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1 Introduction

1.1 Overview

Welcome to the TOMLAB /GP (Geometric Programming) User’s Guide. TOMLAB /GP includes the a geometric
programming solver package and a convenient interface to The MathWorks’ MATLAB.

The following sections describe the algorithm and TOMLAB format in more detail. There are several test problem
included with the TOMLAB distribution that illustrates the use. The following example will create and run the
first test case.

Prob = probInit(’gp_prob’, 1);

Result = tomRun(’GP’, Prob, 1);

1.2 Contents of this Manual

• Section 4 provides a basic overview of the geometric programming solver.

• Section 5 describes geometric programming in detail.

• Section 6 gives algorithmic details.

• Section 7 illustrates how to solve a simple test case.

• Section 8 contains three examples to assist in the modeling of geometric programming problems.

• Section 9 shows the screen and file output.

1.3 More information

Please visit the following links for more information:

• http://tomopt.com/tomlab/products/gp/

1.4 Prerequisites

In this manual we assume that the user is familiar with linear/nonlinear programming, setting up problems in
TOMLAB (in particular constrained nonlinear (con) problems) and the Matlab language in general.
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2 Using the Matlab Interface

The GP solver is accessed via the tomRun driver routine, which calls the coplgpTL interface routine. The solver
itself is located in the MEX file coplgp.dll.

Table 1: The interface routines.

Function Description Section Page
coplgpTL The interface routine called by the TOMLAB driver routine tomRun.

This routine then calls the MEX file gp

3.1 5

gpAssign The routine that creates a GP problem in the TOMLAB format.
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3 TOMLAB /GP Solver Reference

A detailed description of the TOMLAB /GP solver interface is given below. Also see the M-file help for coplgpTL.m.

3.1 coplgpTL

Purpose
Solve geometric programming problems as described by equation 7 and below.

Calling Syntax
Prob = gpAssign( ... );
Result = tomRun(’GP’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

GP.A Linear constraint matrix for dual problem.
GP.coef Posynomial coefficient vector.
GP.nterm Number of terms in objective and constraints.

GP.moremem Extra memory to allocate. Default 300*n + 300*m, where n is the total number
of terms and m is the number of variables. If this is not enough the interface
will double the memory until it is enough and try to solve it. The final value
of moremem will be returned in Result.GP.lackmem. If you solve many similar
problems in a sequence, set Prob.GP.moremem to Result.GP.lackmem in order to
avoid many unnecessary memory allocations.

PriLevOpt Print level in the solver. See GP.options.PRILEV.

GP Structure with GP solver specific fields.

PrintFile Name of file to print progress information and results to. The output written to
file is always with a print level of 2. Default: Empty, none that is.

GP.options Structure with special fields for the GP solver:

PRILEV Print level of GP solver. Has precedence over Prob.PriLevOpt.
== 0 silent
>= 1 normal output with iteration log
>= 2 more verbose output
>= 10 memory debug output
>= 100 extreme debug output
Default: 0
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Prob Problem description structure. The following fields are used:, continued

ITLM Iteration limit.
Default: 100

TOLX Zero tolerance on the dual variables.
Default: 1e-14

TOLZ Zero tolerance on the constraint values.
Default: 1e-14

EPSP Feasibility tolerance on primal problem.
Default: 1e-6

EPSD Feasibility tolerance on dual problem.
Default: 1e-6

EPSC Feasibility tolerance on the linear dual constraints.
Default: 1e-9

TOLPIV Pivoting zero tolerance.
Default: 1e-14

FRAC Fractional decrease of steplength.
Default: 0.9995

BIG Value to treat as infinite.
Default: 1e20
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Description of Outputs

Result Structure with result from optimization. The following fields are set:

f k Function value at optimum.
x k Optimal point.

xState State of each variable: 0/1/2/3: free / on lower bnd / on upper bnd / fixed.

ExitFlag Exit status. The following values are used:
0: Optimal solution found.
1: Maximum number of iterations reached.
2: (Possibly) unbounded problem.
4: (Possibly) infeasible problem.

ExitText The exit text according to Inform.

Inform Status value returned from the GP solver.

0: Optimal: find an optimal solution.

1: Unbounded: the reformulated problem is unbounded.

2: Infeasible: the reformulated problem is infeasible.

3: Iteration limit: reach the iteration limit before desired accuracy.

4: Numerical difficulties: encounter numerical problems.

5: Primal or dual infeasible: the original problems are infeasible.

6: Insufficient space: memory space is not sufficient.

7: Data file error: find input data errors.

Solver Name of the solver (GP).

SolverAlgorithm Description of the solver.

GP.lackmem See description for input Prob.GP.moremem.
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4 Summary

COPL GP (Computational Optimization Program Library: Geometric Programming) is a highly efficient and
accurate computer program developed in Computational Optimization Laboratory, Department of Management
Science, The University of Iowa, Iowa City, IA 52242, USA (http://dollar.biz.uiowa.edu/col/ye) for solving the
classical posynomial geometric programming problems. The approach is by means of a primal–dual algorithm
developed simultaneously for (i), the dual geometric program after logarithmic transformation of its objective
function and (ii), its Lagrangian dual program. Under rather general assumptions, the mechanism defines a primal–
dual infeasible path from a specially constructed, perturbed Karush–Kuhn–Tucker system. Subfeasible solutions,
are generated for each program whose primal and dual objective function values converge to the respective primal
and dual program values.

The basic technique is one of a predictor–corrector type involving Newton’s method applied to the perturbed
KKT system, coupled with effective techniques for choosing iterate directions and step lengths. Sophisticated
implementation techniques and advanced sparse matrix factorizations are used to take advantage of the very
special structure of the Hessian matrix of the logarithmically transformed dual objective function.

Computational results on 19 of the most challenging GP problems found in the literature are encouraging. The
performance indicates that the algorithm is effective regardless of the degree of difficulty, which is a generally
accepted measure in geometric programming.

Geometric programming GP is a very broad class of mathematical problems which is useful in the study of a
variety of optimization problems. Its great impact has been in the areas of (1) engineering design : [8],[2], [11],
and [12]; (2) economics & statistics : [5], [17], [4], [13],[1], and [3]; (3) manufacturing: [14], [10],[18], and (4)
chemical equilibrium : [8], [2], [16]).

The technical details of COPL GP can be found in Kortanek, Xu and Ye [15]

5 Geometric Programming (GP)

The primal GP is :

(GP ) VGP := minimize g0(t)
subject to gk(t) ≤ 1, k = 1, 2, . . . , p

ti > 0, i = 1, 2, . . . ,m

(1)

where

g0(t) =
n0∑

j=1

cjt
a1j

1 ...tamj
m (2)

gk(t) =
nk∑

j=nk−1+1

cjt
a1j

1 ...tamj
m , k = 1, 2, . . . , p. (3)

Given exponents aij for the ith variable in the jth product term, i = 1, . . . ,m and j = 1, . . . , np, are arbitrary real
constants and term coefficients cj are positive.

Here, g0(t) is called the objective function and gk(t) the kth constraint function, where n0 is the number of
product terms in the objective function and (nk − nk−1) is the number of product terms in the k constraint
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function. Therefore, the number of the total product terms is np, where p is the number of constraint functions.
The vector t contains m variables, denoted by t1, . . . , tm.

The program solves posynomial GP , and so we shall remove posynomial with this understanding.

The dual to GP ([8]) is

(GD) VGD := maximize
∏np

j=1(cj/xj)xj
∏p

k=1 λλk

k

subject to
∑n0

j=1 xj = 1,

∑np

j=1 xjaij = 0, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , np

(4)

where

λk =
nk∑

j=nk−1+1

xj , k = 1, 2, . . . , p. (5)

For a (primal) GP having m variables (ti), p constraints and np (posynomial) product terms we see that (dual)
GD has np non-negative variables (xj) in m + 1 linear equations. In the literature the degree of difficulty of a GP

is defined by :

degree of difficulty = np −m− 1. (6)

Let F (x) denote the negative of the logarithm of the objective function of (GD), i.e.,

F (x) =
n0∑

j=1

xj ln(
xj

cj
) +

p∑
k=1

nk∑
j=nk−1+1

xj ln(
xj

cjλk
). (7)

We see that (GD) is a linearly constrained convex programming problem,

minimize F (x)
subject to Ax = b, x ≥ 0,

where the coefficient matrix is given by

A =


1 ... 1 0 ... 0 ... 0 ... 0

a1,1 ... a1,n0 a1,n0+1 ... a1,n1 ... a1,np−1+1 ... a1,np

... ... ... ... ... ... ... ... ... ...

am,1 ... am,n0 am,n0+1 ... am,n1 ... am,np−1+1 ... am,np

,

 (8)

and right side hand

bT = (1, 0, ..., 0) ∈ Rm+1. (9)

Note that the first n0 entries of the first row of A are ones, and data aij are stored from row 2 to row m + 1 in A.
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6 The Algorithm

The program is an implementation of an interior–point algorithm for linear constrained convex programming
which when applied to geometric programming solves both primal and dual GP problems simultaneously. Using
the perturbed KKT system of the dual GP , a central–path is defined which converges to a solution of both
the primal and dual GP programs. The algorithm does not require the existence of an interior point for either
program. Moreover, the algorithm has the feature of generating subfeasible solutions, [9, 8], when the primal
geometric program is inconsistent but subconsistent. Computing functional values of subfeasible solutions gives
rise to more conceivable duality states for the primal-dual pair. In this manual we limit these possibilities by
considering “boundedly subfeasible” sequences for which our algorithm delivers a path whose primal-dual gap can
be made arbitrarily small, even for the case where one of the pair of dual problem is inconsistent. In addition, the
objective functions need not be differentiable at an optimal solution of a given consistent program.

Each iteration of the algorithm computes the Newton direction from a perturbed KKT system involving two
parameters, γ and η. The affine direction (corresponding to a particular setting γ = 0, η = 1) is used to predict
reductions in both the feasibility and complementarity residuals. Then proper parameters γ, η are chosen for the
KKT system which is solved for the direction again. The indefinite reduced KKT matrix is factorized by performing
diagonal pivots whose orders are chosen in terms of minimum degree to maintain the sparsity of the factors. A
static data structure associated with the chosen pivoting order is allocated by a single symbolic factorization and
used in subsequent iterations. Tactics for taking large steps and reset dual slack variables according to certain
rules are implemented.

Computational results indicate that the algorithm, coupled with these new techniques, leads to an efficient and
stable implementation for solving primal and dual geometric programs simultaneously. The results indicate that
the standard geometric programming measure of difficulty is no barrier to the methods.

7 A GP Example

This example is called Dembo78, [7]:

(DP ) min {t1t2 + t−1
1 t−1

2 | (1/4)t1/2
1 + t2 ≤ 1, t1 > 0, t2 > 0}.

The GP dual to Dembo78 has a unique optimal solution, x = (0.5, 0.5, 0, 0):

(DD) max (1/x1)x1(1/x2)x2(0.25/x3)x3(1/x4)x4(x3 + x4)(x3+x4)

subject to x1 + x2 = 1
x1 − x2 + 0.5x3 = 0
x1 − x2 + x4 = 0
x ≥ 0

The TOMLAB commands are:

Prob = gpAssign([2; 2], [1 1 1/4 1],...

[1 -1 0.5 0; 1 -1 0 1]’);

Result = tomRun(’gp’, Prob, 1);
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The problem is also defined in gp prob:

Prob = probInit(’gp_prob’, 1);

Result = tomRun(’gp’, Prob, 1);

8 TOMLAB Test Set

There are several test problems included with the TOMLAB distribution. Three of the problems are illustrated
below (P1, P4 and P10). These problems are created and solved by executing:

Prob1 = probInit(’gp_prob’, 3); % Create P1.

Prob2 = probInit(’gp_prob’, 6); % Create P4.

Prob3 = probInit(’gp_prob’, 12); % Create P10A.

Result1 = tomRun(’GP’, Prob1, 2); % Solve P1.

Result2 = tomRun(’GP’, Prob2, ,2); % Solve P4.

Result3 = tomRun(’GP’, Prob3, ,2); % Solve P10A.

Problem P1:

(P1) min 5x1 + 50000x−1
1 + 20x2 + 72000x−1

2 + 10x3 + 144000x−1
3

subject to 4x−1
1 + 32x−1

2 + 120x−1
3 <= 1

x ≥ 0

Using TOMLAB the problem is modeled as:

Problem P1 in TOMLAB:

A =

1 −1 0 0 0 0 −1 0 0
0 0 1 −1 0 0 0 −1 0
0 0 0 0 1 −1 0 0 −1

T

(10)

coef =
(
5 50000 20 72000 10 144000 4 32 120

)T
(11)

nterm =
(
6 3

)T
(12)
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Prob = gpAssign(nterm, coef, A, ’P1’);

Result = tomRun(’GP’, Prob, ,2);

similarly for the other test cases:

Problem P4:

(P1) min x−1
1 x−1

2 x−1
3

subject to 2x1 + x2 + 3x3 <= 1

x1 + 3x2 + 2x3 <= 1

x1 + x2 + x3 <= 1

x ≥ 0

Problem P4 in TOMLAB:

A =

−1 1 0 0 1 0 0 1 0 0
−1 0 1 0 0 1 0 0 1 0
−1 0 0 1 0 0 1 0 0 1

T

(13)

coef =
(
1 2 1 3 1 3 2 1 1 1

)T
(14)

nterm =
(
1 3 3 3

)T
(15)

Prob = gpAssign(nterm, coef, A, ’P4’);

Result = tomRun(’GP’, Prob, ,2);

Problem P10A:
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(P1) min 2x0.9
1 x−1.5

2 x−3
3 + 5x−0.3

4 x2.6
5 + 4.7x−1.8

6 x−0.5
7 x8

subject to 7.2x−3.8
1 x2.2

2 x4.3
3 + 0.5x−0.7

4 x−1.6
5 + 0.2x4.3

6 x−1.9
7 x8.5

8 <= 1

10x2.3
1 x1.7

2 x4.5
3 <= 1

0.6x−2.1
4 x0.4

5 <= 1

6.2x4.5
6 x−2.7

7 x−0.6
8 <= 1

3.1x1.6
1 x0.4

2 x−3.8
3 <= 1

3.7x5.4
4 x1.3

5 <= 1

0.3x−1.1
6 x7.3

7 x−5.6
8 <= 1

x ≥ 0

Problem P10A in TOMLAB:

A =



0.9 0 0 −3.8 0 0 2.3 0 0 1.6
0 0

−1.5 0 0 2.2 0 0 1.7 0 0 0.4
0 0
−3 0 0 4.3 0 0 4.5 −2.1 0 −3.8
0 0
0 −0.3 0 0 −0.7 0 0 −2.1 0 0

5.4 0
0 2.6 0 0 −1.6 0 0 0.4 0 0

1.3 0
0 0 −1.8 0 0 4.3 0 0 4.5 0
0 −1.1
0 0 −0.5 0 0 −1.9 0 0 −2.7 0
0 7.3
0 0 1 0 0 8.5 0 0 −0.6 0
0 −5.6



T

(16)

coef =
(

2 5 4.7 7.2 0.5 0.2 10 0.6 6.2 3.1
3.7 0.3

)T

(17)

nterm =
(
3 3 1 1 1 1 1 1

)T
(18)

Prob = gpAssign(nterm, coef, A, ’P10A’);
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Result = tomRun(’GP’, Prob, ,2);

9 Solution Output Files

The output file contains three sections.

• The first section “geometric programming model” describes some problem characteristics, such as the number
of variables, etc.

• The second section “path-following solver for reformulated model” contains the running information during
the iterative process. The primal and dual objective values represent the reformulated primal and dual
problems.

• The third section “solutions for original GP” contains the optimal values of the variables, the constraint
functions, the primal and dual objective functions, and the feasibility residues of the original GP problem
pair.

The termination code 0−−7 represents the following:

0=optimal: find an optimal solution;

1=unbounded: the reformulated problem is unbounded;

2=infeasible: the reformulated problem is infeasible;

3=iteration limit: reach the iteration limit before desired accuracy;

4=numerical difficulties: encounter numerical problems

5=primal or dual infeasible: the original problems are infeasible;

6=insufficient space: memory space is not sufficient;

7=data file error: find input data errors.

The last paragraph lists the CPU time: read in data, solve the problem and the sum of the two.

The following is the output file for Dembo68.

=================

COPL_GP 1.1 2005

=================

geometric programming optimizer

geometric programming model

---------------------------

primal gp vars . 2

primal gp consts 1

primal gp terms 4

degree of diffic 1
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path-following solver for reformulated model

--------------------------------------------

*- iter = 0 dual value =-2.00000000000000E+00

primal value =-4.64038529823796E-17

mu = 9.233E-01 Dual infeasibility = 3.608E-01

Primal infeasibility = 5.000E-01

*- iter = 1 dual value =-9.99533217451737E-01

primal value =-3.62989378647483E-01

mu = 1.591E-01 Dual infeasibility = 0.000E+00

Primal infeasibility = 1.872E-17

*- iter = 2 dual value =-7.13113168002422E-01

primal value =-5.88706966976516E-01

mu = 3.544E-02 Dual infeasibility = 2.294E-02

Primal infeasibility = 8.301E-17

*- iter = 3 dual value =-6.93636390346386E-01

primal value =-6.89738422619333E-01

mu = 1.854E-03 Dual infeasibility = 4.382E-03

Primal infeasibility = 2.975E-17

*- iter = 4 dual value =-6.93130105030368E-01

primal value =-6.93115339650404E-01

mu = 9.392E-06 Dual infeasibility = 2.847E-05

Primal infeasibility = 2.383E-17

*- iter = 5 dual value =-6.93147171812859E-01

primal value =-6.93147164639831E-01

mu = 4.710E-09 Dual infeasibility = 1.456E-08

Primal infeasibility = 4.592E-17

*- iter = 6 dual value =-6.93147180555572E-01

primal value =-6.93147180551985E-01

mu = 2.355E-12 Dual infeasibility = 7.282E-12

Primal infeasibility = 8.860E-17

*- iter = 7 dual value =-6.93147180559943E-01

primal value =-6.93147180559941E-01

mu = 1.210E-15 Dual infeasibility = 3.705E-15

Primal infeasibility = 5.133E-17

-- exit : optimal solution obtained. iter 7

dual objective value =-6.93147180559943E-01

primal =-6.93147180559941E-01
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Dual infeasibility = 3.705E-15

Primal = 5.133E-17

solutions for original GP

-------------------------

primal GP solution

i t(i)

1 .421974819510E+01

2 .236980965158E+00

primal GP constraint value

i constraint value

1 .750531607446E+00

primal GP obj value (from direct comp) 2.00000000000000E+00

primal GP infeasibility 0.000E+00

dual GP obj value (from direct comp) 1.99999999999999E+00

dual GP infeasibility 5.133E-17

all done, termination code= 0

0=optimal, 1=unbounded, 2=infeasible

3=iteration limit, 4=numerical difficulties

5=primal or dual infeasible, 6=insufficient space

7=data file error

----- time for readin = .02

solving = .01

total time in seconds = .03

Tolerances for primal and dual feasibilities and complementarity are specified as

εP = 10−8, εD = 10−8, and εC = 10−12. (19)

Extensive computational tests indicate that the requirement of εC = 10−12 is very strong. The solution stopping
by this specification usually is very accurate.
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