, as repeated perturbation and re-tuning may lead to more robust tuning results.

cpxControl.TUNINGTILIM Any non-negative number

Default: 10000
Description: Tuning time limit.
Sets a time limit per model.

cpxControl.VARSEL -1 Branch on variable with minimum infeasi-
bility
0 Branch variable automatically selected
1 Branch on variable with maximum infeasi-
bility
2 Branch based on pseudo costs
3 Strong branching
4 Branch based on pseudo reduced costs

Default: 0
Description: MIP variable selection strategy.
Used to set the rule for selecting the branching variable at the node which has been selected for branching.
The maximum infeasibility rule chooses the variable with the largest fractional value; the minimum infeasibility
rule chooses the variable with the smallest fractional value. The minimum infeasibility rule (-1) may lead more
quickly to a first integer feasible solution, but is usually slower overall to reach the optimal integer solution.
The maximum infeasibility rule (1) forces larger changes earlier in the tree, which tend to produce faster overall
times to reach the optimal integer solution. Pseudo cost (2) variable selection is derived from pseudo-shadow
prices. Strong branching (3) causes variable selection based on partially solving a number of subproblems with
tentative branches to see which branch is the most promising. This strategy can be effective on large, difficult
MIP problems. Pseudo reduced costs (4) are a computationally less-intensive form of pseudo costs. The default
value (0) allows CPLEX to select the best rule based on the problem and its progress.

cpxControl.WORKDIR Default: “.”
Description: Directory for working files.
Specifies the name of an existing directory into which CPLEX may store temporary working files, such as for
MIP node files or for out-of-core Barrier.

User’s Guide for TOMLAB /CPLEX v12.1 104

TOMLAB parameter Value

cpxControl.WORKMEM Any positive number, in megabytes

Default: 128.0
Description: Memory available for working storage.
Specifies an upper limit on the amount of central memory, in megabytes, that CPLEX is permitted to use for
working files (see WORKDIR).

cpxControl.ZEROHALFCUTS -1 Do not generate zero-half cuts
0 Automatic: let CPLEX choose
1 Generate zero-half cuts moderately
2 Generate zero-half cuts aggressively

Default: 0
Description: MIP zero-half cuts switch.
Decides whether or not to generate zero-half cuts for the problem. The value 0 (zero), the default, specifies
that the attempt to generate zero-half cuts should continue only if it seems to be helping. If you find that too
much time is spent generating zero-half cuts for your model, consider setting this parameter to -1 (minus one)
to turn off zero-half cuts. If the dual bound of your model does not make sufficient progress, consider setting
this parameter to 2 to generate zero-half cuts more aggressively.

G.3 Parallel mode

Sets the parallel optimization mode (PARALLELMODE in Table 17). Possible modes are automatic, determinis-
tic, and opportunistic.
In this context, deterministic means that multiple runs with the same model at the same parameter settings on
the same platform will reproduce the same solution path and results. In contrast, opportunistic implies that even
slight differences in timing among threads or in the order in which tasks are executed in different threads may pro-
duce a different solution path and consequently different timings or different solution vectors during optimization
executed in parallel threads. In multithreaded applications, the opportunistic setting entails less synchronization
between threads and consequently may provide better performance.
By default, CPLEX applies as much parallelism as possible while still achieving deterministic results. That is,
when you run the same model twice on the same platform with the same parameter settings, you will see the same
solution and optimization run. This condition is referred to as the deterministic mode.
More opportunities to exploit parallelism are available if you do not require determinism. In other words, CPLEX
can find more opportunities for parallelism if you do not require and invariant, repeatable solution path and pre-
cisely the same solution vector. To use all available parallelism, you need to select the opportunistic parallel mode.
In this mode, CPLEX will utilize all opportunities for parallelism in order to achieve best performance.
However, in opportunistic mode, the actual optimization may differ from run to run, including the solution time
itself.

Deterministic and Sequential Optimization
A truly parallel deterministic algorithm is available only for MIP optimization.
Only opportunistic parallel algorithms (barrier and concurrent optimizers) are available for continuous models.
(Each of the simplex algorithms runs sequentially on a continuous model.)
Consequently, when parallel mode is set to deterministic, both barrier and concurrent optimizers are restricted to
run only sequentially, not in parallel.

User’s Guide for TOMLAB /CPLEX v12.1 105

Callbacks and MIP Optimization
If callbacks other than informational callbacks are used for solving a MIP, the order in which the callbacks are
called cannot be guaranteed to remain deterministic, not even in deterministic mode. Thus, to make sure of
deterministic runs when the parallel mode parameter is at its default setting, CPLEX will revert to sequential
solving of the MIP in the presence of query callbacks, diagnostic callbacks, or control callbacks.
Consequently, if your application invokes query, diagnostic, or control callbacks, and you still prefer deterministic
search, you can choose value 1 (one), overriding the automatic setting and turning on deterministic search. It is
then your responsibility to make sure that your callbacks do not perform operations that could lead to opportunis-
tic behavior and are implemented in a thread-safe way. To meet these conditions, your application must not store
and must not update any information in the callbacks.

Determinism vs Opportunism in Development and Deployment
This parameter also allows you to turn off this default setting by choosing value -1 (minus one). Cases where
you might wish to turn off deterministic search include situations where you want to take advantage of possibly
faster performance of opportunistic parallel MIP optimization in multiple threads after you have confirmed that
deterministic parallel MIP optimization produced the results you expected. For example, you may want to develop
your application in deterministic mode, taking advantage of the invariance and repeatability of the solution path
and results until you verify that your model and application behave as expected; then you might want to turn
off default deterministic mode and run your application in opportunistic mode to see whether your particular
model and application benefit from possible performance improvements; if so, you might choose to deploy your
application in opportunistic mode.

Interaction with Threads Parameter
Settings of this parallel mode parameter interact with settings of the thread parameter (THREADS).
The default (automatic) setting of the parallel mode parameter allows CPLEX to choose between deterministic
and opportunistic mode depending on the threads parameter. If the threads parameter is set to its automatic
setting (the default), CPLEX chooses deterministic mode.
Otherwise, if the threads parameter is set to a value greater than one, CPLEX chooses opportunistic mode.

User’s Guide for TOMLAB /CPLEX v12.1 106

References

[1] Laurence A. Wolsey. Integer Programming. John Wiley and Sons, New York, 1998.

	Contents
	1 Introduction
	1.1 Overview
	1.2 Contents of this Manual
	1.3 Prerequisites

	2 Installing TOMLAB /CPLEX
	2.1 Windows Systems
	2.2 Unix/Linux Systems
	2.3 Troubleshooting

	3 Using the Matlab Interface
	4 Callbacks in Matlab
	5 Test Routines in Non-Tomlab Format
	6 Test Routines in TOMLAB Format
	A The Matlab Interface Routines - Main Routines
	A.1 cplex
	A.2 cplexTL
	A.3 cplexStatus
	A.4 cpxRetVec

	B The Matlab Interface Routines - Utility Routines
	B.1 cpx2mat
	B.2 abc2gap

	C The Matlab Interface Routines - Test Routines
	C.1 cpxaircrew
	C.2 cpxbiptest
	C.3 cpxiptest
	C.4 cpxtomtest1
	C.5 cpxtomtest2
	C.6 cpxKnaps
	C.7 cpxKnapsTL
	C.8 cpxSolutionPool
	C.9 cpxSolverTuning
	C.10 cpxTest1
	C.11 cpxTest2
	C.12 cpxTest3
	C.13 cpxTestQP1
	C.14 cpxTestQP2
	C.15 cpxTestConflict

	D The Matlab Interface Routines - Callback Routines
	D.1 cpxcb_BARRIER
	D.2 cpxcb_DISJCUT
	D.3 cpxcb_DUAL
	D.4 cpxcb_DUALCROSS
	D.5 cpxcb_FLOWMIR
	D.6 cpxcb_FRACCUT
	D.7 cpxcb_MIP
	D.8 cpxcb_MIPPROBE
	D.9 cpxcb_PRESOLVE
	D.10 cpxcb_PRIM
	D.11 cpxcb_PRIMCROSS
	D.12 cpxcb_QPBARRIER
	D.13 cpxcb_QPSIMPLEX
	D.14 cpxcb_INCUMBENT
	D.15 cpxcb_USERCUT
	D.16 cpxcb_NET

	E TOMLAB /CPLEX Network Solver
	E.1 cplexnet

	F Conflict refiner, IIS, SA and Warm Start
	F.1 Conflict refiner
	F.1.1 cpxBuildConflict

	F.2 IIS
	F.3 SA
	F.4 Warm Start
	F.5 Solution Pool

	G CPLEX Parameters Interface
	G.1 Setting CPLEX Parameters in Matlab
	G.2 The CPLEX Parameter Table
	G.3 Parallel mode

	References

