USER'S GUIDE FOR TOMLAB /CPLEX v12.1 1

Kenneth Holmström², Anders O. Göran³ and Marcus M. Edvall⁴

August 14, 2009

¹More information available at the TOMLAB home page: http://tomopt.com E-mail: tomlab@tomopt.com.

²Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Västerås, Sweden, kenneth.holmstrom@mdh.se.

³Tomlab Optimization AB, Västerås Technology Park, Trefasgatan 4, SE-721 30 Västerås, Sweden, anders@tomopt.com.

⁴Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA, USA, medvall@tomopt.com.

Contents

C	Contents 2				
1	Introduction	5			
	1.1 Overview	5			
	1.2 Contents of this Manual	5			
	1.3 Prerequisites	5			
2	Installing TOMLAB /CPLEX	6			
	2.1 Windows Systems	6			
	2.2 Unix/Linux Systems	6			
	2.3 Troubleshooting	7			
3	Using the Matlab Interface	8			
4	Callbacks in Matlab	9			
5	Test Routines in Non-Tomlab Format	10			
6	Test Routines in TOMLAB Format	11			
A	The Matlab Interface Routines - Main Routines	12			
	A.1 <u>cplex</u>	12			
	A.2 $\underline{\text{cplexTL}}$	22			
	A.3 <u>cplexStatus</u>	32			
	A.4 <u>cpxRetVec</u>	35			
в	The Matlab Interface Routines - Utility Routines	39			
	B.1 <u>cpx2mat</u>	39			
	B.2 <u>abc2gap</u>	40			
С	The Matlab Interface Routines - Test Routines	41			
	C.1 <u>cpxaircrew</u>	41			
	C.2 <u>cpxbiptest</u>	42			
	C.3 <u>cpxiptest</u>	43			
	C.4 <u>cpxtomtest1</u>	44			
	C.5 $\underline{\text{cpxtomtest2}}$	44			
	C.6 cpxKnaps	45			

	C.7 <u>cpxKnapsTL</u>	46
	C.8 cpxSolutionPool	47
	C.9 cpxSolverTuning	48
	C.10 $cpxTest1$	49
	C.11 <u>cpxTest2</u>	50
	C.12 <u>cpxTest3</u>	51
	C.13 $cpxTestQP1$	52
	C.14 $\underline{cpxTestQP2}$	53
	C.15 $\underline{cpxTestConflict}$	54
D	The Matlab Interface Routines - Callback Routines	55
	D.1 cpxcb_BARRIER	55
	D.2 cpxcb_DISJCUT	55
	D.3 cpxcb_DUAL	56
	D.4 cpxcb_DUALCROSS	57
	D.5 cpxcb_FLOWMIR	58
	D.6 cpxcb_FRACCUT	58
	D.7 cpxcb_MIP	59
	D.8 cpxcb_MIPPROBE	60
	D.9 cpxcb_PRESOLVE	61
	D.10 cpxcb_PRIM	62
	D.11 cpxcb_PRIMCROSS	62
	D.12 cpxcb_QPBARRIER	63
	D.13 cpxcb_QPSIMPLEX	64
	D.14 cpxcb_INCUMBENT	64
	D.15 cpxcb_USERCUT	65
	D.16 cpxcb_NET	65
\mathbf{E}	TOMLAB /CPLEX Network Solver	66
	E.1 <u>cplexnet</u>	67
F	Conflict refiner, IIS, SA and Warm Start	71
	F.1 Conflict refiner	71
	F.1.1 cpxBuildConflict	71
	F.2 IIS	72
	F.3 SA	73
	F.4 Warm Start	73

	User's Guide for TOMLAB /CPLEX v12.1	4
	F.5 Solution Pool	74
G	CPLEX Parameters Interface	75
	G.1 Setting CPLEX Parameters in Matlab	75
	G.2 The CPLEX Parameter Table	76
	G.3 Parallel mode	104
R	eferences	106

1 Introduction

1.1 Overview

Welcome to the TOMLAB /CPLEX User's Guide. TOMLAB /CPLEX includes the ILOG CPLEX 12.1 (hereafter commonly referred to as CPLEX) solver and Matlab interfaces. The software allows for execution on any number of shared memory cores or cpus on a computer.

The interface between ILOG CPLEX, Matlab and TOMLAB consists of two layers. The first layer gives direct access from Matlab to CPLEX, via calling one Matlab function that calls a pre-compiled MEX file (DLL under Windows, shared library in UNIX) that defines and solves the problem in CPLEX. The second layer is a Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the function creates the output in the TOMLAB format.

CPLEX has a whole set of callback routines. There is one predefined Matlab routine for each callback. The user is in control of which ones to use, and should add his own code in Matlab for each callback.

Conflict refining, SA, warm start and solution pool control are supported by in the package.

1.2 Contents of this Manual

- Read carefully Section 2 on how to install TOMLAB /CPLEX.
- Section 3 gives the basic information needed to run the Matlab interface.
- The more advanced feature, using callbacks, is described in Section 4.
- Some Matlab test routines are included, described in Section 5 (non-TOMLAB format) and Section 6 (TOMLAB format). All Matlab routines are described in Appendix A.
- Section E describes a special interface for network problems.
- Section F defines the features included in IIS (infeasibility analysis) and SA (sensitivity analysis) as well as the warm start functionality.

1.3 Prerequisites

In this manual we assume that the user is familiar with CPLEX, the CPLEX Reference Manual, TOMLAB and the Matlab language.

2 Installing TOMLAB /CPLEX

2.1 Windows Systems

TOMLAB /CPLEX is installed by the general TOMLAB exe installer and can be installed with or without the TOMLAB Base Module. In either case, the folders *tomlab\cplex* and possibly also a *tomlab\shared* are created.

The $tom lab \ shared$ folder contains the $cplex^*.dll$ and must be installed on machine without an existing ILOG CPLEX installation. The installer automatically adds the location of this folder to the Windows PATH variable.

If installing TOMLAB /CPLEX together with other TOMLAB packages, the *tomlab\startup.m* file will automatically detect TOMLAB /CPLEX and set the MATLAB path accordingly.

You may also set the TOMLAB and TOMLAB /CPLEX paths permanently in the Matlab system. To find out which paths are used, run the startup commands as described above, then use the **path** command to see what paths TOMLAB created and set these permanently on your system. See the Matlab documentation on how to set Matlab paths.

2.2 Unix/Linux Systems

TOMLAB /CPLEX is installed together with the rest of TOMLAB when extracting the *tomlab-<arch>-setup.tar.gz* file. If ILOG CPLEX is not already installed on the computer, the user must set/modify the LD_LIBRARY_PATH environment variable in order for the runtime linking to work as intended. Assuming that TOMLAB is extracted to \$HOME/tomlab/shared, do:

```
#
# csh/tcsh shells:
#
setenv LD_LIBRARY_PATH $HOME/tomlab/shared:$LD_LIBRARY_PATH
#
# bash and compatible shells:
#
export LD_LIBRARY_PATH=$HOME/tomlab/shared:$LD_LIBRARY_PATH
```

To use TOMLAB /CPLEX together with the TOMLAB Base Module, execute the *tomlab/startup* script, which automatically recognizes the presence of the cplex subdirectory.

To use TOMLAB /CPLEX by itself, execute only the tomlab/cplex/startup script.

2.3 Troubleshooting

Error messages like the following:

>> cplexmex Unable to load mex file: d:\program files\tomlab\cplex\cplexmex.dll. The specified module could not be found.

??? Invalid MEX-file

or, on Unix systems:

```
>> cplexmex
Unable to load mex file: /home/user/tomlab/cplex/cplexmex.mexglx.
libcplex91.so: cannot open shared object file: No such file or
directory ??? Invalid MEX-file
```

indicate a problem with the PATH variable on Windows systems, or equivalently the \$LD_LIBRARY_PATH variable in Unix/Linux.

You can check from within Matlab that the path has been set correctly, by executing

>> getenv('PATH') % Windows
>> getenv('LD_LIBRARY_PATH') % Unix/Linux

The location of the *tomlab/shared* directory must be included in the result, OR, the location of the cplex*.dll (libcplex*.so) file on systems where ILOG CPLEX is already installed.

3 Using the Matlab Interface

The two main routines in the two-layer design of the interface are shown in Table 1. Page and section references are given to detailed descriptions on how to use the routines. Users not using the TOMLAB *Prob* format can skip reading about the routine cplexTL. A normal user, not using callbacks, only has to read about how to call the level 1 interface routine cplex.m.

Table 1: The interface routines.

Function	Description	Section	Page
cplex	The layer one Matlab interface routine, calls the MEX-file interface	A.1	12
	cplexmex.dll		
cplexTL	The layer two TOMLAB interface routine that calls <i>cplex.m.</i> Con-	A.2	22
	verts the input $Prob$ format before calling $cplex.m$ and converts back		
	to the output <i>Result</i> structure.		

The CPLEX control parameters (Section G, 75 in this manual), are all possible to set from Matlab.

They could be set as input to the interface routine cplex, but also in the callback routines. The user sets fields in a structure called cpxControl, where the subfield names are the same as the names of the control variables. The following example shows how to set the values for one integer variable ITLIM, one double variable EPOPT, and one character variable valued variable WORKDIR. TOMLAB /CPLEX does not use the prefix CPX_PARAM_ in the Matlab structures.

cpxControl.ITLIM	= 50;	% Setting maximal number of simplex iterations
cpxControl.EPOPT	= 1E-5;	% Changing reduced cost tolerance
cpxControl.WORKDIR	= '.';	% New work directory ('.' for current directory)

Character valued variables should have ≤ 64 characters.

4 Callbacks in Matlab

Fifteen of the CPLEX callbacks are defined as Matlab m-files. A logical vector defines the callbacks to be used in CPLEX. This vector is named *callback* and is one of the input variables to the level 1 interface routine *cplex.m* (Section A.1). If the i^{th} entry of the logical vector callback is set, the corresponding callback is defined.

The callback calls the m-file specified in Table 2. The user can edit this m-file directly, or make a new copy. It is important that a new copy is placed in a directory that is searched before the *cplex* directory when Matlab goes through the Matlab path.

Index	m-file	Called at: Section	Page
1	$cpxcb_BARRIER.m$	D.1	55
2	$cpxcb_DISJCUT.m$	D.2	55
3	$cpxcb_DUAL.m$	D.3	56
4	$cpxcb_DUALCROSS.m$	D.4	57
5	$cpxcb_FLOWMIR.m$	D.5	58
6	$cpxcb_FRACCUT.m$	D.6	58
7	$cpxcb_MIP.m$	D.7	59
8	$cpxcb_MIPPROBE.m$	D.8	60
9	$cpxcb_PRESOLVE.m$	D.9	61
10	$cpxcb_PRIM.m$	D.10	62
11	$cpxcb_PRIMCROSS.m$	D.11	62
12	$cpxcb_QPBARRIER.m$	D.12	63
13	$cpxcb_QPSIMPLEX.m$	D.13	64
14	$cpxcb_INCUMBENT.m$	D.14	64
1	$cpxcb_NET.m$	D.16	65

Table 2: Matlab Callback routines

5 Test Routines in Non-Tomlab Format

A set of test routines have been defined illustrating the use of the cplex main routine. The test routines and utilities are shown in Table 3.

It is easy to call the test routines, e.g.

```
x = cpxtest1;
x = cpxtest2;
x = cpxtest3;
```

will call the three routines solving GAP problems. The *cpxaircrew* test problem has no input parameters, just call:

cpxaircrew;

The knapsack test routine runs three test examples. It is possible to change the cut strategy (second input parameter). To run the second test example, using aggressive cuts, the call is

cpxKnaps(2,2);

The first parameter selects the test problem. Calling without any parameters

cpxKnaps

is the same as the call

cpxKnaps(1,0);

Table 3:	Test routines	and utilities	in non-Tomlab	format.
		000000000000000000000000000000000000000		

Function	Description	Section	Page
abc2gap	Utility to convert a Generalized Assignment Problem (GAP) to stan-	B.2	40
	dard form for CPLEX.		
cpx biptest	Test of three large binary integer linear problems.	C.2	42
cpxiptest	Test of three large integer linear problems.	C.3	43
cpxKnaps	Test of knapsack problems.	C.6	45
xptest 1	Test of a Generalized Assignment Problem (GAP).	C.10	49
cpxTest2	Test of the same GAP problem as <i>cpxTest1</i> , but using sos1 variables.	C.11	50
cpxTest3	Test of a Generalized Assignment Problem (GAP).	C.12	51

6 Test Routines in TOMLAB Format

A set of test routines have been defined illustrating the combined use of TOMLAB and CPLEX. The test routines are shown in Table 4. The knapsack test routine cpxKnapsTL is similar to cpxKnaps discussed in the previous subsection. It runs three knapsack test examples. It is possible to change the cut strategy. The problems are setup using the TOMLAB Format.

Function	Description	Section	Page
cpxtomtest1	Tests of problems predefined in the TOMLAB IF format. LP, QP and	C.4	44
	MIP problems are solved calling the driver routine tomRun.		
cpxtomtest 2	Tests of a simple MIP problem defined in the TOMLAB (TQ) format.	C.5	44
	The problem is solved as an LP and MIP problem, with or without		
	slacks defined. tomRun.		
cpxKnapsTL	The same tests as in <i>cpxKnaps</i> , but the TOMLAB problem definition	C.7	46
	format and is used.		

Table 4: Test routines and utilities in TOMLAB format.

A The Matlab Interface Routines - Main Routines

A.1 cplex

Purpose

CPLEX solves mixed-integer linear and quadratic programming (MILP, MIQP) and linear and quadratic programming (LP, QP) interface. For users with a full license for the optimizer, the solver also handles problems with quadratic constraints (MIQQ). CPLEX solves problems of the form

$$\min_{x} f(x) = \frac{1}{2}x^{T}Fx + c^{T}x$$

$$s/t \quad x_{L} \leq x \leq x_{U}$$

$$b_{L} \leq Ax \leq b_{U}$$

$$x^{T}Q^{(i)}x + a^{(i)T}x \leq r_{U}^{(i)}, \quad i = 1, \dots, n_{qc}$$

$$x_{i} \text{ integer} \qquad i \in I$$

where $c, x, x_L, x_U, a^{(i)} \in \mathbb{R}^n$, $F, Q^{(i)} \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{m \times n}$ and $b_L, b_U \in \mathbb{R}^m$. $r_U^{(i)}$ is a scalar. The variables $x \in I$, the index subset of 1, ..., n, are restricted to be integers.

If F is empty and no quadratic constraints are given, an LP or MILP problem is solved.

An additional set of logical constraints can also be defined. See the help for input parameter logcon.

Calling Syntax

[x, slack, v, rc, f_k, ninf, sinf, Inform, basis, lpiter, glnodes, confstat, iconfstat, sa] = cplex(c, A, x_L, x_U, b_L, b_U, cpxControl, callback, PriLev, Prob, IntVars, PI, SC, SI, sos1, sos2, F, logfile, savefile, savemode, qc, confgrps, conflictFile, saRequest, basis, xIP, logcon);

Description of Inputs

The following inputs are used:

С	Linear objective function cost coefficients, vector $n \times 1$.
A	Linear constraint matrix for linear constraints, dense or sparse matrix $m \times n$.
$\begin{array}{c} x_{-}L \\ x_{-}U \end{array}$	Lower bounds on design parameters x . If empty assumed to be zero. Upper bounds on design parameters x .
$b_{-}L$	Lower bounds on the linear constraints.

The following parameters are optional:

- b_-U Upper bounds on the linear constraints. If empty, then $b_-U=b_-L$ is assumed, i.e. equality constraints.
- *cpxControl* Structure, where the fields are set to the CPLEX control parameters that the user wants to specify values for.

0-1 vector defining which callbacks to use in CPLEX. If the i^{th} entry of the logical vector callbackcallback is set, the corresponding callback is defined. The callback calls the m-file specified in Table 7 below. The user may edit this file, or make a new copy, which is put in a directory that is searched before the *cplex* directory in the Matlab path. PriLev Printing level in the *cplex m*-file and the CPLEX C-interface. = 0 Silent = 1 Summary information = 2 More detailed information Prob A structure. If *cplex.m* is called through *cplexTL.m*, for example when the user has used the TOMLAB driver routine tomRun, then Prob is the standard TOMLAB problem structure. Otherwise the user optionally may set: Prob.P = ProblemNumber;, where ProblemNumber is some integer. If any callback is defined then problem arrays are set as fields in *Prob*, and the *Prob* structure is always passed to the callback routines as the last parameter. The defined fields are Prob.c, Prob.x_L, Prob.x_U, Prob.A, Prob.b_L, Prob.b_U and Prob.QP.F. If the input structure is empty ([]), then Prob.P = 1 is set. IntVars Defines which variables are integers, of the general type I or binary B. Variable indices should be in the range [1,...,n]. If *IntVars* is a logical vector then all variables x_i where IntVars(i) > 0 are defined to be integers. If IntVars is determined to be a vector of indices then x(IntVars) are defined as integers. If the input is empty ([]), then no integers of type I or B are defined. The interface routine *cplex* checks which of the integer variables have lower bound $x_L = 0$ and upper bound $x_U = 1$, i.e. are binary 0/1 variables. PIInteger variables of type *Partially Integer* (PI), i.e. takes an integer value up to a specified limit, and any real value above that limit. PI must be a structure array where: *PI.var* is a vector of variable indices in the range [1, ..., n]. *PI.lim* is a vector of limit values for each of the variables specified in PI.var, i.e. for variable i, that is the PI variable with index j in PI.var, then x(i) takes integer values in $[x_L(i), PI.lim(j)]$ and values in $[PI.lim(j), x_U(i)]$. SCA vector with indices for the integer variables of type *Semi-continuous* (SC), i.e. that takes either the value 0 or a real value in the range $[x_L(i), x_U(i)]$, assuming for some j, that i = SC(j), where i is an variable number in the range [1, ..., n]. SIA vector with indices for the integer variables of type Semi-integer (SI), i.e. that takes either the value 0 or an integer value in the range $[x_L(i), x_U(i)]$, assuming for some j, that i = SIe(j), where i is an variable number in the range [1, ..., n].

sos1	A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k sets of type sos1, then $sos1(k).var$ is a vector of indices for variables of type sos1 in set k. $sos1(k).row$ is the row number for the reference row identifying the ordering information for the sos1 set, i.e. $A(sos1(k).row,sos1(k).var)$ identifies this information. As ordering information, also the objective function coefficients c could be used. Then as row number, 0 is instead given in $sos1(k).row$.		
sos2	A structure defining the Special Ordered Sets of Type Two ($sos2$). Specified in the same way as $sos1$ sets; see $sos1$ input variable description.		
F	Quadratic coefficient matrix. Dense or sparse Matlab matrix, size $n \times n$. The matrix is always converted to Matlab sparse format before ILOG CPLEX is invoked on the problem.		
logfile	Name of file to write the CPLEX log information to. If empty, no log is written.		
savefile	Name of a file to save the CPLEX problem object. This is useful for sending problems to ILOG for analysis. The format of the file is controlled by the following parameters, <i>savemode</i> . If empty, no file is written.		
save mode	The format of the file given in <i>savefile</i> is possible to choose by setting <i>savemode</i> to one of the following values:		
qc	 SAV Binary SAV format MPS MPS format (ASCII) LP CPLEX LP format (ASCII) RMP MPS file with generic names REW MPS file with generic names RLP LP file with generic names Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to change the default row names in the first place. Structure array defining quadratic constraints ("qc"). 		
	Please note that CPLEX only handles single-sided bounds on quadratic constraints. An arbitrary number of qc's is set using the Prob.QP.qc structure array:		
	qc(1).Q = sparse(< quadratic coefficient nxn matrix>); qc(1).a = full (< linear coefficient nx1 vector >); $qc(1).r_U = < scalar upper bound>;$		
	And similarly for $qc(2), \dots, qc(n_qc)$.		

The standard interpretation is $x' * Q * x + c' * x \leq r_U$, but it is possible to define an alternative sense $x' * Q * x + c' * x \geq r_L$ by setting qc(i).sense to a nonzero value and specifying a lower bound in $qc(i).r_L$.

Observe that the Q matrix must be sparse, non-empty and positive semi-definite for all qc's. The linear coefficient vector qc(i).a may be omitted or set empty, in which case all zeros are assumed.

Likewise, if a bound r_U or r_L is empty or not present, it is assumed to be 0.0. Note that this is contrary to the usual TOMLAB standard, where an empty or omitted bound is assumed to be +/- Inf. The reason is that a single-sided constraint with an infinite bound would have no meaning.

confgrps Conflict groups descriptor (cpxBuildConflict can be used to generate the input). Set this if conflict refinement is desired in the case that infeasibility is detected by CPLEX.A conflict group consists of lists of indices describing which of the following entities are part of a group:

confgrps(i).lowercol Column (variable) lower bounds confgrps(i).uppercol Column (variable) upper bounds confgrps(i).linear Linear rows confgrps(i).quad Quadratic constraints confgrps(i).sos Special ordered sets confgrps(i).indicator Indicator constraints

Additionally, the group's priority value may be assigned in confgrps(i).priority

Please refer to the TOMLAB /CPLEX User's Guide for an example of Conflict Refinement.

- *conflictFile* Name of a file to write the conflict refinement to. No file is written if this input parameter is empty or if no conflict refinement is done.
- saRequest Structure telling whether and how you want CPLEX to perform a sensitivity analysis (SA). You can complete an SA on the objective function, right hand side vector, lower and upper bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

index contain indices to variables or constraints of which to return possible value ranges.

	The .index array has to be sorted, ascending.
	To get an SA of objective function on the four variables 120 to 123 (included) and variable 19, the saRequest structure would look like this:
	$saRequest.obj.index = [19 \ 120 \ 121 \ 122 \ 123];$
	The result is returned through the output parameter 'sa'.
basis	Vector with CPLEX starting basis. If re-solving a similar problem several times, this can be set to the 'basis' output argument of an earlier call to cplex.m. The length of this vector must be equal to the sum of the number of rows (m) and columns (n).
	The first m elements contain row basis information, with the following possible values for non-ranged rows:
	0 associated slack/surplus/artificial variable nonbasic at value 0.0 1 associated slack/surplus/artificial variable basic
	and for ranged rows (both upper and lower bounded)
	0 associated slack/surplus/artificial variable nonbasic at its lower bound 1 associated slack/surplus/artificial variable basic 2 associated slack/surplus/artificial variable nonbasic at its upper bound
	The last n elements, i.e. $basis(m+1:m+n)$ contain column basis information:
	 0 variable at lower bound 1 variable is basic 2 variable at upper bound 3 variable free and nonbasic
xIP	Vector with MIP starting solution, if known. Missing values may be set to NaN. Length should be equal to number of columns in problem.
logcon	Structure defining logical (or "indicator") constraints. This is a special type of linear con- straint which is included in a mixed integer problem only if an associated binary variable is equal to 1.
	Note that when associating a variable with a logical constraint, the variable in question will be forced to become a binary variable; even if it was a continuous or integer variable with bounds other than 0-1.
	Each element logcon(i) describes one logical constraint:

 $y - > row' * x \le rhs$ (also == and >= possible)

The following three fields (row,var,rhs) are mandatory:

The following fields are optional:

logcon(i).row: A dense or sparse row vector with the same length as the number of variables in the problem.

logcon(i).var: The index of the variable y which should control whether the constraint is "active" or not. Must be less than or equal to the number of variables in the problem.

logcon(i).rhs: The scalar value of the right hand side of the i:th logical constraint.

The following fields are optional in the description of a logical constraint:

logcon(i).sense Defines the sense of the i:th logical constraint:

0 or 'lt' : implies row*x \leq rhs 1 or 'eq' : implies row*x == rhs 2 or 'gt' : implies row*x >= rhs

logcon(i).comp: Complement flag. The default value 0 (empty field or left out entirely) implies that the logical constraint is active when the associated variable is equal to 1. If setting the comp field to a nonzero value, the binary variable is complemented and the constraint will become active when the variable is zero.

logcon(i).name: A string containing a name for the i:th logical constraint. This is only used if a save file is written.

- *branchprio* A nonnegative vector of length n. A priority order assigns a branching priority to some or all of the integer variables in a model. CPLEX performs branches on variables with a higher assigned priority number before variables with a lower priority; variables not assigned an explicit priority value by the user are treated as having a priority value of 0.
- *branchdir* A vector with -1, 0, 1 entries of length n. -1 forces branching towards the lower end of the integer, while 1 forces branching to the higher.
- cpxSettings Structure with flags controlling various CPLEX features. Currently the following fields are defined:

tune Flag to control the CPLEX Parameter Tuning feature. The following values are recognized:

0 - Disable parameter tuning (default).

1 - Enable parameter tuning and solve problem using the parameter set found by CPLEX.2 - Enable parameter tuning and return without solving the problem. The only meaningful output data will be the cpxControl output.

During parameter tuning, the settings in cpxControl are frozen and are not changed by CPLEX. After parameter tuning has run, the complete set of modified CPLEX parameters are returned in the cpxControl output argument.

presolve Flag controlling the CPLEX Presolve feature. The following values are recognized:

0 - No special treatment of presolve (default).

1 - Invoke CPLEX Presolve on problem before optimization begins and create information about the changes made.

2 - As 1, but also returns the presolved problem, including linear constraints, objective and bounds.

Description of Outputs

The following fields are used:

x alaak	Solution vector x with decision variable values $(n \times 1 \text{ vector})$.		
siuck v	Slack variables $(m \times 1 \text{ vector})$. Lagrangian multipliers (dual solution vector) $(m \times 1 \text{ vector})$		
rc.	Eagrangian multipliers (dual solution vector) ($m \times 1$ vector). Reduced costs Lagrangian multipliers for simple bounds on r		
f_k	Objective function value at optimum.		
J	2.2		
ninf	Number of infeasibilities.		
sinf	Sum of infeasibilities.		
Inform	See section A.3.		
basis	Basis status of constraints and variables, $((m+n) \times 1 \text{ vector})$. See inputs for more informa-		
	tion.		
lpiter	Number of simplex iterations.		
glnodes	Number of nodes visited.		
confstat	Structure with extended conflict status information. This output is a replica of the Prob.CPLEX.confgrps input argument with the added fields 'status' and 'istat'. confstat(k).status gives a text description of the status of conflict group k; the corresponding istat field is the numeric value also available in iconfstat(k).		
i confstat	Conflict status information. For an infeasible problem where at least one conflict group have been supplied in the confgrps input argument, this output argument contains the status of each conflict group, in the same order as given in the confgrps input.		
	The following values are possible:		
	1 Evoluded		
	0 Possible member		
	1 Possible LB		
	2 Possible UB		
	3 Member		
	4 Upper bound		
	5 Lower bound		
	If confstat is empty even though Conflict Refinement has been requested, there was a problem in the refinement process.		
sa	Structure with information about the requested SA, if requested. The fields:		
obj	Ranges for the variables in the objective function.		

rhs Ranges for the right hand side values.

xl	Ranges for the lower bound values.
xu	Ranges for the upper bound values.

These fields are structures themselves. All four structures have identical field names:

status Status of the SA operation. Possible values:

1 =Successful. 0 = SA not requested. -1 = Error: begin is greater than end.-2 = Error: The selected range (begin...end) stretches out of available variables or constraints. -3 = Error: No SA available.lower The lower range. upper The upper range. Structure with non-default CPLEX parameters generated during CPLEX Parameter Tuning. cpxControlStructure with information about the changes CPLEX Presolve made to the problem before presolve solving. The amount of information depends on the value of the cpxSettings.presolve flag. For cpxSettings.presolve=0, this output is empty. For cpxSettings.presolve=1, the presolve output contains six arrays, pcstat, prstat, ocstat, orstat, status and objoffset. status Flag telling status of presolve results: 0: Problem was not presolved or no reductions were made 1: A presolved problem exists 2: The original problem was reduced to an empty problem The remaining fields of presolve will contain useful information only if status==1. Contains information about variables in the original problem. For each element pcstat(i): pcstat>= 1: variable i corresponds to variable pcstat(i) in the presolved problem -1: variable i is fixed to its lower bound -2: variable i is fixed to its upper bound -3: variable i is fixed to some other value -4: variable i is aggregated out

-5: variable i is deleted or merged for some other reason

prstat	Contains information about constraints (rows) in the original problem. For each element prstat(i):
	>= 1: row i corresponds to row prstat(i) in the presolved problem -1: row i is redundant
	-2: row i is used for aggregation
	-3: row i is deleted for some other reason
ocstat	Contains information about variables in the presolved problem: For each element ocstat(i):
	>= 1: variable i in the presolved problem corresponds to variable ocstat(i) in the original problem.
	-1: variable i corresponds to a linear combination of some variables in the original problem
orstat	Contains information about constraints (rows) in the presolved problem. For each element orstat(i):
	>= 1: row i in the presolved problem corresponds to row orstat(i) in the original problem -1: row i is created by, for example, merging two rows in the original problem

Description

The interface routine cplex calls CPLEX to solve LP, QP, MILP, MIQP and MIQQ problems. The matrices A and F are transformed in cplex.m to the CPLEX sparse matrix format.

Error checking is made on the lengths of the vectors and matrices.

Index	m-file	Description
(1)	cpxcb_PRIM	From primal simplex
(2)	cpxcb_DUAL	From dual simplex
(3)	cpxcb_PRIMCROSS	From primal crossover
(4)	cpxcb_DUALCROSS	From dual crossover
(5)	$cpxcb_BARRIER$	From barrier
(6)	cpxcb_PRESOLVE	From presolve
(7)	cpxcb_MIP	From mipopt
(8)	$cpxcb_MIPPROBE$	From probing or clique merging
(9)	$cpxcb_FRACCUT$	From gomory fractional cuts
(10)	cpxcb_DISJCUT	From disjunctive cuts
(11)	cpxcb_FLOWMIR	From mixed Integer Rounding cuts
(12)	$cpxcb_QPBARRIER$	From quadratic Barrier
(13)	cpxcb_QPSIMPLEX	From quadratic Simplex
(14)	cpxcb_INCUMBENT	From MIP incumbent

Table 7: Callback functions.

A.2 cplexTL

Purpose

The TOMLAB /CPLEX MILP, MIQP, LP and QP solver. It solves linear programming (LP), quadratic programming (QP), mixed integer linear programming (MILP) and mixed integer quadratic programming problems (MIQP). The solver also handles problems with quadratic constraints (MIQQ). *cplexTL* solves problems of the form

$$\begin{array}{rcl} \min_{x} & f(x) = \frac{1}{2}x^{T}Fx + c^{T}x \\ s/t & x_{L} \leq & x & \leq & x_{U} \\ & b_{L} \leq & Ax & \leq & b_{U} \\ & & x^{T}Q^{(i)}x + a^{(i)T}x & \leq & r_{U}^{(i)}, \quad i = 1, \dots, n_{qc} \\ & & x_{i} \quad \text{integer} & & i \in I \end{array}$$

where $c, x, x_L, x_U, a^{(i)} \in \mathbb{R}^n$, $F, Q^{(i)} \in \mathbb{R}^{n \times n}$, $A \in \mathbb{R}^{m \times n}$ and $b_L, b_U \in \mathbb{R}^m$. $r_U^{(i)}$ is a scalar. The variables $x \in I$, the index subset of 1, ..., n, are restricted to be integers.

An additional set of logical constraints can also be defined. See the help for input parameter CPLEX.logcon.

Calling Syntax

Prob = ProbCheck(Prob, 'cplex'); Result = cplexTL(Prob); or Result = tomRun('cplex', Prob, 1);

Description of Inputs

Problem description structure. The following fields are used:

QP.c	Linear objective function cost coefficients, vector $n \times 1$.	
QP.F	Square $n \times n$ dense or sparse matrix. Empty if non-quadratic problem.	
A b_L b_U	Linear constraint matrix for linear constraints, dense or sparse $m \times n$ matrix. Lower bounds on the linear constraints. Upper bounds on the linear constraints.	
$x_{-}L$ $x_{-}U$	Lower bounds on design parameters x . If empty assumed to be $-Inf$. Upper bounds on design parameters x . If empty assumed to be Inf .	
QP.qc	Structure array defining quadratic constraints ("qc").	
	Please note that CPLEX only handles single-sided bounds on qc's. An arbitrary number of qc's is set using the Prob.QP.qc structure array:	
	qc(1).Q = sparse(< quadratic coefficient nxn matrix>); qc(1).a = full (< linear coefficient nx1 vector >); $qc(1).r_U = < scalar upper bound>;$	
	And similarly for $qc(2), \dots, qc(n_qc)$.	

The standard interpretation is $x' * Q * x + c' * x \le r_U$, but it is possible to define an alternative sense $x' * Q * x + c' * x \ge r_L$ by setting qc(i).sense to a nonzero value and specifying a lower bound in $qc(i).r_L$.

Observe that the Q matrix must be sparse, non-empty and positive semi-definite for all qc's. The linear coefficient vector qc(i).a may be omitted or set empty, in which case all zeros are assumed.

Likewise, if a bound r_U or r_L is empty or not present, it is assumed to be 0.0. Note that this is contrary to the usual TOMLAB standard, where an empty or omitted bound is assumed to be +/- Inf. The reason is that a single-sided constraint with an infinite bound would have no meaning.

PriLevOptPrinting level in cplex.m file and the CPLEX C-interface.= 0 Silent= 1 Warnings and Errors= 2 Summary information= 3 More detailed information

- > 10 Pause statements, and maximal printing (debug mode)
- optParamStructure with optimization parameters. The following fields are used:MaxIterLimit of iterations. If a value is given here, it is set as cpxControl.ITLIM. Note that a value
given directly in Prob.MIP.cpxControl.ITLIM takes precedence.
- MIP Structure holding information about mixed integer optimization. Also found here is the cpxControl structure in which CPLEX parameter settings can be made. The fields used are:
- *cpxControl* Structure, where fields are set to the CPLEX control parameters that the user wants to specify values for. Please refer to Section G for more information on how to set the fields.

IntVars Defines which variables are integers, of the general type I or binary B. Variable indices should be in the range [1,...,n]. If IntVars is a logical vector then all variables i where IntVars(i) > 0 are defined to be integers. If IntVars is determined to be a vector of indices then x(IntVars) are defined as integers. If the input is empty ([]), then no integers of type I or B are defined. The interface routine cplex.m checks which of the integer variables have lower bound $x_L = 0$ and upper bound $x_U = 1$, i.e. are binary 0/1 variables.

PI Integer variables of type Partially Integer (PI), i.e. takes an integer value up to a specified limit, and any real value above that limit. PI must be a structure array where: PI.var is a vector of variable indices in the range [1, ..., n]. PI.lim is a vector of limit values for each of the variables specified in PI.var, i.e. for variable *i*, that is the PI variable with index *j* in PI.var, then x(i) takes integer values in $[x_L(i), PI.lim(j)]$ and continuous values in $[PI.lim(j), x_U(i)]$.

SC	A vector with indices for the integer variables of type <i>Semi-continuous</i> (SC), i.e. that takes either the value 0 or a real value in the range $[x_L(i), x_U(i)]$, assuming for some j , that i = SC(j), where i is an variable number in the range $[1,, n]$.	
SI	A vector with indices for the integer variables of type <i>Semi-integer</i> (SI), i.e. that takes either the value 0 or an integer value in the range $[x_L(i), x_U(i)]$, assuming for some j , that i = SI(j), where i is an variable number in the range $[1,, n]$.	
sos1	A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k set of type sos1, then $sos1(k).var$ is a vector of indices for variables of type sos1 in set k $sos1(k).row$ is the row number for the reference row identifying the ordering information for the sos1 set, i.e. A(sos1(k).row,sos1(k).var) identifies this information. As ordering information, also the objective function coefficients c could be used. Then as row number 0 is instead given in $sos1(k).row$.	
sos2	A structure defining the Special Ordered Sets of Type Two ($sos2$). Specified exactly as $sos1$ sets, see $MIP.sos1$ input variable description.	
basis	Basis for warm start of solution process. See Section A.1 and $F.4$ for more information.	
xIP	Vector with MIP starting solution, if known. NaN can be used to indicate missing values. Length should be equal to number of columns in problem. Values of continuous variables are ignored.	
callback	Logical vector defining which callbacks to use in CPLEX. If the i^{th} entry of the logical vector <i>callback</i> is set, the corresponding callback is defined. The callback calls the m-file specified in Table 10 below. The user may edit this file, or make a new copy, which is put in a directory that is searched before the <i>cplex</i> directory in the Matlab path.	
CPLEX	Structure with solver specific parameters for logging and saving problems. The following fields are used:	
LogFile	Name of file to write the CPLEX log information to. If empty, no log is written.	
SaveFile	Name of a file to save the CPLEX problem object. This is useful for sending problems to ILOG for analysis. The format of the file is controlled by the <i>Prob.CPLEX.SaveMode</i> . If empty, no file is written.	
SaveMode	The format of the file given in <i>SaveFile</i> is possible to choose by setting <i>SaveMode</i> to one of the following values:	

1	SAV	Binary SAV format
2	MPS	MPS format (ASCII)
3	LP	CPLEX LP format (ASCII)
4	RMP	MPS file with generic names
5	REW	MPS file with generic names

6 RLP LP file with generic names

Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to change the default row names.

confgrps Conflict groups descriptor (cpxBuildConflict can be used to generate the input). Set this if conflict refinement is desired in the case that infeasibility is detected by CPLEX.A conflict group consists of lists of indices describing which of the following entities are part of a group:

confgrps(i).lowercol Column (variable) lower bounds confgrps(i).uppercol Column (variable) upper bounds confgrps(i).linear Linear rows confgrps(i).quad Quadratic constraints confgrps(i).sos Special ordered sets confgrps(i).indicator Indicator constraints

Additionally, the group's priority value may be assigned in confgrps(i).priority

Please refer to the TOMLAB /CPLEX User's Guide for an example of Conflict Refinement.

- *conflictFile* Name of a file to write the conflict refinement to. No file is written if this input parameter is empty or if no conflict refinement is done.
- sa Structure telling whether and how you want CPLEX to perform a sensitivity analysis (SA). You can complete an SA on the objective function, right hand side vector, lower and upper bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

index contain indices to variables or constraints of which to return possible value ranges.

The .index array has to be sorted, ascending.

To get an SA of objective function on the four variables 120 to 123 (included) and variable 19, the saRequest structure would look like this:

 $saRequest.obj.index = [19\ 120\ 121\ 122\ 123];$

The result is returned through the output parameter 'sa'.

logcon Structure defining logical (or "indicator") constraints. This is a special type of linear constraint which is included in a mixed integer problem only if an associated binary variable is equal to 1.

Note that when associating a variable with a logical constraint, the variable in question will be forced to become a binary variable; even if it was a continuous or integer variable with bounds other than 0-1.

Each element logcon(i) describes one logical constraint:

$$y - > row' * x \le rhs$$
 (also == and >= possible)

The following three fields (row,var,rhs) are mandatory:

The following fields are optional:

logcon(i).row: A dense or sparse row vector with the same length as the number of variables in the problem.

logcon(i).var: The index of the variable y which should control whether the constraint is "active" or not. Must be less than or equal to the number of variables in the problem.

logcon(i).rhs: The scalar value of the right hand side of the i:th logical constraint.

The following fields are optional in the description of a logical constraint:

logcon(i).sense Defines the sense of the i:th logical constraint:

0 or 'lt' : implies row $x \le rhs$ 1 or 'eq' : implies rowx = rhs2 or 'gt' : implies row $x \ge rhs$

logcon(i).comp: Complement flag. The default value 0 (empty field or left out entirely) implies that the logical constraint is active when the associated variable is equal to 1. If setting the comp field to a nonzero value, the binary variable is complemented and the constraint will become active when the variable is zero.

logcon(i).name: A string containing a name for the i:th logical constraint. This is only used if a save file is written.

- *BranchPrio* A nonnegative vector of length n. A priority order assigns a branching priority to some or all of the integer variables in a model. CPLEX performs branches on variables with a higher assigned priority number before variables with a lower priority; variables not assigned an explicit priority value by the user are treated as having a priority value of 0.
- BranchDir A vector with -1, 0, 1 entries of length n. -1 forces branching towards the lower end of the integer, while 1 forces branching to the higher.
- *Tune* Flag controlling the CPLEX Parameter Tuning feature. The following values are recognized:
 - 0 Disable Parameter Tuning (default).
 - 1 Enable Parameter Tuning and solve problem after tuning.
 - 2 Enable Parameter Tuning and return after tuning. No solution will be generated.

The non-default CPLEX parameters found during Parameter Tuning is returned in Result.MIP.cpxControl together with any settings given in Prob.MIP.cpxControl. The settings given as input are considered as constants during the tuning process.

Presolve Flag controlling the CPLEX Presolve feature. The following values are recognized:

0 - No special treatment of presolve (default).

1 - Invoke CPLEX Presolve on problem before optimization begins and create information about the changes made.

2 - As 1, but also returns the presolved problem, including linear constraints, objective and bounds.

The results of the presolve phase (when Presolve; 0) are returned in Result.CPLEX.Presolve.

Description of Outputs

Result structure. The following fields are used:

Iter	Number of iterations, or nodes visited.
ExitFlag	 OK. Maximal number of iterations reached. Unbounded feasible region. No feasible point found. Error of some kind.
ExitText	Number of iterations, or nodes visited.

Result. The following fields are used:, continued

Inform	Result of CPLEX run. See section A.3 for details on the ExitText and possible Inform values.		
<i>x_0</i>	Initial starting point not known, set as empty.		
QP.B	Optimal active set, basis vector, in TOMLAB QP standard. B(i) = 1: Include variable $x(i)$ is in basic set. B(i) = 0: Variable $x(i)$ is set on its lower bound. B(i) = -1: Variable $x(i)$ is set on its upper bound.		
f_k g_k x_k v_k	Function value at optimum, $f(x_k)$. Gradient value at optimum, c or $c + F * x$. Optimal solution vector x_k . Lagrangian multipliers (for bounds and dual solution vector). Set as $v_k = [rc; v]$, where rc is the <i>n</i> -vector of reduced costs and v holds the <i>m</i> dual variables.		
xState	State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;		
bState	State of linear constraints. Free $== 0$; Lower $== 1$; Upper $== 2$; Equality $== 3$;		
Solver SolverAlgorithm FuncEv GradEv ConstrEv Prob	Solver used - CPLEX . Solver algorithm used. Number of function evaluations. Set to <i>Iter</i> . Number of gradient evaluations. Set to <i>Iter</i> . Number of constraint evaluations. Set to <i>Iter</i> . Problem structure used.		
MIP.ninf MIP.sinf MIP.slack MIP.lpiter MIP.glnodes MIP.basis	Number of infeasibilities. Sum of infeasibilities. Slack variables $(m \times 1 \text{ vector})$. Number of LP iterations. Number of nodes visited. Basis status of constraints and variables ($(m + n) \times 1 \text{ vector}$) in the CPLEX format, fields xState and bState has the same information in the TOMLAB format. See Section A.1 and F.4 for more information.		
MIP.cpxControl	Structure with non-default CPLEX parameters generated during CPLEX Parameter Tuning.		
CPLEX.sa	Structure with information about the requested SA, if requested. The fields:		
obj	Ranges for the variables in the objective function.		
rhs	Ranges for the right hand side values.		
xl	Ranges for the lower bound values.		

Result. The following fields are used:, continued

xu Ranges for the upper bound values.

These fields are structures themselves. All four structures have identical field names:

status	Status of the SA operation. Possible values:		
	 1 = Successful. 0 = SA not requested. -1 = Error: begin is greater than end. -2 = Error: The selected range (beginend) stretches out of available variables or constraints. -3 = Error: No SA available. 		
lower	The lower range.		
upper	The upper range.		
CPLEX.confstat	Structure with extended conflict status information. This output is a replica of the Prob.CPLEX.confgrps input argument with the added fields 'status' and 'istat'. confstat(k).status gives a text description of the status of conflict group k; the corresponding istat field is the numeric value also available in $iconfstat(k)$.		
CPLEX.iconfstat	Conflict status information. For an infeasible problem where at least one conflict group have been supplied in the Prob.CPLEX.confgrps input argument, this output argument contains the status of each conflict group, in the same order as given in the confgrps input.		
	The following values are possible:		
	 -1 Excluded 0 Possible member 1 Possible LB 2 Possible UB 3 Member 4 Upper bound 5 Lower bound If confstat is empty even though Conflict Refinement has been requested, there was a problem in the refinement process 		
CPLEX Presolve	Structure with information about the changes CPLEX Pressive made to the problem before		
	Structure with mormation about the changes of LEAT resolve made to the problem before		

solving. The amount of information depends on the value of the Prob.CPLEX.Presolve flag.

For Prob.CPLEX.Presolve=0, this output is empty.

Result. The following fields are used:, continued

	For Prob.CPLEX.Presolve=1, the presolve output contains six arrays, pcstat, prstat, ocstat, orstat, status and objoffset.
status	Flag telling status of presolve results:
	0: Problem was not presolved or no reductions were made1: A presolved problem exists
	2: The original problem was reduced to an empty problem
	The remaining fields of Result.CPLEX.Presolve will contain useful information only if status==1.
pcstat	Contains information about variables in the original problem. For each element pcstat(i):
	 >= 1: variable i corresponds to variable pcstat(i) in the presolved problem -1: variable i is fixed to its lower bound -2: variable i is fixed to its upper bound -3: variable i is fixed to some other value -4: variable i is aggregated out 5: variable i is deleted or merced for some other reason
	-5. Variable i is deleted of merged for some other reason
prstat	Contains information about constraints (rows) in the original problem. For each element prstat(i):
	>= 1: row i corresponds to row prstat(i) in the presolved problem -1: row i is redundant
	-3: row i is deleted for some other reason
ocstat	Contains information about variables in the presolved problem: For each element $ocstat(i)$:
	>= 1: variable i in the presolved problem corresponds to variable ocstat(i) in the original problem.
	-1: variable i corresponds to a linear combination of some variables in the original problem
orstat	Contains information about constraints (rows) in the presolved problem. For each element orstat(i):
	>= 1: row i in the presolved problem corresponds to row orstat(i) in the original problem -1: row i is created by, for example, merging two rows in the original problem

Global Parameters Used

cpxCBInfo cpxRetVec

Description

The TOMLAB CPLEX MILP, MIQP, QP and LP interface calls the interface routine *cplex.m.* Values > 10^{10} and *Inf* values are set to 10^{10} , and the opposite for negative numbers. An empty objective coefficient *c*-vector is set to the zero-vector.

Examples

See mip_prob

M-files Used

cplex.m

See Also

mipSolve

Index	m-file	Description
(1)	cpxcb_PRIM	From primal simplex
(2)	$cpxcb_DUAL$	From dual simplex
(3)	$cpxcb_PRIMCROSS$	From primal crossover
(4)	$cpxcb_DUALCROSS$	From dual crossover
(5)	$cpxcb_BARRIER$	From barrier
(6)	$cpxcb_PRESOLVE$	From presolve
(7)	$cpxcb_MIP$	From mipopt
(8)	$cpxcb_MIPPROBE$	From probing or clique merging
(9)	$cpxcb_FRACCUT$	From gomory fractional cuts
(10)	$cpxcb_DISJCUT$	From disjunctive cuts
(11)	$cpxcb_FLOWMIR$	From mixed Integer Rounding cuts
(12)	$cpxcb_QPBARRIER$	From quadratic Barrier
(13)	$cpxcb_QPSIMPLEX$	From quadratic Simplex
(14)	cpxcb_INCUMBENT	From MIP incumbent

Table 10: Callback functions.

A.3 cplexStatus

Purpose

cplexStatus analyzes the CPLEX output Inform code and returns the CPLEX solution status message in ExitText and the TOMLAB exit flag in ExitFlag.

Calling Syntax

[ExitText, ExitFlag] = cplexStatus(Inform)

Description of Inputs

The following inputs are used:

Inform Result of CPLEX run. (S=Simplex, B=Barrier, MIP=Mixed-Integer)

- 1 (S,B) Optimal solution is available
- 2 (S,B) Model has an unbounded ray
- 3 (S,B) Model has been proved infeasible
- 4 (S,B) Model has been proved either infeasible or unbounded
- 5 (S,B) Optimal solution is available, but with infeasibilities after unscaling
- 6 (S,B) Solution is available, but not proved optimal, due to numeric difficulties
- 10 (S,B) Stopped due to limit on number of iterations
- 11 (S,B) Stopped due to a time limit
- 12 (S,B) Stopped due to an objective limit
- 13 (S,B) Stopped due to a request from the user
- 14 (S,B) Feasible relaxed sum found (FEASOPTMODE)
- 15 (S,B) Optimal relaxed sum found (FEASOPTMODE)
- 16 (S,B) Feasible relaxed infeasibility found (FEASOPTMODE)
- 17 (S,B) Optimal relaxed infeasibility found (FEASOPTMODE)
- 18 (S,B) Feasible relaxed quad sum found (FEASOPTMODE)
- 19 (S,B) Optimal relaxed quad sum found (FEASOPTMODE)
- 20 (B) Model has an unbounded optimal face
- 21 (B) Stopped due to a limit on the primal objective
- 22 (B) Stopped due to a limit on the dual objective
- 30 The model appears to be feasible; no conflict is available
- 31 The conflict refiner found a minimal conflict
- 32 A conflict is available, but it is not minimal
- 33 The conflict refiner terminated because of a time limit
- 34 The conflict refiner terminated because of an iteration limit
- 35 The conflict refiner terminated because of a node limit
- 36 The conflict refiner terminated because of an objective limit
- 37 The conflict refiner terminated because of a memory limit
- 38 The conflict refiner terminated because a user terminated the application

- 101 Optimal integer solution found
- 102 Optimal sol. within epgap or epagap tolerance found
- 103 Solution is integer infeasible
- 104 The limit on mixed integer solutions has been reached
- 105 Node limit exceeded, integer solution exists
- 106 Node limit exceeded, no integer solution
- 107 Time limit exceeded, integer solution exists
- 108 Time limit exceeded, no integer solution
- 109 Terminated because of an error, but integer solution exists
- 110 Terminated because of an error, no integer solution
- 111 Limit on tree memory has been reached, but an integer solution exists
- 112 Limit on tree memory has been reached; no integer solution
- 113 Stopped, but an integer solution exists
- 114 Stopped; no integer solution
- 115 Problem is optimal with unscaled infeasibilities
- 116 Out of memory, no tree available, integer solution exists
- 117 Out of memory, no tree available, no integer solution
- 118 Model has an unbounded ray
- 119 Model has been proved either infeasible or unbounded

120	(MIP) Feasible relaxed sum found (FEASOPTMODE)
121	(MIP) Optimal relaxed sum found (FEASOPTMODE)
122	(MIP) Feasible relaxed infeasibility found (FEASOPTMODE)
123	(MIP) Optimal relaxed infeasibility found (FEASOPTMODE)
124	(MIP) Feasible relaxed quad sum found (FEASOPTMODE)
125	(MIP) Optimal relaxed quad sum found (FEASOPTMODE)
126	(MIP) Relaxation aborted due to limit (FEASOPTMODE)
127	(MIP) Feasible solution found (FEASOPTMODE)
1001	Insufficient memory available
1014	CPLEX parameter is too small
1015	CPLEX parameter is too big
1100	Lower and upper bounds contradictory
1101	The loaded problem contains blatant infeasibilities or unboundedness
1106	The user halted preprocessing by means of a callback
1117	The loaded problem contains blatant infeasibilities
1118	The loaded problem contains blatant unboundedness
1123	Time limit exceeded during presolve.
1225	Numeric entry is not a double precision number (NAN)
1233	Data checking detected a number too large
1256	CPLEX cannot factor a singular basis
1261	No basic solution exists (use crossover)
1262	No basis exists (use crossover)
1719	No conflict is available
1805	MIP dynamic search incompatible with control callbacks.
3413	Tree memory limit exceeded
5002	Non-positive semidefinite matrix in quadratic problem
5012	Non-symmetric matrix in quadratic problem
32201	A licensing error has occurred
32024	Licensing problem: Optimization algorithm not licensed

Description of Outputs

The following fields are used:

ExitTextText interpretation of CPLEX result.ExitFlagTOMLAB standard exit flag.

A.4 cpxRetVec

Purpose

cpxRetVec is a global variable that CPLEX can write more detailed solution information to. For all fields, the default value is NaN and appears whenever the element in question is not available/not applicable for the problem type.

Note about integer and double quality values:

Some quality values are present in both the integer and double lists. This is because these quality identifiers have a meaning both as double and integer qualities. Example: The double interpretation is normally the largest (absolute) value of the variables, while the integer interpretation is the first index where that value occurs.

Calling Syntax

global cpxRetVec % Call cplex by tomRun or directly

CPLEX functions or parameter names in cpxRetVec

The following outputs are created:

Index Result of CPLEX run. (S=Simplex, B=Barrier, MIP=Mixed-Integer)

- 20 (S,B) Solver method (1 = Primal, 2 = Dual, 4 = Barrier)
- 1 Solution objective value
- 2 (MIP) The currently best known bound on the optimal solution value of a MIP problem. When a problem has been solved to optimality, this value matches the optimal solution value. Otherwise, this value is computed for a minimization (maximization) problem as the minimum (maximum) objective function value of all remaining unexplored nodes.
- 3 (MIP) The MIP cutoff value being used during mixed integer optimization. The cutoff is updated with the objective function value, each time an integer solution is found during branch and cut.
- 4 (MIP) The node number of the best known integer solution.
- 7 (MIP) The cumulative number of simplex iterations used to solve a mixed integer problem.
- 8 (MIP) The number of nodes used to solve a mixed integer problem.
- 9 (MIP) The number of unexplored nodes left in the branch and cut tree.

The following outputs are created:, continued

- 5 (S) The total number of simplex iterations to solve an LP problem, or the number of crossover iterations in the case that the barrier optimizer is used.
- 10 (S,MIP) The number of dual super-basic variables in the current solution.
- 15 (S,MIP) The number of primal super-basic variables in the current solution.
- 6 (B) The total number of Barrier iterations to solve an LP problem.
- 16 (B) The number of dual exchange iterations in the crossover method. An exchange occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a bound.
- 17 (B) The number of dual push iterations in the crossover method. A push occurs when a nonbasic variable switches bounds and does not enter the basis.
- 18 (B) The number of primal exchange iterations in the crossover method. An exchange occurs when a nonbasic variable is forced to enter the basis as it is pushed toward a bound.
- 19 (B) The number of primal push iterations in the crossover method. A push occurs when a nonbasic variable switches bounds and does not enter the basis.
- 12 (S) The number of Phase I iterations to solve a problem using the primal or dual simplex method.

Double-type quality values:

- 21 The maximum primal infeasibility or, equivalently, the maximum bound violation including slacks for the unscaled problem.
- 22 The maximum primal infeasibility or, equivalently, the maximum bound violation including slacks for the scaled problem.
- 23 The sum of primal infeasibilities or, equivalently, the sum of bound violations for the unscaled problem.
- 24 The sum of primal infeasibilities or, equivalently, the sum of bound violations for the scaled problem.
- 25 (S,B) The maximum of dual infeasibility or, equivalently, the maximum reduced-cost infeasibility for the unscaled problem.
- 26 (S,B) The maximum of dual infeasibility or, equivalently, the maximum reduced-cost infeasibility for the scaled problem.
- 27 (S,B) The sum of dual infeasibilities or, equivalently, the sum of reduced-cost bound violations for the unscaled problem .
- 28 (S,B) The sum of dual infeasibilities or, equivalently, the sum of reduced-cost bound violations for the scaled problem .
- 29 (MIP) The maximum of integer infeasibility for the unscaled problem.
- 30 (MIP) The sum of integer infeasibilities for the unscaled problem.
The following outputs are created:, continued

- 31 The maximum of the vector |Ax b| for the unscaled problem.
- 32 The maximum of the vector |Ax b| for the scaled problem.
- 33 The sum of the elements of vector |Ax b| for the unscaled problem.
- 34 The sum of the elements of vector |Ax b| for the unscaled problem.
- 35 (S,B) The maximum dual residual value. For a simplex solution, this is the maximum of the vector —c-B'pi—, and for a barrier solution, it is the maximum of the vector —A'pi+rc-c— for the unscaled problem.
- 36 (S,B) The maximum dual residual value for the scaled problem.
- 37 (S,B) The sum of the absolute values of the dual residual vector for the unscaled problem.
- 38 (S,B) The sum of the absolute values of the dual residual vector for the scaled problem.
- 39 (B) The maximum violation of the complementary slackness conditions for the unscaled problem.
- 41 (B) The sum of the violations of the complementary slackness conditions for the unscaled problem.
- 43 The maximum absolute value in the primal solution vector for the unscaled problem.
- 44 The maximum absolute value in the primal solution vector for the scaled problem.
- 45 (S,B) The maximum absolute value in the dual solution vector for the unscaled problem.
- 46 (S,B) The maximum absolute value in the dual solution vector for the scaled problem.
- 47 The maximum absolute slack value for the unscaled problem.
- 48 The maximum absolute slack value for the scaled problem.
- 49 (S,B) The maximum absolute reduced cost value for the unscaled problem.
- 50 (S,B) The maximum absolute reduced cost value for the scaled problem.
- 51 The sum of the absolute values in the primal solution vector for the unscaled problem.
- 52 The sum of the absolute values in the primal solution vector for the scaled problem.
- 53 (S,B) The sum of the absolute values in the dual solution vector for the unscaled problem.
- 54 (S,B) The sum of the absolute values in the dual solution vector for the scaled problem.
- 55 The sum of the absolute slack values for the unscaled problem.
- 56 The sum of the absolute slack values for the scaled problem.
- 57 (S,B) The sum of the absolute reduced cost values for the unscaled problem.
- 58 (S,B) The sum of the absolute reduced cost values for the unscaled problem.
- 59 (S) The estimated condition number of the scaled basis matrix.
- 60 (B) The objective value gap between the primal and dual objective value solution.
- 61 (B) The objective value relative to the dual barrier solution.
- 62 (B) The objective value relative to the primal barrier solution.

Integer-type quality values:

The following outputs are created:, continued

- 63 The lowest index of a column or row where the maximum primal infeasibility occurs for the unscaled problem.
- 64 The lowest index of a column or row where the maximum primal infeasibility occurs for the scaled problem.
- 65 (S,B) The lowest index where the maximum dual infeasibility occurs for the unscaled problem.
- 66 (S,B) the lowest index where the maximum dual infeasibility occurs for the scaled problem.
- 67 (MIP) The lowest index where the maximum integer infeasibility occurs for the unscaled problem.
- 68 (MIP) The lowest index where the maximum primal residual occurs for the unscaled problem.
- 69 (MIP) The lowest index where the maximum primal residual occurs for the scaled problem.
- 70 (S,B) The lowest index where the maximum dual residual occurs for the unscaled problem .
- 71 (S,B) The lowest index where the maximum dual residual occurs for the scaled problem .
- 72 (B) The lowest index of a row or column with the largest violation of the complementary slackness conditions.
- 73 The lowest index where the maximum x value occurs for the unscaled problem.
- 74 The lowest index where the maximum x value occurs for the scaled problem.
- 75 (S,B) The lowest index where the maximum pi value occurs for the unscaled problem.
- 76 (S,B) The lowest index where the maximum pi value occurs for the scaled problem.
- 77 The lowest index where the maximum slack value occurs for the unscaled problem.
- 78 The lowest index where the maximum slack value occurs for the scaled problem.
- 79 (S,B) The lowest index where the maximum reduced cost value occurs for the unscaled problem.
- 80 (S,B) The lowest index where the maximum reduced cost value occurs for the scaled problem.
- 81 (MIP) The relative objective gap for a MIP optimization.

B The Matlab Interface Routines - Utility Routines

B.1 cpx2mat

Purpose

cpx2mat reads an (X)MPS file and more. The file is converted to matrices and vectors made available in MATLAB. MPS and extended MPS for LP, MILP, QP and MIQP are the supported file types, however it is possible to supply a wide range of file types.

Calling Syntax

 $[F, c, A, b_L, b_U, x_L, x_U, IntVars] = cpx2mat(Name, PriLev);$

Description of Input

Name of the MPS file with extension. cpx2mat can recognize many different file extensions, e.g.: .mps, .lp, .mat, .qps.

PriLev Print level of cpx2mat. Set to 0 to have it silent, 1 to print warnings, and 2 to print debug information.

Description of Output

F	The quadratic term matrix. Empty for non-QP problems.
с	The linear term vector.
A	The constraint matrix.
$b_{-}L$	The lower bounds of the constraints.
bU	The upper bounds of the constraints.
$x_{-}L$	The lower box bounds of x.
xU	The upper box bounds of x.
IntVars	Logical vector describing what variables that are integer or binary variables. Empty if the problem is not a mixed integer problem.

B.2 abc2gap

Purpose

Converting a general assignment problem (GAP) to a standard form suitable for a MIP solver.

The GAP problem is formulated as

$$\min_{x_{ij}} \quad f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} * x_{ij}$$

$$s/t \quad \sum_{j=1}^{n} x_{ij} = 1 \quad , i = 1, ..., m$$

$$\sum_{i=1}^{m} a_{ij} * x_{ij} \le b_j \quad , j = 1, ..., n$$

$$x \in B^{m \times n}, B = \{0, 1\}.$$

Calling Syntax

 $[c, x_L, x_U, b_L, b_U, a, sos1] = abc2gap(A, b, C, SOS1);$

Description of Input

A	A $m \times n$ constraint matrix for GAP constraints.
b	A $m \times 1$ right hand side vector.
C	A $m \times n$ cost matrix for GAP constraints.
SOS1	Logical variable, default false. If true, generate output for sos1 handling with CPLEX.
	Otherwise generate output giving an equivalent formulation with standard integer variables.

Description of Output

c	Linear objective function cost coefficients, vector $m * n \times 1$.
$x_{-}L$	Lower bounds on design parameters x .
$x_{-}U$	Upper bounds on design parameters x .
$b_{-}L$	Lower bounds on the $m + n$ linear constraints.
bU	Upper bounds on the linear constraints.
a	Sparse $m + n \times m * n$ matrix for linear constraints.
sos1	If input variable $SOS1$ is true, structure with sos1 variable information in the form suitable
	for the Matlab CPLEX interface routine <i>cplex.m</i> , otherwise empty.

Description

Converting a general assignment problem (GAP) to standard form suitable for a mixed-integer programming solver.

Either binary or sos1 variables are used.

C The Matlab Interface Routines - Test Routines

C.1 cpxaircrew

Purpose

Test of an air-crew schedule generation problem.

Calling Syntax

cpxaircrew

Global Parameters Used

MAX_x	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Test of an air-crew schedule generation problem. Based on D.M.Ryan, Airline Industry, Encyclopedia of Operations Research and Management Science. Two subfunctions are used (defined at the end of the *cpxaircrew.m* file): The function generateToDs create ToDs, i.e. Tours of Duty. The function sectordata generates some test data.

M-files Used

abc2gap.m, cplex.m

C.2 cpxbiptest

Purpose

Test of TOMLAB /CPLEX level 1 interface solving three larger binary integer linear optimization problems calling the CPLEX solver.

Calling Syntax

function cpxbiptest(Cut, PreSolve, cpxControl)

Description of Input

Cut	Value of the cut strategy control parameter, default $Cut = -1$.
	Cut = -1, auto select of $Cut = 1$ or $Cut = 2$.
	Cut = 0, no cuts.
	Cut = 1, conservative cut strategy.
	Cut = 2, aggressive cut strategy
	The cut strategy choice is implemented by setting the following parameters (omitting prefix "CPX_PARAM_)":
	CLIQUES, COVERS, DISCJUTS, FLOWCOVERS, FLOWPATHS, FRACCUTS, GUBCOVERS, IMPLED, MIRCUTS in the $cpxControl$ structure.
PreSolve	Value of the PRESOLVE control parameter, default $PreSolve = 1$. PreSolve = 0: no presolve.
	PreSolve = 1, do presolve.
cpxControl	The initial CPLEX parameter structure. Here the user may set additional control parameters. Default empty.

Global Parameters Used

MAX_x	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20

Description

Test of three larger binary integer linear optimization problems calling the CPLEX solver. The test problem 1 and 2 have 1956 variables, 23 equalities and four inequalities with both lower and upper bounds set.

Test problem 1, in *bilp1.mat*, is randomly generated. It has several minima with optimal zero value. CPLEX runs faster if avoiding the use of a cut strategy, and skipping presolve. Test problem 2, in *bilp2.mat*, has a unique minimum. Runs faster if avoiding the use of presolve.

Test problem 3, in bilp1211.mat, has 1656 variables, 23 equalities and four inequalities with lower and upper bounds set. Runs very slow without the use of cuts. A call cpxbiptest(0,0) gives the fastest execution for the first two problems, but will be extremely slow for the third problem.

Timings are made with the Matlab functions tic and toc.

M-files Used cplex.m, cpxPrint.m

C.3 cpxiptest

Purpose

Test of the TOMLAB /CPLEX level 1 interface solving three larger integer linear optimization problems calling the CPLEX solver.

Calling Syntax

function cpxiptest(Cut, PreSolve, cpxControl)

Description of Input

Cut	Value of the cut strategy parameters, default $Cut = -1$.
	Cut = -1, auto select of $Cut = 1$ or $Cut = 2$.
	Cut = 0, no cuts. $Cut = 1$, conservative cut strategy.
	Cut = 2, aggressive cut strategy
	See <i>cpxbiptest</i> , page 42.
PreSolve	Value of the PRESOLVE control parameter, default $PreSolve = 1$.
	PreSolve = 0, no presolve.
	PreSolve = 1, do presolve.
cpxControl	The initial cpxControl structure. Here the user may set additional control parameter. De-
	fault empty.

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Test of three larger integer linear optimization problems calling the CPLEX solver. The test problems have 61 variables and 138 linear inequalities. 32 of the 138 inequalities are just zero rows in the matrix A. The three problems are stored in ilp061.mat, ilp062.mat and ilp063.mat.

Code is included to remove the 32 zero rows, and compute better upper bounds using the positivity of the matrix elements, right hand side and the variables. But this does not influence the timing much, the CPLEX presolve will do all these problem changes.

Timings are made with the Matlab functions tic and toc.

M-files Used cplex, xprinti, cpxPrint

C.4 cpxtomtest1

Purpose

Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB IF format.

Calling Syntax

cpxtomtest1

Description

Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB IF format. The examples show the solution of LP, QP and MILP problems.

M-files Used

tom Run.

See Also

cplexTL.

C.5 cpxtomtest2

Purpose

Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB TQ format.

Calling Syntax

cpxtomtest2

Description

Test of using TOMLAB to call CPLEX for problems defined in the TOMLAB TQ format. The routine *mipAssign* is used to define the problem. A simple problem is solved with CPLEX both as an LP problem and as a MILP problem. The problem is solved both with and without explicitly defining the slack variables.

M-files Used

mipAssign, tomRun and PrintResult.

See Also cplexTL and cplex.

C.6 cpxKnaps

Purpose

CPLEX Matlab Level 1 interface Knapsack test routine

Calling Syntax

cpxKnaps(P, Cut)

Description of Input

Р	Problem number 1-3. Default 1.

Cut strategy. 0 = no cuts, 1 = cuts, 2 = aggressive cuts. Default 0.

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

The CPLEX Matlab level 1 interface knapsack test routine runs three different test problems. It is possible to change cut strategy and use heuristics defined in callbacks.

Currently defined knapsack problems:

Problem	Name	Knapsacks	Variables
1	Weingartner 1	2	28
2	Hansen, Plateau 1	4	28
3	PB 4	2	29

M-files Used

cplex.m

C.7 cpxKnapsTL

Purpose

CPLEX Matlab Level 2 interface Knapsack test routine

Calling Syntax

cpxKnapsTL(P, Cut)

Description of Input

P	Problem number 1-3. Default 1.
Cut	Cut strategy. $0 = \text{no cuts}, 1 = \text{cuts}, 2 = \text{aggressive cuts}$. Default 0.

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

The CPLEX Matlab level 2 interface knapsack test routine runs three different test problems. It is possible to change cut strategy.

Currently defined knapsack problems:

Problem	Name	Knapsacks	Variables
1	Weingartner 1	2	28
2	Hansen, Plateau 1	4	28
3	PB 4	2	29

M-files Used

cplex.m

C.8 cpxSolutionPool

Purpose

Test of TOMLAB /CPLEX solution pool capabilities.

Calling Syntax

[x,f] = cpxSolutionPool;

Description

Exemplifies the use of the solution pool features in TOMLAB /CPLEX and the parameters associated with this, SOLNPOOLCAPACITY, SOLNPOOLGAP, SOLNPOOLINTENSITY and SOLNPOOLREPLACE.

C.9 cpxSolverTuning

Purpose

Test of TOMLAB /CPLEX solver tuning capabilities.

Calling Syntax

[cpxControl1, cpxControl2] = cpxSolverTuning;

Description

Exemplifies the use of the solver tuning features in TOMLAB /CPLEX and the parameters associated with this, TUNINGDISPLAY, TUNINGREPEAT, TUNINGTILIM and TUNINGMEASURE.

C.10 cpxTest1

Purpose

Test routine 1, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax

 $\mathbf{x} = \mathbf{cpxTest1}$

Global Parameters Used

MAX_x	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Running a generalized assignment problem (GAP) from Wolsey [1, 9.8.16, pp165]. In this test the linear sos1 constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), cxpTest1 is using the utility abc2gap to reformulate the problem into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy.

M-files Used

abc2gap.m,cplex.m

C.11 cpxTest2

Purpose

Test routine 2, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax

 $\mathbf{x} = \mathbf{cpxTest2}$

Global Parameters Used

MAX_x	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Running a generalized assignment problem (GAP) from Wolsey [1, 9.8.16, pp165]. In this test sos1 variables are used.

Given the matrices A (constraints) and C (costs), cpxTest2 is using the utility abc2gap to reformulate the problem into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy is applied.

M-files Used

abc2gap.m, cplex.m

See Also cpxTest3.m

C.12 cpxTest3

Purpose

Test routine 3, calls CPLEX Matlab level 1 interface to solve a GAP problem.

Calling Syntax

 $\mathbf{x}=\mathbf{cpxTest3}$

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Running a generalized assignment problem (GAP) from Wolsey [1, 9.6, pp159]. In this test the linear sos1 constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), cpxTest1 is using the utility abc2gap to reformulate the problem into the standard form suitable for CPLEX.

The number of iterations are increased, no presolve is used, and no cut strategy is used.

M-files Used

abc2gap.m, cplex.m

See Also cpxTest2

C.13 cpxTestQP1

Purpose

Simple test of calling CPLEX Matlab level 1 interface to solve a QP problem.

Calling Syntax

x = cpxTestQP1(MIP, DEFPARAM)

Description of Input

MIP If MIP = 1, run as a MIQP problem, trying to make the third variable integer valued. Otherwise run as a pure QP problem. Default MIP = 0.

DEFPARAM	If 1, use default CPLEX parameters for fastest execution.
	If 0, disable cuts and presolve for slower execution.

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20.

Description

Simple test of calling CPLEX Matlab level 1 interface to solve a QP or MIQP problem. The problem is

$$\begin{array}{ll} \min_{x} & f(x) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} \\ \text{subject to} & x_{1} + 2x_{2} - x_{3} & = & 4 \\ & x_{1} - x_{2} + x_{3} & = & -2 \\ & -10 \leq x_{i} \leq 10, \quad i = 1, 2, 3 \\ & x_{3} \text{ integer if } MIP \neq 0 \end{array}$$

M-files Used cplex.m

C.14 cpxTestQP2

Purpose

Simple test of calling CPLEX Matlab level 1 interface to solve a mixed integer quadratic (MIQP) problem.

Calling Syntax

x = cpxTestQP2(MIP)

Description of Input

- MIP If MIP = 1 (default), run as a MIQP problem, trying to make the first variable integer valued, otherwise run as a pure QP problem.
- DEFPARAMIf 1, use default parameters, presolve, cuts, dual simplex for fastest execution.If 0, do not use presolve or cuts.Choose Primal Simplex for slower execution.Default:0

Global Parameters Used

$MAX_{-}x$	Maximal number of x elements printed in output statements. Default 20.
$MAX_{-}c$	Maximal number of constraint elements printed in output statements. Default 20

Description

Simple test of MIQP problem running CPLEX. The problem is defined as

 $\min_{x} \quad f(x) = 2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2} - 6x_{1}$ $s/t \quad 0 \leq x_{1}, x_{2} \leq \infty$ $x_{1} + x_{2} \leq 1.9$

 x_1 integer if $MIP \neq 0$.

M-files Used cplex.m

C.15 cpxTestConflict

Purpose

Demonstration of the TOMLAB /CPLEX Conflict Refinement feature.

Calling Syntax

x = cpxTestConflict()

Description

Define the linear sos1 constraints explicitly. Modify a bound to produce an infeasibility and invoke CPLEX again with Conflict Refinement enabled.

D The Matlab Interface Routines - Callback Routines

D.1 cpxcb_BARRIER

CPLEX Barrier callback.

Called from TOMLAB /CPLEX when solving linear problems using the barrier algorithm.

This callback is enabled by setting callback(5) = 1 in the call to cplex.m, or Prob.MIP.callback(5) = 1 if using tomRun('cplex',...).

cpxcb_BARRIER is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

```
i cpxCBInfo(i)
                 - Value
 _____
1 PRIMAL_OBJ
                 - primal objective value
2 DUAL_OBJ
                 - dual objective value
3 PRIMAL_INFMEAS - measure of primal infeasibility
4 DUAL_INFMEAS
                 - measure of dual infeasibility
5 PRIMAL_FEAS
                 - 1 if primal feasible, 0 if not
6 DUAL_FEAS
                 - 1 if dual feasible, 0 if not
7 ITCOUNT
                 - iteration count
8 CROSSOVER_PPUSH - primal push crossover itn. count
9
  CROSSOVER_PEXCH - primal exchange crossover itn. count
10 CROSSOVER_DPUSH - dual push crossover itn. count
   CROSSOVER_DEXCH - dual exchange crossover itn. count
11
```

By returning a nonzero value from cpxcb_BARRIER, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.2 cpxcb_DISJCUT

CPLEX Disjunctive cut callback.

Called from TOMLAB /CPLEX during disjunctive cuts processing.

This callback is enabled by setting callback(10) = 1 in the call to cplex.m, or Prob.MIP.callback(10) = 1 if using tomRun('cplex',...).

 $cpxcb_DISJCUT$ is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1	BEST_INTEGER	_	obj. value of best integer solution
2	BEST_REMAINING	-	obj. value of best remaining node
3	NODE_COUNT	-	total number of nodes solved
4	NODES_LEFT	-	number of remaining nodes
5	MIP_ITERATIONS	-	total number of MIP iterations
6	MIP_FEAS	-	returns 1 if feasible solution exists; otherwise, 0
7	CUTOFF	-	updated cutoff value
8	CLIQUE_COUNT	-	number of clique cuts added
9	COVER_COUNT	-	number of cover cuts added
10	DISJCUT_COUNT	-	number of disjunctive cuts added
11	FLOWCOVER_COUNT	-	number of flow cover cuts added
12	FLOWPATH_COUNT	-	number of flow path cuts added
13	FRACCUT_COUNT	-	number of Gomory fractional cuts added
14	GUBCOVER_COUNT	-	number of GUB cover cuts added
15	IMPLBD_COUNT	-	number of implied bound cuts added
16	MIRCUT_COUNT	-	number of mixed integer rounding cuts added
17	PROBE_PHASE	-	current phase of probing (0-3)
18	PROBE_PROGRESS	-	fraction of probing phase completed (0.0-1.0)
19	FRACCUT_PROGRESS	-	fraction of Gomory cut generation for the pass completed $(0.0 - 1.0)$
20	DISJCUT_PROGRESS	-	fraction of disjunctive cut generation for the pass completed $(0.0 - 1)$
21	FLOWMIR_PROGRESS	-	fraction of flow cover and MIR cut generation for the pass completed (
22	MY_THREAD_NUM	-	identifier of the parallel thread making this call (always 0)
23	USER_THREADS	-	total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb_DISJCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.3 cpxcb_DUAL

CPLEX Dual simplex callback.

Called from TOMLAB /CPLEX when solving linear problems using the dual simplex algorithm.

This callback is enabled by setting callback(2) = 1 in the call to cplex.m, or Prob.MIP.callback(2) = 1 if using tomRun('cplex',...).

cpxcb_DUAL is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

4	DUAL_INFMEAS	-	measure of dual infeasibility
5	PRIMAL_FEAS	-	1 if primal feasible, 0 if not
6	DUAL_FEAS	-	1 if dual feasible, 0 if not
7	ITCOUNT	-	iteration count
8	CROSSOVER_PPUSH	-	primal push crossover itn. count
9	CROSSOVER_PEXCH	-	primal exchange crossover itn. count
10	CROSSOVER_DPUSH	-	dual push crossover itn. count
11	CROSSOVER_DEXCH	-	dual exchange crossover itn. count

By returning a nonzero value from cpxcb_DUAL, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.4 cpxcb_DUALCROSS

CPLEX Dual crossover callback.

Called from TOMLAB /CPLEX during the dual crossover algorithm.

This callback is enabled by setting callback(4) = 1 in the call to cplex.m, or Prob.MIP.callback(4) = 1 if using tomRun('cplex',...).

cpxcb_DUALCROSS is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

```
i cpxCBInfo(i)
                   - Value
                                         _____
1 PRIMAL_OBJ
                   - primal objective value
2 DUAL_OBJ
                   - dual objective value
3 PRIMAL_INFMEAS - measure of primal infeasibility
                  - measure of dual infeasibility
4 DUAL_INFMEAS
5 PRIMAL_FEAS
                   - 1 if primal feasible, 0 if not
6 DUAL_FEAS
                   - 1 if dual feasible, 0 if not
7 ITCOUNT
                   - iteration count
8 CROSSOVER_PPUSH - primal push crossover itn. count
9 CROSSOVER_PEXCH - primal exchange crossover itn. count
10 CROSSOVER_DPUSH - dual push crossover itn. count
11 CROSSOVER_DEXCH - dual exchange crossover itn. count
```

By returning a nonzero value from cpxcb_DUALCROSS, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.5 cpxcb_FLOWMIR

CPLEX Mixed integer rounding cut callback.

Called from TOMLAB /CPLEX during Mixed integer rounding cuts processing.

This callback is enabled by setting callback(11) = 1 in the call to cplex.m, or Prob.MIP.callback(11) = 1 if using tomRun('cplex',...).

cpxcb_FLOWMIR is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i 	cpxCBInfo(i)	- Value
1	BEST_INTEGER	- obj. value of best integer solution
2	BEST_REMAINING	- obj. value of best remaining node
3	NODE_COUNT	- total number of nodes solved
4	NODES_LEFT	- number of remaining nodes
5	MIP_ITERATIONS	- total number of MIP iterations
6	MIP_FEAS	- returns 1 if feasible solution exists; otherwise, 0
7	CUTOFF	- updated cutoff value
8	CLIQUE_COUNT	- number of clique cuts added
9	COVER_COUNT	- number of cover cuts added
10	DISJCUT_COUNT	- number of disjunctive cuts added
11	FLOWCOVER_COUNT	- number of flow cover cuts added
12	FLOWPATH_COUNT	- number of flow path cuts added
13	FRACCUT_COUNT	- number of Gomory fractional cuts added
14	GUBCOVER_COUNT	- number of GUB cover cuts added
15	IMPLBD_COUNT	- number of implied bound cuts added
16	MIRCUT_COUNT	- number of mixed integer rounding cuts added
17	PROBE_PHASE	- current phase of probing (0-3)
18	PROBE_PROGRESS	- fraction of probing phase completed (0.0-1.0)
19	FRACCUT_PROGRESS	- fraction of Gomory cut generation for the pass completed $(0.0 - 1.0)$
20	DISJCUT_PROGRESS	- fraction of disjunctive cut generation for the pass completed $(0.0 - 1.0)$
21	FLOWMIR_PROGRESS	- fraction of flow cover and MIR cut generation for the pass completed $(0.0 - 1.0)$
22	MY_THREAD_NUM	- identifier of the parallel thread making this call (always 0)
23	USER_THREADS	- total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb_FLOWMIR, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.6 cpxcb_FRACCUT

CPLEX Gomory fractional cut callback.

Called from TOMLAB /CPLEX during Gomory fractional cuts processing

This callback is enabled by setting callback(9) = 1 in the call to cplex.m, or Prob.MIP.callback(9) = 1 if using tomRun('cplex',...).

cpxcb_FRACCUT is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i	cpxCBInfo(i)	- Value
1	BEST_INTEGER	- obj. value of best integer solution
2	BEST_REMAINING	- obj. value of best remaining node
3	NODE_COUNT	- total number of nodes solved
4	NODES_LEFT	- number of remaining nodes
5	MIP_ITERATIONS	- total number of MIP iterations
6	MIP_FEAS	- returns 1 if feasible solution exists; otherwise, 0
7	CUTOFF	- updated cutoff value
8	CLIQUE_COUNT	- number of clique cuts added
9	COVER_COUNT	- number of cover cuts added
10	DISJCUT_COUNT	- number of disjunctive cuts added
11	FLOWCOVER_COUNT	- number of flow cover cuts added
12	FLOWPATH_COUNT	- number of flow path cuts added
13	FRACCUT_COUNT	- number of Gomory fractional cuts added
14	GUBCOVER_COUNT	- number of GUB cover cuts added
15	IMPLBD_COUNT	- number of implied bound cuts added
16	MIRCUT_COUNT	- number of mixed integer rounding cuts added
17	PROBE_PHASE	- current phase of probing (0-3)
18	PROBE_PROGRESS	- fraction of probing phase completed (0.0-1.0)
19	FRACCUT_PROGRESS	- fraction of Gomory cut generation for the pass completed $(0.0 - 1.0)$
20	DISJCUT_PROGRESS	- fraction of disjunctive cut generation for the pass completed (0.0 - 1.0)
21	FLOWMIR_PROGRESS	- fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0)
22	MY_THREAD_NUM	- identifier of the parallel thread making this call (always 0)
23	USER_THREADS	- total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb_FRACCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.7 cpxcb_MIP

CPLEX MIP callback.

Called from TOMLAB /CPLEX during mixed integer optimization.

This callback is enabled by setting callback(7) = 1 in the call to cplex.m, or Prob.MIP.callback(7) = 1 if using tomRun('cplex',...).

cpxcb_MIP is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1	BEST_INTEGER	-	obj. value of best integer solution
2	BEST_REMAINING	-	obj. value of best remaining node
3	NODE_COUNT	-	total number of nodes solved
4	NODES_LEFT	-	number of remaining nodes
5	MIP_ITERATIONS	-	total number of MIP iterations
6	MIP_FEAS	-	returns 1 if feasible solution exists; otherwise, 0
7	CUTOFF	-	updated cutoff value
8	CLIQUE_COUNT	-	number of clique cuts added
9	COVER_COUNT	-	number of cover cuts added
10	DISJCUT_COUNT	-	number of disjunctive cuts added
11	FLOWCOVER_COUNT	-	number of flow cover cuts added
12	FLOWPATH_COUNT	-	number of flow path cuts added
13	FRACCUT_COUNT	-	number of Gomory fractional cuts added
14	GUBCOVER_COUNT	-	number of GUB cover cuts added
15	IMPLBD_COUNT	-	number of implied bound cuts added
16	MIRCUT_COUNT	-	number of mixed integer rounding cuts added
17	PROBE_PHASE	-	current phase of probing (0-3)
18	PROBE_PROGRESS	-	fraction of probing phase completed (0.0-1.0)
19	FRACCUT_PROGRESS	-	fraction of Gomory cut generation for the pass completed $(0.0 - 1.0)$
20	DISJCUT_PROGRESS	-	fraction of disjunctive cut generation for the pass completed $(0.0 - 1.0)$
21	FLOWMIR_PROGRESS	-	fraction of flow cover and MIR cut generation for the pass completed $(0.0 - 1.0)$
22	MY_THREAD_NUM	-	identifier of the parallel thread making this call (always 0)
23	USER_THREADS	-	total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb_MIP, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.8 cpxcb_MIPPROBE

CPLEX MIP Probe and Clique Merging callback.

Called from TOMLAB /CPLEX during MIP Probing and Clique Merging.

This callback is enabled by setting callback(8) = 1 in the call to cplex.m, or Prob.MIP.callback(8) = 1 if using tomRun('cplex',...).

cpxcb_MIPPROBE is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i	i cpxCBInfo(i)		- Value						
1	BEST_INTEGER	_	obj.	value	of	best	integer	solution	•

2	BEST_REMAINING	-	obj. value of best remaining node
3	NODE_COUNT	-	total number of nodes solved
4	NODES_LEFT	-	number of remaining nodes
5	MIP_ITERATIONS	-	total number of MIP iterations
6	MIP_FEAS	-	returns 1 if feasible solution exists; otherwise, 0
7	CUTOFF	-	updated cutoff value
8	CLIQUE_COUNT	-	number of clique cuts added
9	COVER_COUNT	-	number of cover cuts added
10	DISJCUT_COUNT	-	number of disjunctive cuts added
11	FLOWCOVER_COUNT	-	number of flow cover cuts added
12	FLOWPATH_COUNT	-	number of flow path cuts added
13	FRACCUT_COUNT	-	number of Gomory fractional cuts added
14	GUBCOVER_COUNT	-	number of GUB cover cuts added
15	IMPLBD_COUNT	-	number of implied bound cuts added
16	MIRCUT_COUNT	-	number of mixed integer rounding cuts added
17	PROBE_PHASE	-	current phase of probing (0-3)
18	PROBE_PROGRESS	-	fraction of probing phase completed (0.0-1.0)
19	FRACCUT_PROGRESS	-	fraction of Gomory cut generation for the pass completed $(0.0 - 1.0)$
20	DISJCUT_PROGRESS	-	fraction of disjunctive cut generation for the pass completed $(0.0 - 1.0)$
21	FLOWMIR_PROGRESS	-	fraction of flow cover and MIR cut generation for the pass completed (0.0 - 1.0) $$
22	MY_THREAD_NUM	-	identifier of the parallel thread making this call (always 0)
23	USER_THREADS	-	total number of parallel threads currently running (always 1)

By returning a nonzero value from cpxcb_MIPPROBE, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.9 cpxcb_PRESOLVE

CPLEX Presolve callback.

Called at regular intervals from TOMLAB /CPLEX during presolve.

This callback is enabled by setting callback(6) = 1 in the call to cplex.m, or Prob.MIP.callback(6) = 1 if using tomRun('cplex',...).

cpxcb_PRESOLVE is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo variable:

i cpxCBInfo(i) - Value

1	PRESOLVE_ROWSGONE -	number	of	rows	eliminated
---	---------------------	--------	----	------	------------

- 2 PRESOLVE_COLSGONE number of columns eliminated
- 3 PRESOLVE_AGGSUBST number of aggregator substitutions
- 4 PRESOLVE_COEFFS number of modified coefficients

By returning a nonzero value from cpxcb_PRESOLVE, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.10 cpxcb_PRIM

CPLEX Primal simplex callback

Called from TOMLAB /CPLEX when solving linear problems using the primal simplex algorithm.

This callback is enabled by setting callback(1) = 1 in the call to cplex.m, or Prob.MIP.callback(1) = 1 if using tomRun('cplex',...).

cpxcb_PRIM is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

```
i cpxCBInfo(i)
                   - Value
1 PRIMAL_OBJ
                   - primal objective value
2 DUAL_OBJ
                   - dual objective value
3 PRIMAL_INFMEAS - measure of primal infeasibility
4 DUAL_INFMEAS
                   - measure of dual infeasibility
5 PRIMAL_FEAS
                   - 1 if primal feasible, 0 if not
6 DUAL_FEAS
                   - 1 if dual feasible, 0 if not
7 ITCOUNT
                   - iteration count
8 CROSSOVER_PPUSH - primal push crossover itn. count
9 CROSSOVER_PEXCH - primal exchange crossover itn. count
10 CROSSOVER_DPUSH - dual push crossover itn. count
11 CROSSOVER_DEXCH - dual exchange crossover itn. count
```

By returning a nonzero value from cpxcb_PRIM, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.11 cpxcb_PRIMCROSS

CPLEX Primal crossover callback

Called from TOMLAB /CPLEX during the primal crossover algorithm.

This callback is enabled by setting callback(3) = 1 in the call to cplex.m, or Prob.MIP.callback(3) = 1 if using tomRun('cplex',...).

cpxcb_PRIMCROSS is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i	cpxCBInfo(i)	-	Value
1	PRIMAL OBJ	_	primal objective value
2	DUAL_OBJ	_	dual objective value
3	PRIMAL_INFMEAS	-	measure of primal infeasibility
4	DUAL_INFMEAS	-	measure of dual infeasibility
5	PRIMAL_FEAS	-	1 if primal feasible, 0 if not
6	DUAL_FEAS	-	1 if dual feasible, 0 if not
7	ITCOUNT	-	iteration count
8	CROSSOVER_PPUSH	-	primal push crossover itn. count
9	CROSSOVER_PEXCH	-	primal exchange crossover itn. count
10	CROSSOVER_DPUSH	-	dual push crossover itn. count
11	CROSSOVER_DEXCH	-	dual exchange crossover itn. count

By returning a nonzero value from cpxcb_PRIMCROSS, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.12 cpxcb_QPBARRIER

CPLEX Quadratic Barrier callback.

Called from TOMLAB /CPLEX when solving quadratic problems using the barrier algorithm.

This callback is enabled by setting callback(12) = 1 in the call to cplex.m, or Prob.MIP.callback(12) = 1 if using tomRun('cplex',...).

cpxcb_QPBARRIER is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i	cpxCBInfo(i)	-	Value
1	PRIMAL_OBJ	-	primal objective value
2	DUAL_OBJ	-	dual objective value
3	PRIMAL_INFMEAS	-	measure of primal infeasibility
4	DUAL_INFMEAS	-	measure of dual infeasibility
5	PRIMAL_FEAS	-	1 if primal feasible, 0 if not
6	DUAL_FEAS	-	1 if dual feasible, 0 if not
7	ITCOUNT	-	iteration count
8	CROSSOVER_PPUSH	-	primal push crossover itn. count
9	CROSSOVER_PEXCH	-	primal exchange crossover itn. count
10	CROSSOVER_DPUSH	-	dual push crossover itn. count
11	CROSSOVER_DEXCH	-	dual exchange crossover itn. count

By returning a nonzero value from cpxcb_QPBARRIER, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.13 cpxcb_QPSIMPLEX

CPLEX Quadratic Simplex callback.

Called from TOMLAB /CPLEX when solving quadratic problems using the simplex algorithm.

This callback is enabled by setting callback(13) = 1 in the call to cplex.m, or Prob.MIP.callback(13) = 1 if using tomRun('cplex',...).

cpxcb_QPSIMPLEX is called with one argument, the cpxCBInfo progress information vector.

Contents of cpxCBInfo vector:

i	cpxCBInfo(i)	-	Value
1	PRIMAL_OBJ	-	primal objective value
2	DUAL_OBJ	-	dual objective value
3	PRIMAL_INFMEAS	-	measure of primal infeasibility
4	DUAL_INFMEAS	-	measure of dual infeasibility
5	PRIMAL_FEAS	-	1 if primal feasible, 0 if not
6	DUAL_FEAS	-	1 if dual feasible, 0 if not
7	ITCOUNT	-	iteration count
8	CROSSOVER_PPUSH	-	primal push crossover itn. count
9	CROSSOVER_PEXCH	-	primal exchange crossover itn. count
10	CROSSOVER_DPUSH	-	dual push crossover itn. count
11	CROSSOVER_DEXCH	-	dual exchange crossover itn. count

By returning a nonzero value from cpxcb_QPSIMPLEX, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.14 cpxcb_INCUMBENT

CPLEX MIP Incumbent callback.

Called from TOMLAB /CPLEX during mixed integer optimization when a new integer solution has been found but before this solution has replaced the current best known integer solution.

This file can be used to perform any desired analysis of the new integer solution and return a status flag to the solver deciding whether to stop or continue the optimization, and also whether to accept or discard the newly found solution.

This callback is enabled by setting callback(14)=1 in the call to *cplex.m*, or *Prob.MIP.callback*(14)=1 if using tomRun('cplex',...).

cpxcb_INCUMBENT is called by the solver with three arguments:

- x The new integer solution
- f The objective value at **x**
- Prob The TOMLAB problem structure

cpxcb_INCUMBENT should return one of the following scalar values:

- 0 Continue optimization and accept new integer solution
- 1 Continue optimization but discard new integer solution
- 2 Stop optimization and accept new integer solution
- 3 Stop optimization and discard new integer solution

Any other return value will be interpreted as 0.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path.

D.15 cpxcb_USERCUT

CPLEX MIP User cut callback.

The User Cut Callback is enabled by setting callback(15) = 1 in the call to cplex.m, or Prob.MIP.callback(15) = 1 if using tomRun('cplex',...)

This callback is called by CPLEX during MIP branch & cut for every node that has an LP optimal solution with objective value below the cutoff and is integer infeasible. CPLEX also calls the callback when comparing an integer feasible solution, including one provided by a MIP start before any nodes exist, against lazy constraints.

The callback routine can add globally valid cuts to the LP subproblem. A cut is a constraint of the following form: c1 * x(1) + c2 * x(2) + ... + cn * x(n) < ? > rhs

where <?> is exactly one of the relations <=,>= or = and rhs is a scalar right hand side limit.

By returning a nonzero value from cpxcb_USERCUT, the user can terminate the optimization.

If modifying this file, it is recommended to make a copy of it which is placed before the original file in the MATLAB path. See *help cpxcb_USERCUT* for more information.

D.16 cpxcb_NET

Further details to be added.

E TOMLAB / CPLEX Network Solver

The TOMLAB /CPLEX network solver is a special interface for network problems described by a set of nodes and arcs. The TOMLAB format is not applicable for these types of problem. See *cplexnet* for information on calling the solver.

A network-flow problem finds the minimal-cost flow through a network, where a network consists of a set N of nodes and a set A of arcs connecting the nodes. An arc a in the set A is an ordered pair (i, j) where i and j are nodes in the set N; node i is called the tail or the from-node and node j is called the head or the to-node of the arc a. Not all the pairs of nodes in a set N are necessarily connected by arcs in the set A. More than one arc may connect a pair of nodes; in other words, a1 = (i, j) and a2 = (i, j) may be two different arcs in A, both connecting the nodes i and j in N.

Each arc a may be associated with four values:

- x_a is the flow value, that is, the amount passing through the arc a from its tail (or from-node) to its head (or to-node). The flow values are the modeling variables of a network-flow problem. Negative values are allowed; a negative flow value indicates that there is flow from the head to the tail.
- l_a , the lower bound, determines the minimum flow allowed through the arc a. By default, the lower bound on an arc is 0 (zero).
- u_a , the upper bound, determines the maximum flow allowed through the arc a. By default, the upper bound on an arc is positive infinity.
- c_a , the objective value, determines the contribution to the objective function of one unit of flow through the arc.

Each node n is associated with one value:

• s_n is the supply value at node n.

By convention, a node with strictly positive supply value (that is, $s_n > 0$) is called a supply node or a source, and a node with strictly negative supply value (that is, $s_n < 0$) is called a demand node or a sink. A node where $s_n = 0$ is called a transshipment node. The sum of all supplies must match the sum of all demands; if not, then the network flow problem is infeasible.

 T_n is the set of arcs whose tails are node n; H_n is the set of arcs whose heads are node n. The usual form of a network problem looks like this:

$$\min_{x} \sum_{a \in A} c_{a} x_{a}
s/t \sum_{a \in T_{a}} x_{a} - \sum_{a \in H_{a}} x_{a} = s_{n} \forall n \in N
l_{a} \leq x_{a} \leq u_{a}$$
(1)

A test routines that illustrates a simple problem is included in the TOMLAB distribution. Figure 1 shows the network problem solved:

The following code will call the network solver and deliver the optimal solution.

Figure 1: Network problem in cpxNetTest1.m

x = cpxNetTest1;

It is possible to call the TOMLAB /CPLEX solver using a special non-MATLAB input format. Example *cpxNetTest2* illustrates how to load and solve the problem described in *nexample.net*.

E.1 cplexnet

Purpose

The Network Interface. It solves network programming (NP) problems. Equation 1 describes the problem structure.

Calling Syntax

 $[x, slack, v, rc, f_k, Inform, Iter] = cplexnet(obj, ub, lb, tail, head, supply, callback, PriLev, BIG, cpxControl, logfile, savefile, savemode, netfile);$

Description of Inputs

Problem inputs. The following fields are used:

obj	Objective function cost coefficients for the arcs
ub	Upper bounds for the arcs.
lb	Lower bounds for the arcs.
tail	Indices for the tails (start).
head	Indices for the heads (end).

Problem inputs. The following fields are used:, continued

supply The supply and demand vector for the nodes.

The following parameters are optional:

callback	Logical scalar defining if callback is used in CPLEX callback = 1 activates the callback. See TOMLAB /CPLEX User's Guide. The callback calls the m-file specified below. The user may edit this file, or make a new copy, which is put before in the Matlab path.
PriLev	Printing level in $cplex.m$ file and the CPLEX C-interface. = 0 Silent
	= 1 Warnings and Errors = 2 Summary information
	= 3 More detailed information
BIG	Defines default lower and upper bounds, default 1E20.
210	= 0 Silent
	= 1 Warnings and Errors
	= 2 Summary information
	= 3 More detailed information
	> 10 Pause statements, and maximal printing (debug mode)
cpxControl	Structure, where the fields are set to the CPLEX parameters that the user wants to specify
	values for. The following parameters are the only ones of general interest. Default values are recommended:
NETITLIM	Limits the number of iterations that the network optimizer performs. Default BIGINT.
NETEPOPT	Optimality tolerance for the network optimizer. The optimality tolerance specifies the amount a reduced cost may violate the criterion for an optimal solution. Default 1e-6. Valid values from 1e-11 to 1e-1.
NETEPRHS	Feasibility tolerance for the network optimizer. The feasibility tolerance specifies the de- gree to which a problem's flow value may violate its bounds. This tolerance influences the selection of an optimal basis and can be reset to a higher value when a problem is having
	difficulty maintaining feasibility during optimization. You may also wish to lower this toler- ance after finding an optimal solution if there is any doubt that the solution is truly optimal. If the feasibility tolerance is set too low, CPLEX may falsely conclude that a problem is infeasible. If you encounter reports of infeasibility in the optimization, a small adjustment in the feasibility tolerance may improve performance. Default 1e-6. Valid values from 1e-11 to 1e-1
NETPPRIIND	Pricing algorithm for the network optimizer. On the rare occasions when the network optimizer seems to take too long to find a solution, you may want to change the pricing algorithm to try to speed up computation. All the choices use variations of partial reduced- cost pricing. NETPPRIIND = 0: automatic, default (same as 3) NETPPRIIND = 1: Partial pricing. NETPPRIIND = 2: Multiple partial pricing.
	METPPRIMD = 3: Multiple partial pricing with sorting.

Problem inputs. The following fields are used:, continued

NETFIND	The CPLEX network extractor searches an LP constraint matrix for a submatrix with the following characteristics:
	- the coefficients of the submatrix are all 0 (zero), 1 (one), or -1 (minus one);
	- each variable appears in at most two rows with at most one coefficient of $+1$ and at most
	one coefficient of -1.
	CPLEX can perform different levels of extraction. The level it performs depends on the
	NETFIND parameter.
	NETFIND = 1: CPLEX extracts only the obvious network; it uses no scaling; it scans rows
	in their natural order; it stops extraction as soon as no more rows can be added to the
	network found so far.
	NETFIND = 2: Default. CPLEX also uses reflection scaling (that is, it multiplies rows by
	-1) in an attempt to extract a larger network.
	NETFIND = 3: CPLEX uses general scaling, rescaling both rows and columns, in an attempt
	to extract a larger network.
	In terms of total solution time expended, it may or may not be advantageous to extract
	the largest possible network. Characteristics of your problem will determine the tradeoff
	between network size and the number of simplex iterations required to finish solving the
	model after solving the embedded network.
	Even if your problem does not conform precisely to network conventions, the network op-
	timizer may still be advantageous to use. When it is possible to transform the original
	statement of a linear program into network conventions by these algebraic operations:
	- changing the signs of coefficients.
	- multiplying constraints by constants.
	- rescaling columns.
	- adding or eliminating redundant relations.
	then CPLEX will carry out such transformations automatically if you set the NETFIND
	parameter appropriately.
PREPASS	If your LP problem includes network structures, there is a possibility that CPLEX pre- processing may eliminate those structures from your model. For that reason, you should consider turning off preprocessing before you invoke the network optimizer on a problem.
	PREPASS = -1: Default. Determined automatically.
	PREPASS = 0: Do not use Presolve.
logfile	Name of file to write the CPLEX log information to. If empty, no log is written.
savefile	Name of a file to save the CPLEX problem object. This is useful for sending problems to ILOG for analysis. The format of the file is controlled by the <i>savemode</i> . If empty, no file is written.
save mode	The format of the file given in <i>savefile</i> is possible to choose by setting <i>savemode</i> to one of the following values:

Problem inputs. The following fields are used:, continued

1	SAV	Binary SAV format
2	MPS	MPS format (ASCII)
3	LP	CPLEX LP format (ASCII)
4	RMP	MPS file with generic names
5	REW	MPS file with generic names
6	RLP	LP file with generic names

Modes 4-6 are of limited interest, since the TOMLAB interface does not provide a way to change the default row names.

netfile File for input.

Description of Outputs

Result structure. The following fields are used:

x	Solution vector x with decision variable values $(n \times 1 \text{ vector})$.
slack	Slack variables $(m \times 1 \text{ vector})$.
v	Lagrangian multipliers (dual solution vector) ($m \times 1$ vector).
rc	Reduced costs. Lagrangian multipliers for simple bounds on x .
$f_{-}k$	Objective function value $f(x) = c^T * x$ at optimum.
Inform	Result of CPLEX run. See the m-file help.

Iter Number of iterations.

F Conflict refiner, IIS, SA and Warm Start

It is possible to perform infeasibility and sensitivity analysis with TOMLAB /CPLEX. The inputs and outputs are described in detail in Section A.1 and A.2.

F.1 Conflict refiner

A conflict is a set of mutually contradictory constraints and bounds within a model. Given an infeasible model, TOMLAB /CPLEX can identify conflicting constraints and bounds within it. TOMLAB /CPLEX refines an infeasible model by examining elements that can be removed from the conflict to arrive at a minimal conflict. A conflict smaller than the full model may make it easier for the user to analyze the source of infeasibilities in the original model.

If the model happens to contain multiple independent causes of infeasibility, it may be necessary for the user to repair one cause and then repeat the process with a further refinement.

A file included in the TOMLAB distribution to enable easy use of the feature.

F.1.1 cpxBuildConflict

Purpose

cpxBuildConflict provides a shortcut for generating conflict refinement groups, for use with the Conflict Refinement feature of TOMLAB /CPLEX.

Calling Syntax

(1) function confgrps = cpxBuildConflict(Prob,mode)
OR
(2) function confgrps = cpxBuildConflict(n,m_lin,m_quad,m_sos,m_ind,'mode')

Description of Inputs

The following inputs are used:

Inputs for (1): function confgrps = cpxBuildConflict(Prob,mode

Prob TOMLAB problem structure, describing a LP/QP/MILP/MIQP/MIQQ problem.

mode String indicating which type of conflict group set is desired.
 A 'full' conflict group set will consist of one group for each individual variable (upper+lower bound), linear, quadratic, sos and indicator constraint in the problem. This will be very large group set.
 A 'minimal' set consists of at the most 6 groups: one each for all variable lower+upper

A 'minimal' set consists of at the most 6 groups: one each for all variable lower+upper bounds, linear, sos, indicator, quad constraints.

Inputs for (2): function confgrps = $cpxBuildConflict(n,m_lin,m_quad,m_sos,m_ind,'mode')$

The following inputs are used:, continued

n	Number of variables
m_lin	Number of linear constraints
$m_{-}quad$	Number of quadratic constraints
m_sos	Number of SOS constraints
m_ind	Number of indicator constraints
mode	Mode indicator as described above

Description

The configrps is used as an input to cplex.m or cplexTL.m.

F.2 IIS

IIS is obsolete in the latest version of TOMLAB /CPLEX.

If TOMLAB /CPLEX reports that your problem is infeasible, then you can invoke the TOMLAB /CPLEX infeasibility finder to help you analyze the source of the infeasibility. This diagnostic tool computes a set of infeasible constraints and column bounds that would be feasible if one of them (a constraint or variable) were removed. Such a set is known as an irreducibly inconsistent set (IIS).

To work, the infeasibility finder must have a problem that satisfies two conditions:

- the problem has been optimized by the primal or dual simplex optimizer or by the barrier optimizer with crossover, and
- the optimizer has terminated with a declaration of infeasibility.

Correcting Multiple Infeasibilities

The infeasibility finder will find only one irreducibly inconsistent set (IIS), though a given problem may contain many independent IISs. Consequently, even after you detect and correct one such IIS in your problem, it may still remain infeasible. In such a case, you need to run the infeasibility finder more than once to detect those multiple causes of infeasibility in your problem.

Interpreting IIS Output

The size of the IIS reported by TOMLAB /CPLEX depends on many factors in the model. If an IIS contains hundreds of rows and columns, you may find it hard to determine the cause of the infeasibility. Fortunately, there are tactics to help you interpret IIS output:

- Consider selecting an alternative IIS algorithm. The default algorithm emphasizes computation speed, and it may give rise to a relatively large IIS. See parameter IISIND.
- If the problem contains equality constraints, examine the cumulative constraint consisting of the sum of the equality rows.
- Try preprocessing with the TOMLAB /CPLEX presolver and aggregator. The presolver may even detect infeasibility by itself. If not, running the infeasibility finder on the presolved problem may help by reducing
the problem size and removing extraneous constraints that do not directly cause the infeasibility but still appear in the IIS. Similarly, running the infeasibility finder on an aggregated problem may help because the aggregator performs substitutions that may remove extraneous variables that clutter the IIS output. More generally, if you perform substitutions, you may simplify the output so that it can be interpreted more easily.

• Other simplifications of the constraints in the IIS, such as combining variables, multiplying constraints by constants, and rearranging sums, may make it easier to interpret the IIS.

F.3 SA

The availability of a basis for an LP allows you to perform sensitivity analysis for your model, if it is an LP. Such analysis tells you by how much you can modify your model without affecting the solution you found. The modifications supported by the sensitivity analysis function include bound changes, changes of the right hand side vector and changes of the objective function.

F.4 Warm Start

When solving a large number of small and similar LP problems with the same size it is recommended to use TOMLAB /CPLEX in a slightly different manner to avoid unnecessary overhead and preserve memory.

This objective is achieved by calling *cplexmex* directly as done internally in *cplex*.

A call to *cplexmex* will return a basis, which can be used to efficiently warm start the solution process of a modified problem. The following code exemplifies the process. In general it is recommended to use the TOMLAB format as well and compare solutions to make sure that the problem is correctly entered.

```
% See cplex.m to backtrack the inputs.
%
Prob = lpAssign(...);
PriLev = 0;
basis = [];
[x, slack, v, rc, f_k, ninf, sinf, Inform, basis] = ...
cplexmex(Prob.QP.c, sparse([]), sparse(Prob.A), zeros(12,1) , ...
Prob.x_L, Prob.x_U, Prob.b_L, Prob.b_U, 1e20, 1, PriLev, Prob, ...
               zeros(Prob.N,1), [], [], [], [], [], [], [], ...
               [], [], [], [], [], [], [], basis, [], []);
% Change the problem and input the basis returned above
Prob.x_L(1) = 2;
[x, slack, v, rc, f_k, ninf, sinf, Inform, basis] = ...
cplexmex(Prob.QP.c, sparse([]), sparse(Prob.A), zeros(12,1) , ...
Prob.x_L, Prob.x_U, Prob.b_L, Prob.b_U, 1e20, 1, PriLev, Prob, ...
               zeros(Prob.N,1), [], [], [], [], [], [], [], ...
               [], [], [], [], [], [], [], basis, [], []);
```

F.5 Solution Pool

The solution pool is used for storing multiple solutions to a mixed integer programming problem (MILP, MIQP and MIQQ). Typically the feature is used for obtaining multiple solutions to help facilitate a selection based on post-processing criteria.

The parameters of interest are listed in Section G and start with $SOLNPOOL^*$ (also POPULATELIM is relevant). To enable the collection the following code could be used:

```
% Store up to 20 solutions.
Prob.MIP.cpxControl.SOLNPOOLCAPACITY = 20;
% Use very aggressive collection
Prob.MIP.cpxControl.SOLNPOOLINTENSITY = 4;
% Build diverse set
Prob.MIP.cpxControl.SOLNPOOLREPLACE = 3;
```

The effect of SOLNPOOLINTENSITY is to increase the amount of effort spent setting up the branch and cut tree to prepare for the solution generation.

The details about the settings are as follows:

- Its default value, 0 (zero), lets CPLEX choose which intensity to apply.
- For value 1 (one), the performance of MIP optimization is not affected. There is no slowdown and no additional consumption of memory due to this setting. However, populate will quickly generate only a small number of solutions. Generating more than a few solutions with this setting will be slow. When you are looking for a larger number of solutions, use a higher value of this parameter.
- For value 2, some information is stored in the branch and cut tree so that it is easier to generate a larger number of solutions. This storage has an impact on memory used but does not lead to a slowdown in the performance of MIP optimization.
- For value 3, the algorithm is more aggressive in computing and storing information in order to generate a large number of solutions. Compared to values 1 (one) and 2, this value will generate a larger number of solutions, but it will slow MIP optimization and increase memory consumption. Use this value only if setting this parameter to 2 does not generate enough solutions.
- For value 4, the algorithm generates all solutions to your model. Even for small models, the number of possible solutions is likely to be huge; thus enumerating all of them will take time and consume a large quantity of memory. In this case, remember to set the populate limit parameter (POPULATELIM) to a value appropriate for your model; otherwise, the populate procedure will stop prematurely because of this stopping criterion instead of enumerating all solutions.

The solutions are stores in *Result.x_k* column-wise, with corresponding objective functions in *Result.f_k*.

G CPLEX Parameters Interface

G.1 Setting CPLEX Parameters in Matlab

The behavior of the CPLEX solver is controlled by means of a large number of *parameters*. It is possible to set all of these parameters from Matlab.

If using the *cplexTL* interface for solving problems defined in a TOMLAB *Prob* structure, the field *Prob.MIP.cpxControl* is used to set values for parameters. The user needs to set only those parameters that he/she wants to change.

The non-TOMLAB format cplex.m interface has a corresponding input parameter, cpxControl.

When setting parameter values in the cpxControl structure, this prefix should be omitted. For example, to set the iterations for the dual simplex optimizer do:

>> cpxControl.ITLIM = 1000;
>> cpxControl.LPMETHOD = 2;

The complete list of CPLEX parameters are given in Table 17 on pages 76–104.

G.2 The CPLEX Parameter Table

Table 17:	CPLEX	Parameters	Overview

TOMLAB parameter	Value	
cpxControl.ADVIND	0 Off: do not use advanced start information	
	1 On: CPLEX will use an advanced basis	
	supplied by the user	
	2 On: CPLEX will crush an advanced basis	
	or starting vector supplied by the user	
	Default: 0	
Description: An indicator which	, if set to 1 or 2, uses advanced starting information when optimization is	
initiated. Setting 2 may be effective	e for MIPs in which the percentage of integer constraints is low. It may also	
reduce the solution time of fixed M	dPs.	
cpxControl.AGGCUTLIM	Any non-negative integer.	
	Default: 3	
Description: Constraint aggregat	ion limit for cut generation. Limits the number of constraints that can be	
aggregated for generating flow cove	er and mixed integer rounding cuts	
cpxControl.AGGFILL	Any non-negative integer	
	Default: 10	
Description: Preprocessing aggre	gator fill. Limits variable substitutions by the aggregator. If the net result	
of a single substitution is more nor	zeros than this value, the substitution is not made.	
cpxControl.AGGIND	-1 Automatic (1 for LP, infinite for MIP)	
	0 Do not use any aggregator	
	Any positive integer	
	Default: -1	
Description: Preprocessing aggre	egator application limit. Invokes the aggregator to use substitution where	
possible to reduce the number of re	bws and columns before the problem is solved. If set to a positive value, the	
aggregator is applied the specified	number of times or until no more reductions are possible.	
cpxControl.BARALG	0 Default setting	
	1 Infeasibility-estimate start	
	2 Infeasibility-constant start	
	3 Standard barrier	
	Default: 0	
Description: Barrier algorithm.		
I ne default setting U uses the "infeasibility - estimate start" algorithm (setting I) when solving sub-problems		
in a Mixed Integer Programming problem, and the standard barrier algorithm (setting 3) in other cases. The		
(common for Mixed Integer sub problems), the standard algorithm may not work as well as the alternatives		
The two alternative algorithms (settings 1 and 2) may eliminate numerical difficulties related to infeasibility.		
standard barrier algorithm is almost always fastest. However, on problems that are primal or dual infeasible (common for Mixed Integer sub-problems), the standard algorithm may not work as well as the alternatives. The two alternative algorithms (settings 1 and 2) may eliminate numerical difficulties related to infeasibility,		

but are generally slower.

TOMLAB parameter	Value	
cpxControl.BARCOLNZ	0 Dynamically calculated or,	
	any positive integer	
	Default: 0	
Description: Barrier column non	zeros.	
ortrigg than this value, such solu	numins. If columns in the presolved and aggregated problem exist with more	
Optimizer to reduce their effect. I	the problem contains fewer than 400 rows, dense column handling is NOT	
initiated.	the problem contains lewer than 400 rows, dense column handling is root	
CDYCODTROL BABCBOSSALG	-1 No crossover	
	0 Automatic	
	1 Primal crossover	
	2 Dual crossover	
	Default: 0	
Description: Barrier crossover m	ethod.	
Determines which, if any, crossover	method is performed at the end of a Barrier optimization.	
cpxControl.BARDISPLAY	0 No progress information	
	1 Normal setup and iteration information	
	2 Diagnostic information	
Descriptions Demise disaless info	Default: 1	
Description: Barrier display info	rmation.	
	A numeric structure $> 10^{-12}$	
CPXCONTFOL.BAREPCUMP	Any positive number $\geq 10^{-12}$	
	Default: 10^{-8}	
Description: Convergence tolera	the for LP and QP problems.	
For problems with quadratic constr	aints (QCP), see BARQCPEPCOMP. Sets the tolerance on complementarity	
for convergence. The barrier algor	ithm terminates with an optimal solution if the relative complementarity is	
smaller than this value. Changing	this tolerance to a smaller value may result in greater numerical precision	
of the solution, but also increases the chance of a convergence failure in the algorithm and consequently may		
result in no solution at all. Therefore	pre, caution is advised in deviating from the default setting.	
cpxControl.BARGROWTH	1.0 or greater.	
Dependentioner Demiser energeth	Default: 10°	
Description: Barrier growth.	faces. At higher values, the barrier algorithm is less likely to conclude that	
the problem has an unbounded op	timal face but more likely to have numerical difficulties if the problem has	
an unbounded face.	uniar face, but more fixery to have numerical unitenties if the problem fias	
	0 No Barrier iterations	
CPACOLICICS. DRIVETETLI	or any positive integer	
	or, any positive integer	
	Default: Large (varies by computer)	

TOMLAB parameter	Value	
Description: Barrier iteration lim	iit.	
Sets the number of Barrier iteration	s before termination. When set to 0, no Barrier iterations occur, but problem	
"setup" occurs and information ab	out the setup is displayed (such as Cholesky factorization information).	
cpxControl.BARMAXCOR	-1 Automatically determined	
	0 None	
	or, any positive integer	
	Default: -1	
Description: Barrier maximum c	orrection limit.	
Sets the maximum number of cent	tering corrections done on each iteration. An explicit value greater than 0	
may improve the numerical perform	nance of the algorithm at the expense of computation time.	
cpxControl.BAROBJRNG	Any positive number	
	Default: 10 ²⁰	
Description: Barrier objective ra	nge.	
Sets the maximum absolute value	of the objective function. The barrier algorithm looks at this limit to detect	
unbounded problems.		
	0 Automatic	
	1 Approximate minimum degree (AMD)	
	2 Approximate minimum fill (AMF)	
	3 Nested dissection (ND)	
	Default: 0 values	
Description: Barrier ordering alg	orithm.	
Sets the algorithm to be used to per	rmute the rows of the constraint matrix in order to reduce fill in the Cholesky	
factor.	10	
cpxControl.BARQCPEPCOMP	Any positive number $\geq 10^{-12}$	
	$D_{\rm r} f_{\rm rel} = 10^{-6}$	
Descriptions Communes toleno	Default: 10 °	
L Da and fan ODa (that ia, when all t	the constraints are linear) see PAPEPCOND . Sets the televanes on complementar	
LPS and for QPS (that is, when all the constraints are linear) see BAREPCOMP. Sets the tolerance on complementar-		
is smaller than this value. Changing	gontinin terminates with an optimal solution in the relative complementarity	
is smaller than this value. Unanging this tolerance to a smaller value may result in greater numerical precision		
of the solution, but also increases the chance of a convergence failure in the algorithm and consequently may		
	1 D 1: 0	
cpxControl.BARSTARTALG	1 Dual is 0	
	2 Estimate dual 2 Average of primel estimate dual 0	
	A Average of primal estimate, dual of	
	4 Average of primar estimate, estimate dual	
	Default: 1	
Description: Barrier starting point algorithm.		
Sets the algorithm to be used to compute the initial starting point for the barrier optimizer.		

TOMLAB parameter	Value	
cpxControl.BBINTERVAL	0 Best estimate node always selected	
	or, any positive integer	
	Defeette 7	
Description: MIP strategy bhint	Default: /	
When using nodeselect 2 the bbi	nterval is the interval at which the best bound node instead of the best	
estimate node, is selected from th	e tree. A bbinterval of 0 means to never select the best bound node. A	
bbinterval of 1 means to always s	elect the best bound node, and is thus equivalent to nodeselect 1. Higher	
values of bbinterval mean that the	best bound node will be selected less frequently; experience has shown it to	
be beneficial to occasionally select	the best bound node, and therefore the default bbinterval is 7.	
cpxControl.BNDSTRENIND	-1 Automatically determined	
	0 Do not apply bound strengthening	
	1 Apply bound strengthening	
	Default: -1	
Description: Bound strengthenin	g indicator.	
Used when solving mixed integer	programs. Bound strengthening tightens the bounds on variables, perhaps	
to the point where the variable car	n be fixed and thus removed from consideration during branch & cut. This	
reduction is usually beneficial, but	occasionally, due to its iterative nature, takes a long time.	
cpxControl.BRDIR	-1 Down branch selected first	
	0 Automatically determined	
	1 Up branch selected first	
	Default: 0	
Description: MIP branching dire	ction.	
Used to decide which branch, the u	ip or the down branch, should be taken first at each node.	
cpxControl.BTTOL	Any number from 0.0 to 1.0	
	Default: 0.9999	
Description: Backtracking tolera	nce.	
Controls how often backtracking is done during the branching process. The decision when to backtrack depends		
on three values that change during the course of the optimization:		
- the objective function value of the best integer feasible solution ("incumbent")		
- the objective function value of the most recently solved node ("current objective")		
If a cutoff tolerance (see CUTUP and CUTLD) has been set by the user then that value is used as the incumbent until		
an integer feasible solution is found. The "target gap" is defined to be the absolute value of the difference between		
the incumbent and the best node, multiplied by this backtracking parameter. CPLEX does not backtrack until		
the absolute value of the difference between the current objective and the best node is at least as large as		
the target gap. Low values of this backtracking parameter thus tend to increase the amount of backtracking,		
which makes the search process more of a pure best-bound search. Higher parameter values tend to decrease		
backtracking, making the search more of a pure depth-first search. The backtracking value has effect only after an integer feasible solution is found or when a cutoff has been specified. Note that this backtracking value		
merely permits backtracking but does not force it; CPLEX may choose to continue searching a limb of the tree		
if it seems a promising candidate for finding an integer feasible solution.		
• <u> </u>		

TOMLAB parameter	Value	
cpxControl.CLIQUES	-1 Do not generate clique cuts	
	0 Automatically determined	
	1 Generate clique cuts moderately	
	2 Generate clique cuts aggressively	
	Default: 0	
Description: MIP cliques indicat	or.	
Determines whether or not clique of	cuts should be generated for the problem. Setting the value to 0, the default,	
indicates that the attempt to gene	rate cliques should continue only if it seems to be helping.	
cpxControl.CLOCKTYPE	1 CPU time	
	2 Wall clock time (total physical time elapsed)	
	Default: 1	
Description: Computation time a	reporting.	
Determines how computation time	s are measured.	
cpxControl.COEREDIND	0 Do not use coefficient reduction	
	1 Reduce only to integral coefficients	
	2 Reduce all potential coefficients	
	Default: 2	
Description: Coefficient reductio	n setting.	
Determines how coefficient reduction	on is used. Coefficient reduction improves the objective value of the initial	
(and subsequent) LP relaxations s	olved during branch & cut by reducing the number of non-integral vertices.	
cpxControl.COLREADLIM	Any integer from 0 to 268 435 450	
	Default: Varies by computer.	
Description: Variable (column) r	ead limit.	
Sets the number of variables that can be read.		
cpxControl.COVERS	-1 Do not generate cover cuts	
	0 Automatically determined	
	1 Generate cover cuts moderately	
	2 Generate cover cuts aggressively	
	3 Generate cover cuts very aggressively	
	Default: 0	
Description: MIP covers indicator.		
Determines whether or not cover cuts should be generated for the problem. Setting the value to 0, the default,		
indicates that the attempt to gene	rate covers should continue only if it seems to be helping.	

TOMLAB parameter	Value	
cpxControl.CRAIND	LP Primal:	
	0 Ignore objective coefficients during crash	
	-1 or 1 Alternate ways of using objective coef-	
	ficients	
	LP Dual:	
	1 Default starting basis	
	0 or -1 Aggressive starting basis	
	QP Primal:	
	-1 Slack basis	
	0 Ignore Q terms and use LP solver for crash	
	1 Ignore objective and use LP solver for crash	
	QP Dual:	
	-1 Slack basis	
	$0 \text{ or } 1 \text{ Use } \mathbf{Q} \text{ terms for crash}$	
Description: Simplex crash order	ing.	
Determines how CPLEX orders va	riables relative to the objective function when selecting an initial basis.	
cpxControl.CUTL0	Any number	
	Default: -10^{75}	
Description: Lower cutoff.		
When the problem is a maximizat	ion problem, the LOWERCUTOFF parameter is used to cut off any nodes	
that have an objective value below	w the lower cutoff value. On a continued mixed integer optimization, the	
larger of these values and the upda	ted cutoff found during optimization are used during the next mixed integer	
optimization. A too-restrictive val	ue for the LOWERCUTOFF parameter may result in no integer solutions	
being found.		
cpxControl.CUTPASS	-1 None	
	0 Automatically determined	
	Positive values give number of passes to	
	perform	
	Default: 0	
Description: Number of cutting plane passes.		
Sets the upper limit on the number of passes CPLEX performs when generating cutting planes on a MIP model.		
cpxControl.CUTSFACTOR	Any non-negative number.	
	Default: 4.0	
Description: Row multiplier factor for cuts.		
Limits the number of cuts that can be added. The number of rows in the problem with cuts added is limited		
to CUTSFACTOR times the original number of rows. If the problem is presolved, the original number of rows		

is that from the presolved problem.

A CUTSFACTOR of 1.0 or less means that no cuts will be generated. Because cuts can be added and removed during the course of optimization, CUTSFACTOR may not correspond directly to the number of cuts seen during the node log or in the summary table at the end of optimization.

TOMLAB parameter	Value	
cpxControl.CUTUP	Any number.	
	Default: 10 ⁷⁵ .	
Description: Upper cutoff.		
Cuts off any nodes that have an obj	ective value above the upper cutoff value, when the problem is a minimization	
problem. When a mixed integer op	timization problem is continued, the smaller of these values and the updated	
cutoff found during optimization a	re used during the next mixed integer optimization. A too-restrictive value	
for the UPPERCUTOFF parameter ma	ay result in no integer solutions being found.	
cpxControl.DATACHECK	0 Off (do not check)	
	1 On (check)	
	Default: 0	
Description: Data consistency ch	ecking indicator.	
When set to 1 (On), extensive che	ecking is performed on data in the array arguments, such as checking that	
indices are within range, that there	are no duplicate entries and that values are valid for the type of data or are	
valid numbers. This is useful for d	ebugging applications.	
cpxControl.DEPIND	0 Off (do not use dependency checker)	
	1 On (use dependency checker)	
	Default: 0	
Description: Dependency indicat	or.	
Determines whether to activate the	"dependency checker". If on, the dependency checker searches for dependent	
rows during preprocessing. If off, d	ependent rows are not identified.	
cpxControl.DISJCUTS	-1 Do not generate disjunctive cuts	
	0 Automatically determined	
	1 Generate disjunctive cuts moderately	
	2 Generate disjunctive cuts aggressively	
	3 Generate disjunctive cuts very aggressively	
	Default: 0	
Description: MIP disjunctive cuts indicator.		
Determines whether or not disjunctive cuts should be generated for the problem. Setting the value to 0, the		
default, indicates that the attempt to generate disjunctive cuts should continue only if it seems to be helping.		
cpxControl.DIVETYPE	0 automatic	
	1 traditional dive	
	2 probing dive	
	3 guided dive	
	Default: 0	

Description: MIP dive strategy. The MIP traversal strategy occasionally performs probing dives, where it looks ahead at both children nodes before deckling which node to choose. The default (automatic) setting lets CPLEX choose when to perform a probing dive, 1 directs CPLEX nev+ to perform probing dives, 2 always to probe, 3 spend more time exploring potential solutions that are similar to the current incumbent. Setting 2, always to probe, is helpful for finding integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut N+ Limit each type of cut Default: 2.1e9 Default: 2.1e9 Description: Type of cut limit. Stefault, Tighter limits on the number of cuts of a each type of cut mint is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in stuch large number that the limit to the total number of all types of cuts in each dype of cuts of each type of example, a limit ore each type of cut will prevent any one type of cut from being c	TOMLAB parameter	Value	
The MIP traversal strategy occasionally performs probing dives, where it looks ahead at both children nodes before deciding which node to choose. The default (automatic) setting lets CPLEX choose when to perform a probing dives, 2 always to probe, 3 spend more time exploring potential solutions that are similar to the current incumbent. Setting 2, always to probe, 3 spend more time exploring integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing in slack space 4 Steepest-edge pricing 3 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type the limit on the total number of all types of cuts is reached before other types of cut is mather and type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts. cpxControl.EACHCUTLIM Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Descrip	Description: MIP dive strategy.		
before deciding which node to choose. The default (automatic) setting lets CPLEX choose when to perform a probing dives, 1 directs CPLEX never to perform probing dives, 2 always to probe, 3 spend more time exploring integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing 3 Steepest-edge pricing 3 Steepest-edge pricing in slack space 4 Steepest-edge pricing 5 Devex pricing Default: 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing in slack space 4 Steepest-edge pricing in slack space 4 Steepest-edge pricing in slack space 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cut sof each type may benefit certain models. For example, a limit on each type of cut sim tage number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not	The MIP traversal strategy occasie	onally performs probing dives, where it looks ahead at both children nodes	
probing dive, 1 directs CPLEX never to perform probing dives, 2 always to probe, 3 spend more time exploring potential solutions that are similar to the current incumbent. Setting 2, always to probe, is helpful for finding integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing 3 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer suported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type of cut super vides of cut bype of cut limits on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. cpxControl.EPAGAP Any non-negative number. Sets a absolute tolerance on the gap between the best integer objective and the objective of the best node re- maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. CpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	before deciding which node to choo	ose. The default (automatic) setting lets CPLEX choose when to perform a	
potential solutions that are similar to the current incumbent. Setting 2, always to probe, is helpful for finding integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing 3 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Default: 0 Default: 0 Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Sets an absolute miggapt toleranc. Sets an absolute miggapt tolerance. Sets an absolute migga	probing dive, 1 directs CPLEX new	er to perform probing dives, 2 always to probe, 3 spend more time exploring	
integer solutions. cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing 3 Steepest-edge pricing 3 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N + Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	potential solutions that are similar	to the current incumbent. Setting 2, always to probe, is helpful for finding	
cpxControl.DPRIIND 0 Determined automatically 1 Standard dual pricing 2 Steepest-edge pricing 2 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1c9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer	integer solutions.		
1 Standard dual pricing 2 Steepest-edge pricing 3 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type and public mint on the total number of cut will prevent any one type of cut this parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap totarce. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPAGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	cpxControl.DPRIIND	0 Determined automatically	
2 Steepest-edge pricing 3 Steepest-edge pricing in slack space 4 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, alimit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. CpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number f		1 Standard dual pricing	
3 Steepest-edge pricing in slack space 4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴		2 Steepest-edge pricing	
4 Steepest-edge pricing, unit initial norms 5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut rypes of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute miggap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPAGP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴		3 Steepest-edge pricing in slack space	
5 Devex pricing Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. The period. Default: 10 ⁻⁶ . Description: Absolute mipgap tourance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls bow the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴		4 Steepest-edge pricing, unit initial norms	
Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴		5 Devex pricing	
Default: 0 Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. CpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute miggap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴			
Description: Dual simplex pricing algorithm. The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cut of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴		Default: 0	
The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternate settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Default: 2.1e9 Description: Type of cut limit. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. CpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	Description: Dual simplex pricin	g algorithm.	
settings. cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Default: 2.1e9 Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re- maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	The default pricing (0) usually pro-	ovides the fastest solution time, but many problems benefit from alternate	
cpxControl.EACHCUTLIM 0 No cuts N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . CpxControl.EPAGAP Any number from 0.0 to 1.0 cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴	settings.		
N+ Limit each type of cut Default: 2.1e9 Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. CpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	cpxControl.EACHCUTLIM	0 No cuts	
Default: 2.1e9Description: Type of cut limit.Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts.cpxControl.EPAGAPAny non-negative number. Default: 10 ⁻⁶ .Description: Absolute mipgap tolerance.Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re- maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped.cpxControl.EPGAPAny number from 0.0 to 1.0 Default: 10 ⁻⁴		N+ Limit each type of cut	
Default: 2.1e9Description: Type of cut limit.Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts.CpxControl.EPAGAPAny non-negative number. Default: 10 ⁻⁶ .Description: Absolute mipgap tolerance.Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re- maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped.CpxControl.EPGAPAny number from 0.0 to 1.0 Default: 10 ⁻⁴			
Description: Type of cut limit. Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . CpxControl.EPGAP Any number the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴		Default: 2.1e9	
Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴	Description: Type of cut limit.		
each type that CPLEX generates. By default, the limit is the largest integer supported by a given platform; that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts.cpxControl.EPAGAPAny non-negative number. Default: 10^{-6} .Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re- maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped.cpxControl.EPGAPAny number from 0.0 to 1.0 Default: 10^{-4}	Sets a limit for each type of cut. This parameter allows you to set a uniform limit on the number of cuts of a		
that is, there is no effective limit by default. Tighter limits on the number of cuts of each type may benefit certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts.cpxControl.EPAGAPAny non-negative number. Default: 10^{-6} .Description:Absolute mipgap tolerance.Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped.cpxControl.EPGAPAny number from 0.0 to 1.0 Default: 10^{-4}	each type that CPLEX generates.	By default, the limit is the largest integer supported by a given platform;	
certain models. For example, a limit on each type of cut will prevent any one type of cut from being created in such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴ Default: 10 ⁻⁴	that is, there is no effective limit	by default. Tighter limits on the number of cuts of each type may benefit	
such large number that the limit on the total number of all types of cuts is reached before other types of cuts have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	certain models. For example, a lim	it on each type of cut will prevent any one type of cut from being created in	
have an opportunity to be created. This parameter does not influence the number of Gomory cuts. cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	such large number that the limit o	n the total number of all types of cuts is reached before other types of cuts	
cpxControl.EPAGAP Any non-negative number. Default: 10 ⁻⁶ . Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	have an opportunity to be created.	This parameter does not influence the number of Gomory cuts.	
Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	cpxControl.EPAGAP	Any non-negative number.	
Default: 10 ⁻⁶ . Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴			
Description: Absolute mipgap tolerance. Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴		Default: 10^{-6} .	
Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node remaining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	Description: Absolute mipgap to	lerance.	
maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	Sets an absolute tolerance on the gap between the best integer objective and the objective of the best node re-		
is stopped. cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	maining. When this difference falls below the value of the ABSMIPGAP parameter, the mixed integer optimization		
cpxControl.EPGAP Any number from 0.0 to 1.0 Default: 10 ⁻⁴	is stopped.		
Default: 10^{-4}	cpxControl.EPGAP	Any number from 0.0 to 1.0	
Default: 10^{-4}	-		
		Default: 10^{-4}	

TOMLAB parameter	Value	
Description: Relative mipgap tole	erance.	
Sets a relative tolerance on the g	ap between the best integer objective and the objective of the best node	
remaining. When the value		
	bestnode - bestinteger	
	$10^{-10} + bestinteger $	
falls below the value of the MIPGA	P parameter, the mixed integer optimization is stopped. For example, to	
instruct CPLEX to stop as soon as	s it has found a feasible integer solution proved to be within five percent of	
optimal, set the relative mipgap to	lerance to 0.05.	
cpxControl.EPINT	Any number from 10^{-9} to 0.5.	
	-	
	Default: 10^{-5}	
Description: Integrality tolerance		
Specifies the amount by which an in	teger variable can be different from an integer and still be considered feasible.	
cpxControl.EPMRK	Any number from 0.0001 to 0.99999	
	Default: 0.01	
Description: Markowitz tolerance	Э. • Сучурата сулартана	
Influences pivot selection during f	basis factorization. Increasing the Markowitz threshold may improve the	
numerical properties of the solution		
cpxControl.EPOPT	Any number from 10^{-9} to 10^{-1}	
	Default: 10^{-6}	
Description: Optimality tolerance	e.	
Influences the reduced-cost tolerand	e for optimality. This parameter governs how closely CPLEX must approach	
the theoretically optimal solution.		
cpxControl.EPPER	Any positive number $\geq 10^{-8}$	
	Default: 10^{-6}	
Description : Perturbation consta	nt	
Sets the amount by which CPLEX porturbs the upper and lower bounds on the variables when a problem is		
perturbed. This parameter can be	set to a smaller value if the default value creates too large a change in the	
problem.		
cpxControl_EPBELAX	Any positive number	
	Default: 10^{-6}	
Description: FeasOpt tolerance.		
Sets epsilon used to measure relaxation in FeasOpt.		
cpxControl.EPRHS	Any number from 10^{-9} to 10^{-1}	
	Default: 10^{-6}	

TOMLAB parameter	Value	
Description: Feasibility tolerance).	
The feasibility tolerance specifies	the degree to which a problem's basic variables may violate their bounds.	
FEASIBILITY influences the selec	tion of an optimal basis and can be reset to a higher value when a problem	
is having difficulty maintaining fea	sibility during optimization. You may also wish to lower this tolerance after	
finding an optimal solution if there	is any doubt that the solution is truly optimal. If the feasibility tolerance is	
set too low, CPLEX may falsely co	onclude that a problem is infeasible. If you encounter reports of infeasibility	
during Phase II of the optimization	n, a small adjustment in the feasibility tolerance may improve performance.	
cpxControl.FEASOPTMODE	0 Minimize the sum of all required relaxations	
	in first phase only	
	1 Minimize the sum of all required relaxations	
	in first phase and execute second phase to	
	find optimum among minimal relaxations	
	2 Minimize the number of constraints and	
	bounds requiring relaxation in first phase	
	only	
	3 Minimize the number of constraints and	
	bounds requiring relaxation in first phase and	
	execute second phase to find optimum among	
	minimal relaxations	
	4 Minimize the sum of squares of required	
	relaxations in first phase only	
	5 Minimize the sum of squares of required	
	relaxations in first phase and execute second	
	phase to find optimum among minimal relax-	
	ations	
	Default: 0	
Description: FeasOpt settings.		
FeasOpt works in two phases. In its first phase, it attempts to minimize its relaxation of the infeasible model.		
That is, it attempts to find a feas	ible solution that requires minimal change. In its second phase, it finds an	
optimal solution among those that require only as much relaxation as it found necessary in the first phase.		
cpxControl.FLOWCOVERS	-1 Do not generate flow cover cuts	
	0 Automatically determined	
	1 Generate flow cover cuts moderately	
	2 Generate flow cover cuts aggressively	
	Default: 0	
Description: MIP flow cover cuts indicator.		
Determines whether or not to gen	erate flow cover cuts for the problem. Setting the value to 0, the default,	
indicates that the attempt to gene	rate flow cover cuts should continue only if it seems to be helping.	

TOMLAB parameter	Value	
cpxControl.FLOWPATHS	-1 Do not generate flow path cuts	
	0 Automatically determined	
	1 Generate flow path cuts moderately	
	2 Generate flow path cuts aggressively	
	Default: 0	
Description: MIP flow path cut in	ndicator.	
Determines whether or not flow pa	th cuts should be generated for the problem. Setting the value to 0, the	
default, indicates that the attempt	to generate flow path cuts should continue only if it seems to be helping.	
cpxControl.FPHEUR	-1 Do not apply the feasibility pump heuristic	
	0 Automatic: let CPLEX choose	
	1 Apply the feasibility pump heuristic with	
	an emphasis on finding a feasible solution	
	2 Apply the feasibility pump heuristic with	
	an emphasis on finding a feasible solution	
	with a good objective value	
	Default: 0	
Description: Feasibility pump swi	tch. $(1, 1)$ the transformation $(1, 2)$ (DEDW (1, 1) the transformation $(1, 2)$ (DEDW) (1, 1) the transformation $(1, 2)$ (1) the transformation $(1, 2)$	
Turns on or off the feasibility pump	p heuristic. At the default setting 0 (zero), CPLEX automatically chooses	
whether or not to apply the leasing	hity pump neuristic on the basis of characteristics of the model. To turn	
off the feasibility pump heuristic, s	set the parameter to -1 (minus one). If the parameter is set to 1 (one),	
the feasibility pump tries to find a	leasible solution without taking the objective function into account. If the	
find a fascible solution	usually finds solutions of better objective value, but is more likely to fail to	
	· · · · · ·	
cpxControl.FRACCAND	Any positive integer.	
	Default: 200	
Description: Candidate limit for a	reporting Company fractional cuts	
Limits the number of candidate var	ishles for generating Comory fractional cuts	
	1 D the control of th	
cpxControl.FRACCUTS	-1 Do not generate Gomory fractional cuts	
	0 Automatically determined	
	I Generate Gomory fractional cuts moder-	
	ately	
	2 Generate Gomory fractional cuts aggres-	
	sivery	
	Default: 0	
Description: MIP Gomory fraction	nal cuts indicator	
Determines whether or not Gomory fractional cuts should be generated for the problem. Setting the value to		
0, the default, indicates that the attempt to generate Gomory fractional cuts should continue only if it seems		
to be helping.	the second second fractional cuts broad continue only if it second	

TOMLAB parameter	Value
cpxControl.FRACPASS	0 Automatic
	or, any positive integer
	Default: 0
Description: Pass limit for genera	ating Gomory fractional cuts.
The parameter is impored if the Co	terating Gomory fractional cuts. At the default setting of 0, CPLEA decides.
The parameter is ignored if the Go	infory fractional cut parameter, FRACCOIS, is set to a nonzero value.
cpxControl.GUBCOVERS	-1 Do not generate GUB cuts
	0 Automatically determined
	2 Generate GUB cuts moderately
	2 Generate GUB cuts aggressively
	Default: 0
Description: MIP GUB cuts indi	cator.
Determines whether or not to gene	rate GUB cuts for the problem. Setting the value to 0, the default, indicates
that the attempt to generate GUB	cuts should continue only if it seems to be helping.
cpxControl.HEURFREQ	-1 None
	0 Automatic
	or, any positive integer
	Default: 0
Description: MIP heuristic freque	ency.
Determines how often to apply the	e periodic heuristic. Setting the value to -1 turns off the periodic heuristic.
Setting the value to 0, the default	, applies the periodic heuristic at an interval chosen automatically. Setting
the value to a positive number a	pplies the heuristic at the requested node interval. For example, setting
HEURISTICFREQ to 20 dictates that	the neuristic be called at node 0, 20, 40, 60, etc.
CDXCONTROL.IMPLBD	-1 Do not generate implied bound cuts
	1 Cenerate implied bound cuts moderately
	2 Concrete implied bound cuts inducately
	2 Generate implied bound cuts aggressivery
	Default: 0
Description: MIP implied bound	cuts indicator.
Determines whether or not to generate implied bound cuts for the problem. Setting the value to 0. the default.	
indicates that the attempt to generate implied bound cuts should continue only if it seems to be helping.	
cpxControl.INTSOLLIM	Any positive integer
-	
	Default: Large (varies by computer)
Description: MIP solution limit.	a ha found hafana atanning
Set the number of MIP solutions to	b be found before stopping.
cpxControl.ITLIM	Any non-negative integer.
	Default: Large (varies by computer)

TOMLAB parameter	Value
Description: Simplex maximum	iteration limit.
Sets the maximum number of ite	rations to be performed before the algorithm terminates without reaching
optimality.	
cpxControl.LBHEUR	0 Off
	1 On
	Default: 0
Description: Local branching her	iristic.
This parameter lets you control v	whether CPLEX applies a local branching heuristic to try to improve new
incumbents found during a MIP se	earch. By default, this parameter is false; that is, it is off by default. If you
turn it on, CPLEX will invoke a lo	cal branching heuristic only when it finds a new incumbent. If CPLEX finds
multiple incumbents at a single no	de, the local branching heuristic will be applied only to the last one found.
cpxControl.LPMETHOD	0 Automatic
	1 Primal Simplex
	2 Dual Simplex
	3 Network Simplex
	4 Barrier
	5 Sifting
	6 Concurrent Dual, Barrier and Primal
	Default: 0
Description: Method for linear o	ptimization.
Determines which algorithm is use	d. Currently, the behavior of the Automatic setting is that CPLEX almost
always invokes the dual simplex m	ethod. The one exception is when solving the relaxation of an MILP model
when multiple threads have been :	requested. In this case, the Automatic setting will use the concurrent opti-
mization method. The Automatic	setting may be expanded in the future so that CPLEX chooses the method
based on additional problem chara	cteristics.
cpxControl.MEMORYEMPHASIS	0 Off: Do not emphasize conservation of
	memory
	1 On: Emphasize conservation of memory
	Default: Off
Description : Memory setting	
Some information (that require a l	pasis) may be unavailable when using this parameter
cpxControl_MIPDISPLAY	0 No display
	1 Display integer feasible solutions
	2 Display nodes under MIPINTERVAL
	3 Same as 2 with information on node cuts
	4 Same as 3 with LP subproblem information
	at root
	5 Same as 4 with LP subproblem information
	at nodes
	Default: 2

TOMLAB parameter	Value
Description: MIP node log displa	y information.
Determines what CPLEX reports t	o the screen during mixed integer optimization. The amount of information
displayed increases with increasing	values of this parameter.
A setting of 0 causes no node log te	be displayed until the optimal solution is found. A setting of 1 displays an
entry for each integer feasible solut	ion found. Each entry contains the objective function value, the node count,
the number of unexplored nodes in	the tree, and the current optimality gap. A setting of 2 also generates an
entry for every nth node (where n	is the setting of the MIP INTERVAL parameter). A setting of 3 addition-
ally generates an entry for every r	th node giving the number of cuts added to the problem for the previous
INTERVAL nodes. A setting of 4	additionally generates entries for the LP root relaxation according to the
SIMDISPLAY setting. A setting o	f 5 additionally generates entries for the LP subproblems, also according to
the SIMDISPLAY setting.	
cpxControl.MIPEMPHASIS	0 [BALANCED] Balance optimality and feasi-
	bility
	1 [FEASIBILITY] Emphasize feasibility over
	optimality
	2 [OPTIMALITY] Emphasize optimality over
	feasibility
	3 [BESTBOUND] Emphasize moving best
	bound
	4 [HIDDENFEAS] Emphasize hidden feasibility
	Default: 0
Description: MIP emphasis indic	ator.
With the default setting of BALA	ANCED, CPLEX works toward a rapid proof of an optimal solution, but
balances that with effort toward finding high quality feasible solutions early in the optimization. When set to	
FEASIBILITY, CPLEX frequently will generate more feasible solutions as it optimizes the problem, at some	
sacrifice in the speed to the proof of optimality. When set to OPTIMALITY, less effort may be applied to finding	
feasible solutions early. With the setting BESTBOUND, even greater emphasis is placed on proving optimality	
through moving the best bound value, so that the detection of feasible solutions along the way becomes almost	
incidental. When set to HIDDENFEAS, the MIP optimizer works hard to find high quality feasible solutions	
that are otherwise very difficult to find, so consider this setting when the FEASIBILITY emphasis has difficulty	
finding solutions of acceptable qua	lity.
cpxControl.MIPINTERVAL	Any positive integer
	Default: 100
Description: MIP node log interv	ral
Controls the frequency of node logging when MIPDISPLAY is set higher than 1.	
cpxControl.MIPORDIND	0 Off (do not use order information)
	1 On (use order information if it exists)
	Default: 1
Description: MIP priority order indicator.	
when set to on, uses the priority order (if it exists) for the next mixed integer optimization.	

TOMLAB parameter	Value
cpxControl.MIPORDTYPE	0 Do not generate a priority order
	1 Use decreasing cost
	2 Use increasing bound range
	3 Use increasing cost per coefficient count
Deceription: MID priority order	Default: 0
Used to select the type of generic i	generation.
esed to select the type of generic j	0 Automatic lat CDLEX chases
CDXCONTROL.MIPSEARCH	0 Automatic: let CPLEX choose.
	a Apply traditional branch and cut strategy;
	2 Apply dynamic search
	2 Apply dynamic search
	Default: 0
Description: MIP dynamic search	h switch.
Sets the search strategy for a mix	ed integer program (MIP). By default, CPLEX chooses whether to apply
dynamic search or conventional bra	anch and cut based on characteristics of the model and presence (or absence)
of callbacks. To benefit from dyna:	mic search, a MIP must not include query callbacks.
cpxControl.MIQCPSTRAT	0 Automatic: let CPLEX choose.
· · · ·	1 Solve a QCP node relaxation at each node
	2 Solve an LP node relaxation at each node
	Default: 0
Description: MIQQ strategy swit	Jch.
Sets the strategy that CPLEX uses	s to solve a quadratically constrained mixed integer program (MIQQ). When
you set this parameter to the value 1 (one), you tell CPLEX to solve a QCP node relaxation of the model at	
each node. When you set this para	umeter to the value 2, you tell CPLEX to attempt to solve only an LP node
relaxation of the model at each no	de.
cpxControl.MIRCUTS	-1 Do not generate MIR cuts
	0 Automatically determined
	1 Generate MIR cuts moderately
	2 Generate MIR cuts aggressively
	Default: 0
Description: MIP MIR (mixed in	teger rounding) cut indicator.
Determines whether or not to gene	rate MIR cuts for the problem. Setting the value to 0, the default, indicates
that the attempt to generate MIR	cuts should continue only if it seems to be helping.
cpxControl.MPSLONGNUM	0: Write file in standard MPS format
•	1 Write with full precision (up to 15 digits)
	1 (1 0 /
	Default: 1

TOMLAB parameter	Value	
Description: Degree of precision	displayed in output files (MPS).	
When this parameter is set to its d	efault value 1 (one), numbers are written to MPS files in full-precision; that	
is, up to 15 significant digits may l	be written. The setting 0 (zero) writes files that correspond to the standard	
MPS format, where at most 12 ch	aracters can be used to represent a value. This limit may result in loss of	
precision.		
cpxControl.NETDISPLAY	0 No display	
	1 Display true objective values	
	2 Display penalized objective values	
	Default: 2	
Description: Network logging dis	play indicator.	
Settings 1 and 2 differ only during	Phase I. Setting 2 shows monotonic values, whereas 1 usually does not.	
cpxControl.NETEPOPT	Any number from 10^{-11} to 10^{-1}	
	Default: 10^{-6}	
Description: Optimality tolerance for the network optimizer.		
The optimality tolerance specifies t	the amount a reduced cost may violate the criterion for an optimal solution.	
cpxControl.NETEPRHS	Any number from 10^{-11} to 10^{-1}	
	Default: 10^{-6}	
Description: Feasibility tolerance	for the network optimizer.	
The feasibility tolerance specifies	the degree to which a problem's flow value may violate its bounds. This	
tolerance influences the selection of	of an optimal basis and can be reset to a higher value when a problem is	
having difficulty maintaining feasil	pility during optimization. You may also wish to lower this tolerance after	
finding an optimal solution if there	is any doubt that the solution is truly optimal. If the feasibility tolerance is	
set too low, CPLEX may falsely co	onclude that a problem is inteasible. If you encounter reports of inteasibility	
during Phase II of the optimization	n, a small adjustment in the feasibility tolerance may improve performance.	
cpxControl.NETFIND	1 Extract pure network only	
	2 Try reflection scaling	
	3 Try general scaling	
	Default: 2 values	
Description: Simplex network extraction level.		
Establishes the level of network extraction for network simplex optimizations. The default value is suitable for		
recognizing commonly used modeling approaches when representing a network problem within an LP formula-		
cpxControl.NETITLIM	Any non-negative integer	
	Default: Large (varies by computer)	
Description: Network Simplex ite	eration limit.	
Sets the maximum number of iterations to be performed before the algorithm terminates without reaching		
optimanty.		

TOMLAB parameter	Value
cpxControl.NETPPRIIND	0 Automatic
	1 Partial pricing
	2 Multiple partial pricing
	3 Multiple partial pricing with sorting
	Default: 0
Description: Network Simplex pr	ricing algorithm.
The default (0) shows best perform	nance for most problems, and currently is equivalent to 3.
cpxControl.NODEFILEIND	0 No node file
	1 Node file in memory and compressed
	2 Node file on disk
	3 Node file on disk and compressed
	Default: 1
Description: Node storage file in	dicator.
Used when working memory, WOR	KMEM, has been exceeded by the size of the tree. If the node file parameter
is set to zero when the tree memor	ry limit is reached, optimization is terminated. Otherwise, a group of nodes
is removed from the in-memory s	et as needed. By default, CPLEX transfers nodes to node files when the
in-memory set is larger than 128 M	IBytes, and it keeps the resulting node 'files' in compressed form in memory.
At settings 2 and 3, the node files	are transferred to disk, in compressed and uncompressed form respectively,
into a directory named by the We	ORKDIR parameter, and CPLEX actively manages which nodes remain in
memory for processing. The use of	f node files is described in more detail in the CPLEX User's Manual.
cpxControl.NODELIM	Any non-negative integer
	Default: Large (varies by computer)
Description: MIP node limit.	
Sets the maximum number of node	s solved before the algorithm terminates, without reaching optimality. When
this parameter is set to 0 (zero), CF	PLEX completes processing at the root; that is, cuts are created and heuristics
are applied at the root, but no no	des are created. When the parameter is set to 1 (one), CPLEX branches at
the root; that is, nodes are created but not solved.	
cpxControl.NODESEL	0 Depth-first search
	1 Best-bound search
	2 Best-estimate search
	3 Alternative best-estimate search
	Default: 1
Description: MIP node selection	strategy.
Used to set the rule for selecting t	he next node to process when backtracking. The depth-first search strategy
chooses the most recently created node. The best-bound strategy chooses the node with the best objective	
function for the associated LP rela	axation. The best-estimate strategy selects the node with the best estimate
of the integer objective value that would be obtained from a node once all integer infeasibilities are removed.	

An alternative best-estimate search is also available.

TOMLAB parameter	Value	
cpxControl.NUMERICALEMPHASIS	0 Off: Do not emphasize extreme caution in	
	computation	
	1 On: Emphasize extreme caution in compu-	
	tation	
	Default: Off	
Description: Numerical emphasis		
cpxControl.NZREADLIM	Any integer from 0 to $268 \ 435 \ 450$	
	Default: 500	
Description: Nonzero element rea	ad limit.	
Sets the number of nonzeros that of	an be read.	
cpxControl.OBJDIF	Any number	
	Default: -10^{75}	
Description: Absolute objective difference cutoff.		
Used to update the cutoff each tim	e a mixed integer solution is found. This absolute value is subtracted from	
(added to) the newly found integer	bbjective value when minimizing (maximizing). This forces the mixed integer	
optimization to ignore integer solut	ions that are not at least this amount better than the one found so far. The	
OBJDIFFERENCE parameter can	be adjusted to improve problem solving efficiency by limiting the number of	
including the true integer enting	to be missed. Norative values for this parameter can recult in some integer	
solutions that are worse than or th	, to be missed. Regative values for this parameter can result in some integer	
generation of all possible integer so	butions	
angeneration of an possible medger be	Any number	
cpxcontrol.objttim	Any number	
	Default: -10^{75}	
Description: Lower objective value	ie limit.	
Setting a lower objective function	limit causes CPLEX to halt the optimization process once the minimum	
objective function value limit has b	een exceeded. This limit applies only during Phase II of the simplex method.	
cpxControl.OBJULIM	Any number	
	D. C. J. 1075	
	Default: 10 ¹⁰	
Description: Upper objective value limit.		
Setting an upper objective function limit causes UPLEX to halt the optimization process once the maximum		
coxControl PARALLELMODE	1 Enable opportunistic parallel search mode	
CPACOLICICI. FAMALLELMODE	0 Automatic: let CPLEX decide whether to	
	invoke deterministic or opportunistic search	
	depending on the threads parameter	
	1 Automatic: Enable deterministic parallel	
	search mode	
	Default: 0	

TOMLAB parameter	Value	
Description: Parallel mode switc	h.	
See Section G.3.		
cpxControl.PERIND	0 Off	
	1 On	
	Default: 0	
Description: Simplex perturbation	on indicator.	
Setting this parameter to 1 causes a	all problems to be automatically perturbed as optimization begins. A setting	
of 0 allows CPLEX to determine	dynamically, during solution, whether progress is slow enough to merit a	
perturbation. The situations in w	which a setting of 1 helps are rare and restricted to problems that exhibit	
extreme degeneracy.		
cpxControl.PERLIM	0 Determined automatically	
-	or, any positive integer	
	Default: 0	
Description: Simplex perturbation	on limit.	
Sets the number of stalled iteration	as before perturbation is performed.	
cpxControl_POLISHTIME	Any positive number in seconds	
	Default: 0	
Description Polishing best solut	ion	
Begulates the amount of time spec	nt on polishing the best solution found. During solution polishing CPLEX	
applies its effort to improve the be	est feasible solution. Polishing can vield better solutions in some situations	
The default value of the polishing	time parameter is 0 (zero): that is spend no time polishing	
angentrel DODULATELIM	Any nonnegative integer	
CDXCONTIOL.POPOLATELIM	Any nonnegative integer	
	Default: 20	
Description: Limit on number of	solutions generated for the solution pool	
Limita the number of colutions of	solutions generated for the solution pool.	
Populate stong when it has gong	pherated for the solution poor during each can to the populate procedure.	
filters consistent with the relative	and absolute need gap parameters, and has not been rejected by the incumbent	
niters, consistent with the relative and absolute pool gap parameters, and has not been rejected by the incumbent		
canback (if any exists), whether of	not it improves the objective of the model.	
cpxControl.PPRIIND	-1 Reduced-cost pricing	
	0 Hybrid reduced-cost & devex pricing	
	1 Devex pricing	
	2 Steepest-edge pricing	
	3 Steepest-edge pricing with slack initial	
	norms	
	4 Full pricing	
	Default: 0	
Description: Primal Simplex prid	ing algorithm.	
The default pricing (0) usually provides the fastest solution time, but many problems benefit from alternative		
settings		

cpxControl.PREDUAL -1 Off 0 Automatic 1 On Description: Presolve dual setting. Determines whether CPLEX Presolve should pass the primal or dual linear programming problem to the linear programming optimization algorithm. By default, CPLEX chooses automatically. If the DUAL indicator is set to 1, the CPLEX presolve algorithm is applied to the primal problem, but the resulting dual linear program is passed to the optimizer. This is a useful technique for problems with more constraints than variables. cpxControl.PREIND 0 Off (do not use presolve) 1 On (use presolve) 1 On (use presolve) 0 Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If out our agrandes in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve 0 Do not use Presolve asses made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue outy if it seems to be helping. cpxControl.PRESLIND -1 No node presolv	TOMLAB parameter	Value	
0 Automatic 1 On Default: 0 Description: Presolve dual setting. Determines whether CPLEX Presolve should pass the primal problem, but the resulting dual linear programming problem to the linear programming optimization algorithm is applied to the primal problem, but the resulting dual linear program is passed to the optimizer. This is a useful technique for problems with more constraints than variables. cpxControl.PREIND 0 Off (do not use presolve) 1 On (use presolve) 1 On (use presolve) Description: Presolve indicator. IFull reductions 1 Full reductions 0 Default: 1 Description: Linear reduction indicator. IFull reductions 0 Default: 1 Description: Linear reduction indicator. 0 Only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Linear to the number of Presolve passes made. When set to a nonzero value, inveks the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of insers or be helping. cpxControl.PRESLIND -1 No node presolve cpxControl.PRESLIND -1 No node presolve cpxControl.PRESLIND -1 No node presolve chattomatic -1 Force	cpxControl.PREDUAL	-1 Off	
I On Default: 0 Description: Presolve dual setting. Determines whether CPLEX Presolve should pass the primal or dual linear programming problem to the linear programming optimization algorithm. By default, CPLEX chooses automatically. If the DUAL indicator is set to 1, the CPLEX presolve algorithm is a publed to the primal problem, but the resulting dual linear program is passed to the optimizer. This is a useful technique for problems with more constraints than variables. cprControl.PREIND 0 Off (do not use presolve) I On (use presolve) I On (use presolve) Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. CprControl.PRELINEAR 0 Only linear reductions I Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, cach variable in the original model can be expressed as a linear form of variables in the presolved model. The presolve again in the presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cprControl.PRESLYND -1 No node presolve -1 No node presolve optitiv value, the Presolve sapplied the specified number of times, or		0 Automatic	
Default: 0 Description: Presolve dual setti::: Betermines whether CPLEX Presolve should pass the primal or dual linear programming problem to the linear programming optimization algorit!		1 On	
Description: Presolve dual setting. Determines whether CPLEX Presolve should pass the primal or dual linear programming problem to the linear programming optimization algorithm. By default, CPLEX chooses automatically. If the DUAL indicator is set to 1, the CPLEX presolve algorithm is applied to the primal problem, but the resulting dual linear program is passed to the optimizer. This is a useful technique for problems with more constraints than variables. cpxControl.PREIND 0 Off (do not use presolve) lon (use presolve) 0 Only linear reductions cpxControl.PRELINEAR 0 Only linear reductions lon of use presolve algorithm indicator. If honly linear reductions If only linear reductions 1 Full reductions optimizer O only linear reductions the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve 0 Do not use Presolve apositive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve o Automatic 1 Fore node presolve cptault: 0 0 Automatic 1 Fore node pres		Default: 0	
Description: Linear reductions orgramming optimization algorithmic applied to the primal or dual linear programming problem to the linear program is passed to the optimizer. This is a u=tu technique for problems with more constraints than variables. cpzControl.PREIND 0 Off (do not use presolve) 1 On (use presolve) 2 Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. CpzControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions in the presolve ondel. To expresolve and their own custom custor to the presolve doed. cpzControl.PRELINEAR 0 Only suparate, for example, that users can add their own custom cuts to the presolved model. cpzControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer pefault: -1 Default: -1 Description: Linnit on the number of Presolve passes made. Vhen set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied to the presolve or, any positive integer Default: -1 Description: Linnit on the number of presolve -1 No node presolve At the default value of -1, Presolve is applied to the presolve -1 No node presolve A st	Description: Presolve dual settin	g.	
programming optimization algorith By default, CPLEX chooses automatically. If the DUAL indicator is set to 1, the CPLEX presolve algorith is a pilied to the primal problem, but the resulting dual linear program is passed to the optimizer. This is a useful technique for problems with more constraints than variables. cpxControl.PREIND 0 (G do not use presolve) 1 On (use presolve) Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: 1 Description: Linit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve isource only if it seems to be helping. cpxControl.PRESLVMD -1 No node presolve 2 Probes al Integer-infeasible variables at each node to find those that can be fixed 1 Force node presolve 2 Probes al Integer-infeasible variables at each node to find those that can be fixed 2 Probes al Integer-infeasible variables at each node to find those that can be fixed 2 Probes al Integer-infeasible variables at each node to find those that can be fixed 2 Probes al Integer-infeasible variables at each node to find those that can be fixed 2 Probes al Integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve,	Determines whether CPLEX Preso	lve should pass the primal or dual linear programming problem to the linear	
passed to the optimizer. This is a useful technique for problems with more constraints than variables. cpxControl.PREIND 0 Off (do not use presolve) 1 On (use presolve) Default: 1 Description: Presolve indicator. Default: 1 Description: PRELINEAR 0 Olly linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. 0 Only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve-bould continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes al integer-infeasible variables at each node to find those that can be fixed 2 Probes al integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	programming optimization algorith to 1, the CPLEX presolve algorith	m. By default, CPLEX chooses automatically. If the DUAL indicator is set m is applied to the primal problem, but the resulting dual linear program is	
cpxControl.PREIND 0 Off (do not use presolve) 1 On (use presolve) Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Default: 0 Description: Node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	passed to the optimizer. This is a	useful technique for problems with more constraints than variables.	
1 On (use presolve) Default: 1 Description: Presolve indicator: When set to 1, invokes the CPLEX pxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator: If full reductions Default: 1 Description: Linear reduction indicator: If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is asplied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve build continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Default: 0 Description: Node presolve slouton time for some models. The default setting is generally effective at determining whether to apply not performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply not persolve, although runtimes can be reduced for some models by turning node presolve off. <th>cpxControl.PREIND</th> <th>0 Off (do not use presolve)</th>	cpxControl.PREIND	0 Off (do not use presolve)	
Default: 1 Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. 1 Determined automatically opxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve studied continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed 2 Probes all integer-infeasible variables at each node to find those that can be fixed 2 Probes all integer-infeasible variables at each node to find those that can be fixed 3 Exertipe to a programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply note presolve, although runtimes can be reduced for some models by turning node presolve off.		1 On (use presolve)	
Description: Presolve indicator. When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		Default: 1	
When set to 1, invokes the CPLEX Presolve to simplify and reduce problems. cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve seludie the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply note resolve, although runtimes can be reduced for some models by turning node presolve off.	Description: Presolve indicator.		
cpxControl.PRELINEAR 0 Only linear reductions 1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer 0 Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Default: 0 Description: Node presolve selector. Default: 0 Description: Node presolve solution time for some models. The default setting is generally effective at determining whether to apply note presolve, although runtimes can be reduced for some models by turning node presolve off.	When set to 1, invokes the CPLEX	A Presolve to simplify and reduce problems.	
1 Full reductions Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invekses the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve biolatic ontinue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Default: 0 Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply mode presolve, although runtimes can be reduced for some models by turning node presolve off.	cpxControl.PRELINEAR	0 Only linear reductions	
Default: 1 Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve bould continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Description: Node presolve selector: Indicates whether node presolve selector: Indicates whether node presolve selector: Indicates can significantly reduce colution time for some models. The default setting is generally effective at determining whether to apply not presolve, although runtimes can be reduced for some models by turning node presolve off.		1 Full reductions	
Description: Linear reduction indicator. If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector: Indicates whether node presolve solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		Default: 1	
If only linear reductions are performed, each variable in the original model can be expressed as a linear form of variables in the presolved model. This guarantees, for example, that users can add their own custom cuts to the presolved model. cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invekses the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	Description: Linear reduction ind	licator.	
the presolved model. This guarances, for example, that users can add their own custom cus	If only linear reductions are perform	med, each variable in the original model can be expressed as a linear form of	
cpxControl.PREPASS -1 Determined automatically 0 Do not use Presolve 0 Do not use Presolve or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve shuld be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply note presolve, although runtimes can be reduced for some models by turning node presolve off.	the presolved model	This guarantees, for example, that users can add then own custom cuts to	
operation of the number of Presolve arrow positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	cnyControl PBEPASS	-1 Determined automatically	
or, any positive integer Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		0 Do not use Presolve	
Default: -1 Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve sulud be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		or, any positive integer	
Description: Limit on the number of Presolve passes made. When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		Default: -1	
When set to a nonzero value, invokes the CPLEX Presolve to simplify and reduce problems. When set to a positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Default: 0 Default: 0 Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	Description: Limit on the number	r of Presolve passes made.	
positive value, the Presolve is applied the specified number of times, or until no more reductions are possible. At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Default: 0 Default: 0 Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply note presolve, although runtimes can be reduced for some models by turning node presolve off.	When set to a nonzero value, invo	kes the CPLEX Presolve to simplify and reduce problems. When set to a	
At the default value of -1, Presolve should continue only if it seems to be helping. cpxControl.PRESLVND -1 No node presolve 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	positive value, the Presolve is applied the specified number of times, or until no more reductions are possible.		
cpxControl.PRESLVND -1 No node presolve 0 Automatic 0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply note presolve, although runtimes can be reduced for some models by turning node presolve off.	At the default value of -1, Presolve	e should continue only if it seems to be helping.	
0 Automatic 1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	cpxControl.PRESLVND	-1 No node presolve	
1 Force node presolve 2 Probes all integer-infeasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		0 Automatic	
2 Probes an integer-inteasible variables at each node to find those that can be fixed Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		1 Force node presolve	
Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		2 Probes all integer-inteasible variables at	
Default: 0 Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		each node to mid those that can be fixed	
Description: Node presolve selector. Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.		Default: 0	
Indicates whether node presolve should be performed at the nodes of a mixed integer programming solution. Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	Description: Node presolve select	for.	
Node presolve can significantly reduce solution time for some models. The default setting is generally effective at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	Indicates whether node presolve sl	nould be performed at the nodes of a mixed integer programming solution.	
at determining whether to apply node presolve, although runtimes can be reduced for some models by turning node presolve off.	Node presolve can significantly reduce solution time for some models. The default setting is generally effective		
node presolve off.	at determining whether to apply node presolve, although runtimes can be reduced for some models by turning		
	node presolve off.		

TOMLAB parameter	Value
cpxControl.PRICELIM	0 Determined automatically
	or, any positive integer
	Default: 0 values
Description: Simplex pricing can	didate list size.
Sets the maximum number of varia	ables kept in the pricing candidate list.
cpxControl.PROBE	-1 No probing
	0 Automatic
	1-3 Probing level
	Default: 0
Description: MIP proba	Default. 0
Determines the amount of probing	on variables to be performed before MIP branching. Higher settings perform
more probing Probing can be ver	v powerful but very time consuming at the start. Setting the parameter to
values above the default of 0 (auto	pomatic) can result in dramatic reductions or dramatic increases in solution
time, depending on the model.	
cpxControl PROBETIME	Any positive number in seconds
	Default: 1e75
Description: Amount of time spe	ent on probing.
cpxControl.QPMAKEPSDIND	0 Off
	1 On
	Default: On
Description: Indefinite MIQP ind	licator.
Determines whether CPLEX will a	attempt to adjust a MIQP formulation, in which all the variables appearing
in the quadratic term are binary.	When this feature is active, adjustments will be made to the elements of
a quadratic matrix that is not nominally positive semi-definite ("PSD", as required by CPLEX for all QP	
formulations), to make it PSD, and will also attempt to tighten an already PSD matrix for better numerical	
behavior. The default setting of 1	means "yes" but you can turn it off if necessary; most models should benefit
from the default setting.	
cpxControl.QPMETHOD	0 Automatic
	1 Primal Simplex
	2 Dual Simplex
	3 Network Simplex
	4 Barrier
	Default: 0
Description : Method for continue	pus quadratic optimization
Determines algorithm. Currently	the behavior of the Automatic setting is that CPLEX invokes the barrier
method for continuous QP models	and the dual simplex method for root relaxations of MIOP models. The
Automatic setting may be expanded in the future so that CPLEX chooses the method based on additional	
problem characteristics.	
cpxControl.QPMETHOD Description: Method for continue Determines algorithm. Currently, method for continuous QP models Automatic setting may be expand problem characteristics.	 0 Automatic 1 Primal Simplex 2 Dual Simplex 3 Network Simplex 4 Barrier Default: 0 Dus quadratic optimization. the behavior of the Automatic setting is that CPLEX invokes the barrier and the dual simplex method for root relaxations of MIQP models. The the future so that CPLEX chooses the method based on additional

TOMLAB parameter	Value	
cpxControl.QPNZREADLIM	Any integer from 0 to 268 435 450	
	Default: 500	
Description: QP Q matrix nonzero read limit.		
Sets the number of Q matrix nonze	eros that can be read.	
cpxControl.REDUCE	0 No primal and dual reductions	
	1 Only primal reductions	
	2 Only dual reductions	
	3 Both primal and dual reductions	
	Default: 3 values	
Description: Primal and dual red	luction type.	
Determines whether primal reduction	ons, dual reductions, or both, are performed during preprocessing.	
cpxControl.REINV	0 Determined automatically	
	or, any integer from 1 to 10 000	
	Default: 0	
Description: Simplex refactorization frequency.		
Sets the number of iterations between	een refactorizations of the basis matrix.	
cpxControl.RELAXPREIND	-1 Determined automatically	
	0 Off (do not use presolve on initial relax-	
	ation)	
	1 On (use presolve on initial relaxation)	
	Default: -1	
Description: Relaxed LP presolve	e indicator.	
Determines whether LP presolve is applied to the root relaxation in a mixed integer program. Sometimes		
	Any interver form 0.0 to 1.0	
CpxControl.RELUBJDIF	Any integer from 0.0 to 1.0	
Description: Relative objective difference cutoff.		
Used to update the cutoff each time a mixed integer solution is found. The value is multiplied by the absolute		
value of the integer objective and subtracted from (added to) the newly found integer objective when minimizing (maximizing). This forecas the mixed integer optimization to impact integer collections that are not at least this		
(maximizing). This forces the mixed integer optimization to ignore integer solutions that are not at least this amount better than the one found so far. The relative objective difference parameter can be adjusted to improve		
amount better than the one found so far. The relative objective difference parameter can be adjusted to improve problem solving efficiency by limiting the number of nodes: however, setting this parameter at a value other		
than zero (the default) can cause some integer solutions including the true integer ontimum to be missed. If		
both RELOBJDIFFERENCE and OBJDIFFERENCE are nonzero, the value of OBJDIFFERENCE is used.		
cpxControl.REPAIRTRIES	Any positive integer	
	Default: 1	
Description: Repair tries.		
to ropair it		
to repair it.		

TOMLAB parameter	Value
cpxControl.REPEATPRESOLVE	-1 Automatic: Let CPLEX choose whether
	to re-apply presolve
	0 Turn off repeat presolve
	1 Repeat presolve without cuts
	2 Repeat presolve with cuts
	3 Repeat presolve with cuts and allow new
	root cuts
	Default: -1
Description: MIP presolve settin	g.
How to re-apply the MIP presolve	techniques of the preprocessor to a MIP model at the root after preprocessing
has otherwise finished (that is, after	er cut generation at the root).
cpxControl.RINSHEUR	-1 None
	0 Automatic (default)
	or, any positive integer
	Default: 0
Description: Relaxation induced neighborhood search heuristic determines how often to apply the relaxation	
induced neighborhood search heur	istic (RINS heuristic). Setting the value to -1 turns off the RINS heuristic.
Setting the value to 0, the default,	, applies the RINS heuristic at an interval chosen automatically by CPLEX.
Setting the value to a positive num	ber applies the RINS heuristic at the requested node interval. For example,
setting RINSHEUR to 20 dictates	that the RINS heuristic be called at node 0, 20, 40, 60, etc.
cpxControl.ROWREADLIM	Any integer from 0 to 268 435 450
	Default: Varies by computer
Description:	
cpxControl.SCAIND	-1 No scaling
-	0 Equilibrium scaling method
	1 More aggressive scaling
	Default: 0
Description: Scale parameter.	
Sets the method to be used for scaling the problem matrix.	
cpxControl.SCRIND	0 Off
-	1 On
	Default: On
Description: Messages to screen indicator.	
Indicates whether or not results messages are displayed on screen.	

TOMLAB parameter	Value		
cpxControl.SIFTALG	0 Automatic		
	1 Primal Simplex		
	2 Dual Simplex		
	3 Network Simplex		
	4 Barrier		
	Default, 0		
Description: Sifting subproblem	algorithm		
Sets the algorithm to be used for solving sifting subproblems.			
cpxControl.SIFTDISPLAY	0 No display		
1	1 Display major iterations		
	2 Display LP subproblem information within		
	each sifting iteration		
Decemintion: Sifting diaplay infor	Default: 1		
Determines the amount of sifting r	mation.		
cpxControl.SIFIIILIM	Any nonnegative integer		
	Default: BIGINT		
Description: Upper limit on sifting	ng iterations.		
Sets the maximum number of sifting iterations that may be performed if convergence to optimality has not been reached.			
cpxControl.SIMDISPLAY	0 No iteration messages until solution		
	1 Iteration info after each refactorization		
	2 Iteration info for each iteration		
	Default: 1		
Description: Simplex iteration di	splay information.		
Determines how often CPLEX rep	orts during simplex optimization.		
cpxControl.SINGLIM	Any positive integer		
	Default: 10		
Description: Simplex singularity	repair limit.		
Restricts the number of times CPI	LEX attempts to repair the basis when singularities are encountered. Once		
this limit is exceeded, CPLEX replaces the current basis with the best factorizable basis that has been found.			
cpxControl.SOLNPOOLAGAP	Any nonnegative real number.		
	Default: 1.0e+75		
Description: Absolute gap for sol	ution pool.		
Sets an absolute tolerance on the objective bound for the solutions in the solution pool. Solutions that are			
worse (either greater in the case of	worse (either greater in the case of a minimization, or less in the case of a maximization) than the objective of		
the incumbent solution according t	o this measure are not kept in the solution pool.		

TOMLAB parameter	Value
cpxControl.SOLNPOOLCAPACITY	Any nonnegative integer; 0 (zero) turns off all
	features of the solution pool.
	Default: 0
Description: Limit on the number	r of solutions kept in the solution pool.
Limits the number of solutions kep	ot in the solution pool. At most, SOLNPOOLCAPACITY solutions will be
stored in the pool. Superfluous solu	ations are managed according to the replacement strategy set by the solution
pool replacement parameter (SOL	NPOOLREPLACE). If the solution pool replacement parameter is set to
its default value then the value th	at the user sets for the solution pool capacity parameter will be increased
automatically in cases where the p	ool is extended.
cpxControl.SOLNPOOLGAP	Any nonnegative real number.
	Default: 1.0e+75
Description: Relative gap for the	solution pool.
Sets a relative tolerance on the obj	ective bound for the solutions in the solution pool. Solutions that are worse
(either greater in the case of a mini	mization, or less in the case of a maximization) than the incumbent solution
by this measure are not kept in the	e solution pool.
cpxControl.SOLNPOOLINTENSITY	0 Automatic: let CPLEX choose
	1 Mild: generate few solutions quickly
	2 Moderate: generate a larger number of
	solutions
	3 Aggressive: generate many solutions and
	expect performance penalty
	4 Very aggressive: enumerate all practical
	solutions
	Default: 0
Description: Controls the trade-	off between the number of solutions generated for the solution pool and the
amount of time or memory consum	ned. This parameter applies both to MIP optimization and to the populate
procedure.	
Values from 1 (one) to 4 invoke in	creasing effort to find larger numbers of solutions. Higher values are more
expensive in terms of time and me	mory but are likely to yield more solutions.
cpxControl.SOLNPOOLREPLACE	0 Extend the pool if necessary to accommo-
	date more solutions
	1 Replace the first solution by the most recent
	solution; first in, first out
	2 Replace the solution which has the worst
	objective
	3 Replace solutions in order to build a set of
	diverse solutions
	Default: 0
Description: Solution pool replacement strategy.	
Designates the strategy for replacing a solution in the solution pool when the solution pool has reached its	
capacity.	

TOMLAB parameter	Value
cpxControl.STARTALG	0 Automatic
	1 Primal Simplex
	2 Dual Simplex
	3 Network Simplex
	4 Barrier
	5 Sifting
	6 Concurrent Dual, Barrier and Primal
	Default: 0
Description: MIP starting LP alg	gorithm.
Determines which LP algorithm sh	would be used to solve the initial relaxation of the MIP.
cpxControl.STRONGCANDLIM	Any positive number
	Default: 10
Description: MIP candidate list	
Controls the length of the candidat	e list when using the "strong branching" variable selection setting (VARSEL
3).	
cpxControl.STRONGITLIM	Any positive number
	Default: 0
Description: MIP simplex iterati	ons
Controls the number of simplex if	terations performed on each variable in the candidate list when using the
automatically.	ion setting (VARSEL 3). The default setting 0 chooses the iteration limit
cpxControl.SUBALG	1 Primal Simplex
-	2 Dual Simplex
	3 Network Simplex
	4 Barrier
	5 Sifting
	Default: 2
Description: MIP subproblem LP algorithm.	
Sets the algorithm to be used on MIP subproblems.	
cpxControl.SUBMIPNODELIM	Any positive integer.
	Default: 500
Description: MIP subnode limit. Restricts the number of nodes searched, during application of the relaxation	
induced neighborhood search (RINS) heuristic.	

cprControl.SYMMETRY -1 Determines automatically 0 Off 1 Moderate 2 Aggressive 3 Very aggressive 3 Highly aggressive 4 Highly aggressive 5 Extremely aggressive 5 Extremely aggressive ++ Determines whether symmetry breaking cuts Default: -1 Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cprControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cprControl.TILIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before terminate in the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cprControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optim	TOMLAB parameter	Value	
0 Off 1 Moderate 2 Aggressive 3 Very aggressive 4 Highly aggressive 5 Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts Determines whether symmetry breaking cuts Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a converience way to control parallelism with a single parameter setting. cpxControl.TILIM Agy non-negative number Default: 10 ⁷³ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integre optimization. For hybrid' optimizations (such as network optimization followed by cossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. <td cols<="" td=""><td>cpxControl.SYMMETRY</td><td>-1 Determines automatically</td></td>	<td>cpxControl.SYMMETRY</td> <td>-1 Determines automatically</td>	cpxControl.SYMMETRY	-1 Determines automatically
1 Moderate 2 Aggressive 3 Very aggressive 3 Very aggressive 4 Highy aggressive 5 Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: I Maximum: determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. <td></td> <td>0 Off</td>		0 Off	
2 Aggressive 3 Very aggressive 4 Highly aggressive 5 Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts. Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: Default: 0 (Determined by computer Default: 0 (Determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Global time limit. Ste the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier cossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. cpxControl.TRELIM Any non-negative number cpxC		1 Moderate	
3 Very aggressive 4 Highly aggressive 5 Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts. Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Determines the default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infoasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization. cpsControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Ster an absolute upper li		2 Aggressive	
4 Highly aggressive 5 Extremely aggressive 5 Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts: Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Description: Global default thread count. Default: 0 (Determined by CPLEX) Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuming informatico utioplay. Display stand		3 Very aggressive	
b Extremely aggressive ++ Default: -1 Description: Symmetry breaking cuts. Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpsControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpsControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Clobal time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier consover operations are exceptions; these processes do not terminate if the time limit is exceeded. J. The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpsControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁶ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpsControl.TUNINGDISPLAY <td></td> <td>4 Highly aggressive</td>		4 Highly aggressive	
Default: -1 Description: Symmetry breaking cuts Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpzControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization primal simplex, barrier optimization Of Turn off display CpzControl.TININGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard, report plus parameter settings being tried 3 Display exhaustive report and log Default: 1		5 Extremely aggressive ++	
Description: Symmetry breaking cuts. Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY <td></td> <td>Default: -1</td>		Default: -1	
Determines whether symmetry breaking cuts may be added, during the preprocessing phase, to a MIP model. cpxControl.THREADS Minimum: 1 Maximum: determined by computer Default: 0 (Determined by CPLEX) Default: 0 (Determined by CPLEX) Description: Global default thread count. Default: 0 (Determined by CPLEX) optimizer. This provides a convenient way to control parallelism with a single parameter setting. CpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, sawell as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁶ Description: Tree memory limit. Sets ta absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried	Description: Symmetry breaking	cuts.	
cpxControl.THREADS Minimum: 1 Maximum: determined by computer Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Description: Global time limit. Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information reported by the tuning tool as it works.	Determines whether symmetry bre	aking cuts may be added, during the preprocessing phase, to a MIP model.	
Maximum: determined by computer Default: 0 (Determined by CPLEX) Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convent way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display exhaustive report and log 2 Display exhaustive report plus parameter 3 Display exhaustive report and log 2 Display exhaustive report and log Default: 1	cpxControl.THREADS	Minimum: 1	
Default: 0 (Determined by CPLEX) Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convent way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex abarrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display exhaustive report and log 2 Display exhaustive report and log Default: 1		Maximum: determined by computer	
Description: Global default thread count. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Default: 1 Description: Tuning information display. Display exhaustive report and log Default: 1 <			
Description: Global default thread could. Determines the default number of parallel processes (threads) that will be invoked by any CPLEX parallel optimizer. This provides a convenient way to control parallelism with a single parameter setting. cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard, morting 2 Display exhaustive report and log Default: 1 Description: Tuning information display. Default: 1 Description: Tuning informati	Descriptions (listed defeate three	Default: 0 (Determined by CPLEX)	
Description: Tree memory limit. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard, minimal reporting 2 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	Determines the default number of	a count.	
cpxControl.TILIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information display.	optimizer. This provides a conveni	ent way to control parallelism with a single parameter setting.	
Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information display.	cpxControl_TILIM	Any non-negative number	
Default: 10 ⁷⁵ Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Default: 1	ophoonororran		
Description: Global time limit. Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information display.		Default: 10^{75}	
Sets the maximum time, in seconds, for computations before termination, as measured according to the setting of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	Description: Global time limit.		
of the CLOCKTYPE parameter. The time limit applies to primal simplex, dual simplex, barrier, and mixed integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ CpLEX terminates optimization. 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	Sets the maximum time, in seconds	s, for computations before termination, as measured according to the setting	
integer optimizations, as well as infeasibility finder computations. (Network simplex and barrier crossover operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information to reported by the tuning tool as it works.	of the CLOCKTYPE parameter.	The time limit applies to primal simplex, dual simplex, barrier, and mixed	
operations are exceptions; these processes do not terminate if the time limit is exceeded.) The time limit includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	integer optimizations, as well as	infeasibility finder computations. (Network simplex and barrier crossover	
includes preprocessing time. For 'hybrid' optimizations (such as network optimization followed by dual or primal simplex, barrier optimization followed by crossover), the cumulative time applies. cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information terported by the tuning tool as it works.	operations are exceptions; these p	processes do not terminate if the time limit is exceeded.) The time limit	
cpxControl.TRELIM Any non-negative number Default: 10 ⁷⁵ Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	ncludes preprocessing time. For	'nybrid' optimizations (such as network optimization followed by dual or an followed by crossover), the cumulative time applies	
CPXCONTFOLLER Any non-negative number Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	primar simplex, barrier optimization	Any non-noractive number	
Default: 10 ⁷⁵ Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information tisplay. Specifies the level of information reported by the tuning tool as it works.	CPXControl.IRELIM	Any non-negative number	
Description: Tree memory limit. Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		Default: 10 ⁷⁵	
Sets an absolute upper limit on the size (in megabytes) of the branch & cut tree. If this limit is exceeded, CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	Description: Tree memory limit.		
CPLEX terminates optimization. cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	Sets an absolute upper limit on t	he size (in megabytes) of the branch & cut tree. If this limit is exceeded,	
cpxControl.TUNINGDISPLAY 0 Turn off display 1 Display standard, minimal reporting 2 Display standard report plus parameter 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Default: 1 Default: 1 Specifies the level of information reported by the tuning tool as it works.	CPLEX terminates optimization.		
1 Display standard, minimal reporting 2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.	cpxControl.TUNINGDISPLAY	0 Turn off display	
2 Display standard report plus parameter settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		1 Display standard, minimal reporting	
settings being tried 3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		2 Display standard report plus parameter	
3 Display exhaustive report and log Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		settings being tried	
Default: 1 Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		3 Display exhaustive report and log	
Description: Tuning information display. Specifies the level of information reported by the tuning tool as it works.		Default: 1	
Specifies the level of information reported by the tuning tool as it works.	Description: Tuning information display.		

cpxControl.TUNINGMEASURE 1 Mean average of time to compare different	
· · · · · · · · · · · · · · · · · · ·	
parameter sets	
2 Minmax approach to compare the time of	
different parameter sets	
Default, 1	
Default: 1	
Controls the measure for evaluating progress when a model is being tuned.	
cpxControl TININGBEPEAT Any non-negative number	
They non negative number	
Default: 1	
Description: Tuning repeater.	
Specifies the number of times tuning is to be repeated on perturbed versions of a given problem. The pro	olem
is perturbed automatically by CPLEX permuting its rows and columns. This repetition is helpful when	only
one problem is being tuned, as repeated perturbation and re-tuning may lead to more robust tuning result	s.
cpxControl.TUNINGTILIM Any non-negative number	
$D_{\rm eff} = 10000$	
Default: 10000	
Sets a time limit nor model	
Sets a time mint per model.	
-1 Branch on variable with minimum infeasi-	
Dility	
1 Branch on variable with maximum infessi	
bility	
2 Branch based on pseudo costs	
3 Strong branching	
4 Branch based on pseudo reduced costs	
Default: 0	
Description: MIP variable selection strategy.	
Used to set the rule for selecting the branching variable at the node which has been selected for branc	ning.
The maximum infeasibility rule chooses the variable with the largest fractional value; the minimum infeasibility	
rule chooses the variable with the smallest fractional value. The minimum infeasibility rule (-1) may lead more	
quickly to a first integer feasible solution, but is usually slower overall to reach the optimal integer solution.	
The maximum infeasibility rule (1) forces larger changes earlier in the tree, which tend to produce faster overall	
times to reach the optimal integer solution. Pseudo cost (2) variable selection is derived from pseudo-sha	dow
prices. Strong branching (3) causes variable selection based on partially solving a number of subproblems with	
tentative branches to see which branch is the most promising. This strategy can be effective on large, difficult MIP problems. Pseudo reduced costs (4) are a computationally loss intensive form of pseudo costs. The default	
where problems. Fixed or reduced costs (4) are a computationally less-intensive form of pseudo costs. The default value (0) allows CPLEX to select the best rule based on the problem and its progress	
value (o) allows of DEA to select the best full based on the problem and its progress.	
Cpxcontrol.wukkDlk Default: "." Deceniption: Directory for working files	
Specifies the name of an existing directory into which CPI FY may store townersmy working files, such as for	
MIP node files or for out-of-core Barrier	5 101

TOMLAB parameter	Value
cpxControl.WORKMEM	Any positive number, in megabytes
	Default: 128.0
Description: Memory available for working storage.	
Specifies an upper limit on the amount of central memory, in megabytes, that CPLEX is permitted to use for	
working files (see WORKDIR).	
cpxControl.ZEROHALFCUTS	-1 Do not generate zero-half cuts
	0 Automatic: let CPLEX choose
	1 Generate zero-half cuts moderately
	2 Generate zero-half cuts aggressively
	Default: 0

Description: MIP zero-half cuts switch.

Decides whether or not to generate zero-half cuts for the problem. The value 0 (zero), the default, specifies that the attempt to generate zero-half cuts should continue only if it seems to be helping. If you find that too much time is spent generating zero-half cuts for your model, consider setting this parameter to -1 (minus one) to turn off zero-half cuts. If the dual bound of your model does not make sufficient progress, consider setting this parameter to 2 to generate zero-half cuts more aggressively.

G.3 Parallel mode

Sets the parallel optimization mode (PARALLELMODE in Table 17). Possible modes are automatic, deterministic, and opportunistic.

In this context, deterministic means that multiple runs with the same model at the same parameter settings on the same platform will reproduce the same solution path and results. In contrast, opportunistic implies that even slight differences in timing among threads or in the order in which tasks are executed in different threads may produce a different solution path and consequently different timings or different solution vectors during optimization executed in parallel threads. In multithreaded applications, the opportunistic setting entails less synchronization between threads and consequently may provide better performance.

By default, CPLEX applies as much parallelism as possible while still achieving deterministic results. That is, when you run the same model twice on the same platform with the same parameter settings, you will see the same solution and optimization run. This condition is referred to as the deterministic mode.

More opportunities to exploit parallelism are available if you do not require determinism. In other words, CPLEX can find more opportunities for parallelism if you do not require and invariant, repeatable solution path and precisely the same solution vector. To use all available parallelism, you need to select the opportunistic parallel mode. In this mode, CPLEX will utilize all opportunities for parallelism in order to achieve best performance.

However, in opportunistic mode, the actual optimization may differ from run to run, including the solution time itself.

Deterministic and Sequential Optimization

A truly parallel deterministic algorithm is available only for MIP optimization.

Only opportunistic parallel algorithms (barrier and concurrent optimizers) are available for continuous models. (Each of the simplex algorithms runs sequentially on a continuous model.)

Consequently, when parallel mode is set to deterministic, both barrier and concurrent optimizers are restricted to run only sequentially, not in parallel.

Callbacks and MIP Optimization

If callbacks other than informational callbacks are used for solving a MIP, the order in which the callbacks are called cannot be guaranteed to remain deterministic, not even in deterministic mode. Thus, to make sure of deterministic runs when the parallel mode parameter is at its default setting, CPLEX will revert to sequential solving of the MIP in the presence of query callbacks, diagnostic callbacks, or control callbacks.

Consequently, if your application invokes query, diagnostic, or control callbacks, and you still prefer deterministic search, you can choose value 1 (one), overriding the automatic setting and turning on deterministic search. It is then your responsibility to make sure that your callbacks do not perform operations that could lead to opportunistic behavior and are implemented in a thread-safe way. To meet these conditions, your application must not store and must not update any information in the callbacks.

Determinism vs Opportunism in Development and Deployment

This parameter also allows you to turn off this default setting by choosing value -1 (minus one). Cases where you might wish to turn off deterministic search include situations where you want to take advantage of possibly faster performance of opportunistic parallel MIP optimization in multiple threads after you have confirmed that deterministic parallel MIP optimization produced the results you expected. For example, you may want to develop your application in deterministic mode, taking advantage of the invariance and repeatability of the solution path and results until you verify that your model and application behave as expected; then you might want to turn off default deterministic mode and run your application in opportunistic mode to see whether your particular model and application benefit from possible performance improvements; if so, you might choose to deploy your application in opportunistic mode.

Interaction with Threads Parameter

Settings of this parallel mode parameter interact with settings of the thread parameter (THREADS).

The default (automatic) setting of the parallel mode parameter allows CPLEX to choose between deterministic and opportunistic mode depending on the threads parameter. If the threads parameter is set to its automatic setting (the default), CPLEX chooses deterministic mode.

Otherwise, if the threads parameter is set to a value greater than one, CPLEX chooses opportunistic mode.

References

[1] Laurence A. Wolsey. Integer Programming. John Wiley and Sons, New York, 1998.