USER'S GUIDE FOR TOMLAB /GUROBI $^{1\ 2}$

Kenneth Holmström³, Anders O. Göran⁴ and Marcus M. Edvall⁵

November 18, 2009

¹More information available at the TOMLAB home page: http://tomopt.com E-mail: tomlab@tomopt.com.

 $^{^2\}mathrm{Portions}$ Copyright Gurobi Optimization, Inc. 2009

³Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Västerås, Sweden, kenneth.holmstrom@mdh.se.

⁴Tomlab Optimization AB, Västerås Technology Park, Trefasgatan 4, SE-721 30 Västerås, Sweden, anders@tomopt.com.

⁵Tomlab Optimization Inc., 1260 SE Bishop Blvd Ste E, Pullman, WA, USA, medvall@tomopt.com.

Contents

C	Contents	2
1	Introduction	4
	1.1 Overview	4
	1.2 Contents of this Manual	4
2	Installing TOMLAB /GUROBI	5
	2.1 Windows Systems	5
	2.2 Unix/Linux Systems	5
	2.3 Troubleshooting	6
3	Using the Matlab Interface	7
4	Features	8
	4.1 Linear Programming	8
	4.2 Mixed-Integer Programming	9
A	The Matlab Interface Routines - Main Routines	10
	A.1 gurobi	10
	A.2 gurobiTL	15
	A.3 grbStatus	20
в	The Matlab Interface Routines - Test Routines	21
	B.1 grbaircrew	21
	B.2 grbbiptest	22
	B.3 grbiptest	23
	B.4 grbtomtest1	24
	B.5 grbtomtest2	24
	B.6 grbKnaps	25
	B.7 grbKnapsTL	26
	B.8 grbTest1	27
	B.9 grbTest2	28
	B.10 $\operatorname{grbTest3}$	29
	B.11 grbTestIIS	30
	B.12 grbTestSA	31

С	GU	ROBI Parameters	32
	C.1	Setting GUROBI Parameters in Matlab	32
	C.2	Termination	32
	C.3	Tolerances	33
	C.4	Simplex	33
	C.5	MIP	34
	C.6	MIP Cuts	35
	C.7	Other	36

1 Introduction

1.1 Overview

Welcome to the TOMLAB /GUROBI User's Guide. TOMLAB /GUROBI includes an embedded version of the GUROBI solver and Matlab interfaces.

The GUROBI optimization solver includes highly advanced primal and dual simplex linear programming (LP) algorithms and parallel capabilities for mixed-integer programming (MIP) problems. The solver will automatically set the best options for a specific problem type and also use all cores/cpu available for the algorithm (at no extra cost).

The interface between GUROBI, Matlab and TOMLAB consists of two layers. The first layer gives direct access from Matlab to GUROBI, via calling one Matlab function that calls a pre-compiled MEX file (DLL under Windows, shared library in UNIX) that defines and solves the problem in GUROBI. The second layer is a Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the function creates the output in the TOMLAB format.

1.2 Contents of this Manual

- Section 3 gives the basic information needed to run the Matlab interface.
- Some Matlab test routines are included, described in Section A.1 (non-TOMLAB format) and Section A.2 (TOMLAB format). All Matlab routines are described in Appendix A.

2 Installing TOMLAB /GUROBI

2.1 Windows Systems

TOMLAB /GUROBI is installed by the general TOMLAB exe installer. The folders $tomlab \ gurobi$ and also $tomlab \ shared$ are created.

The *tomlab**shared* folder contains the *gurobi*^{*}.*dll* and must be installed. The installer automatically adds the location of this folder to the Windows PATH variable (a computer reboot is recommended).

If installing TOMLAB /GUROBI together with other TOMLAB packages, the *tomlab\startup.m* file will automatically detect TOMLAB /GUROBI and set the MATLAB path accordingly.

You may also set the TOMLAB and TOMLAB /GUROBI paths permanently in the Matlab system. To find out which paths are used, run the startup commands as described above, then use the **path** command to see what paths TOMLAB created and set these permanently on your system. See the Matlab documentation on how to set Matlab paths.

2.2 Unix/Linux Systems

TOMLAB /GUROBI is installed together with the rest of TOMLAB when extracting the *tomlab-<arch>-setup.tar.gz* file. The user must set/modify the LD_LIBRARY_PATH environment variable in order for the runtime linking to work as intended. Assuming that TOMLAB is extracted to \$HOME/tomlab/shared, do:

```
#
#
# csh/tcsh shells:
#
setenv LD_LIBRARY_PATH $HOME/tomlab/shared:$LD_LIBRARY_PATH
#
# bash and compatible shells:
#
export LD_LIBRARY_PATH=$HOME/tomlab/shared:$LD_LIBRARY_PATH
```

To use TOMLAB /GUROBI together with the TOMLAB Base Module, execute the *tomlab/startup* script, which automatically recognizes the presence of the GUROBI subdirectory.

2.3 Troubleshooting

Error messages like the following:

>> grbmex Unable to load mex file: d:\program files\tomlab\gurobi\grbmex.dll. The specified module could not be found.

??? Invalid MEX-file

or, on Unix systems:

```
>> grbmex
Unable to load mex file: /home/user/tomlab/gurobi/grb.mexglx.
libgurobi*.so: cannot open shared object file:
No such file or directory
??? Invalid MEX-file
```

indicate a problem with the PATH variable on Windows systems, or equivalently the \$LD_LIBRARY_PATH variable in Unix/Linux.

You can check from within Matlab that the path has been set correctly, by executing

>> getenv('PATH') % Windows
>> getenv('LD_LIBRARY_PATH') % Unix/Linux

The location of the *tomlab/shared* directory must be included in the result, OR, the location of the gurobi*.dll (gurobi*.so) file on systems where GUROBI is already installed.

3 Using the Matlab Interface

The two main routines in the two-layer design of the interface are shown in Table 1. Page and section references are given to detailed descriptions on how to use the routines. Users not using the TOMLAB *Prob* format can skip reading about the routine *gurobiTL*. A more advanced user, only has to read about how to call the level 1 interface routine *gurobi.m*.

Table 1: The interface routines.

Function	Description	Section
gurobi	The layer one Matlab interface routine, calls the MEX-file interface	A.1
gurobiTL	grbmex.dll The layer two TOMLAB interface routine that calls gurobi.m. Con- verts the input Prob format before calling gurobi.m and converts back	A.2
	to the output <i>Result</i> structure.	

The GUROBI control parameters (Section C in this manual), are all possible to set from Matlab.

They could be set as input to the interface routine *gurobi*. The user sets fields in a structure called *grbControl*, where the subfield names are the same as the names of the control variables (not case-sensitive). The following example shows how to set the values for one integer variable ITERLIM, one double variable INTFEASTOL, and one character variable valued variable WRITEPARAMS.

grbControl.ITERATIONLIMIT	f = 50;	% Setting maximal number of simplex iterations
grbControl.INTFEASTOL	= 1E-5;	% Integer feasibility tolerance
grbControl.WRITEPARAMS	= 'myPar.txt'	; % File name for parameter write

4 Features

The active components in GUROBI are continuously expanding with additional support included with each release. As of the current version the solver suite included:

- Primal simplex (LP)
- Dual simplex (LP)
- Mixed-integer linear programming (parallel) (MILP)

4.1 Linear Programming

The linear programming capabilities included with GUROBI can be summarized as follows:

- Algorithms: Primal and Dual Simplex
- Sensitivity analysis
- Warm start with an advanced basis
- Infeasibility analysis
- Presolve modifications and analysis

Algorithms:

The default linear programming solver in GUROBI is the dual simplex algorithm. In general, the dual algorithm is suitable for most problems. However, it is recommended to try the primal simplex solver as well since it has proven beneficial for certain problem types.

grbControl.LPMETHOD = 0; % Primal simplex
grbControl.LPMETHOD = 1; % Dual simplex

Sensitivity analysis:

TOMLAB /GUROBI also implements sensitivity analysis (post-optimality analysis) for linear programming problems. This makes it possible to further analyze the solution returned from the algorithm. The solver will return information about how much the variable bounds, linear constraint bounds and objective coefficients can be adjusted while still maintaining the same optimal basis. The results will be a range and hence give detailed information about the sensitivity for each input.

Warm start:

The warm start (advanced basis initialization) is most suitable for models where the presolve algorithm does not generate a great problem size reduction since the presolve will be turned off (not available) when using a basis. In general it is best to try both with and without warm start for recursive runs.

Infeasibility analysis:

GUROBI has a built-in infeasibility finder. When activated the solver will produce an Irreducibly Inconsistent **S**et of constraints (IIS). The IIS will consist of a set of variable bounds and linear constraints which are infeasible

together, but will become feasible if one or more member of the set is removed. This feature is available for both LP and MIP problems.

Presolve modifications and analysis:

The GUROBI presolve algorithm generally results in a number of problem reductions. This makes it easier for the solver algorithm to solve the final problem since a smaller version is normally more manageable. For models with few or no reductions, the presolve algorithm could be turned off for further speed-ups in the overall solution process.

In case the presolve algorithm detects infeasibility with limited information as to the source, IIS can be activated and used instead (or the problem rerun with the presolve).

4.2 Mixed-Integer Programming

GUROBI is the first solver suite to offer unlimited memory-shared core/cpu usage without additional costs for the parallelism. By default the solver will utilize as many cores/cpus as it sees fit for the particular problem and also produce deterministic results (i.e. solution path will be identical).

GUROBI uses a branch and cut algorithm to solve binary and integer programming problems. This involves (among other things) to solve a series of LP problems, apply problem cuts and implement heuristics in the search tree. In general this will be very computationally intensive and require significant RAM memory (and possible harddrive space) to complete the solution process.

The solver supports most standard variable types (apart from binary and integer): Semi-continuous (0 or in real interval), semi-integer (0 or in integer interval), special ordered sets of type 1 and 2.

It is also possible to supply a (partial) starting point for the MIP problem. The not known elements should be set as NaN in the start vector. The solver will then automatically repair the vector and if successful use the information to further improve the solution process.

A The Matlab Interface Routines - Main Routines

A.1 gurobi

Purpose

GUROBI solves mixed-integer linear (MILP) problems of the form

\min_x	f(x)) = a	$c^T x$			
s/t	x_L	\leq		x	\leq	x_U
	b_L	\leq		Ax	\leq	b_U
			x_i	integer		$i \in I$

where $c, x, x_L, x_U \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b_L, b_U \in \mathbb{R}^m$. The variables $x \in I$, the index subset of 1, ..., n, are restricted to be integers.

Calling Syntax

[x, slack, v, rc, f_k, ninf, sinf, Inform, basis, lpiter, glnodes, iis, sa] = ... gurobi(c, A, x_L, x_U, b_L, b_U, grbControl, PriLev, IntVars, SC, SI, ... sos1, sos2, logfile, savefile, iisRequest, iisFile, saRequest, basis, xIP)

Description of Inputs

The following inputs are used:

С	Linear objective function cost coefficients, vector $n \times 1$.	
A	Linear constraint matrix for linear constraints, dense or sparse matrix $m \times n$.	
$x_{-}L \ x_{-}U$	Lower bounds on x . Upper bounds on x .	
$b_{-}L$	Lower bounds on the linear constraints.	
The following parameters are optional:		
bU	Upper bounds on the linear constraints. If empty, then inf is assumed.	
grbControl	Structure, where the fields are set to the GUROBI parameters that the user wants to specify (not case-sensitive). For example: grbControl.LPMETHOD = 0 %Primal instead of Dual simplex grbControl.IterationLimit = 20 % Limit the simplex iterations	
PriLev	Printing level in the GUROBI interface. = 0 Silent = 1 Warnings and Errors = 2 Summary information	

= 3 More detailed information

The following inputs are used:, continued

> 10 Pause statements, and maximal printing

- IntVars Defines which variables are integers, of general type I or binary B Variable indices should be in the range [1, ..., n]. IntVars is a logical vector ==> x(find(IntVars > 0)) are integers IntVars is a vector of indices ==> x(IntVars) are integers (if [], then no integers of type I or B are defined) GURONI checks which variables has x_L=0 and x_U=1, i.e. binary.
- SC A vector with indices for the integer variables of type Semi-continuous (SC), i.e. that takes either the value 0 or a real value in the range $[x_L(i), x_U(i)]$, assuming for some j, that i = SC(j), where i is an variable number in the range [1, ..., n].
- SI A vector with indices for the integer variables of type Semi-integer (SI), i.e. that takes either the value 0 or an integer value in the range $[x_L(i), x_U(i)]$, assuming for some j, that i = SIe(j), where i is an variable number in the range [1, ..., n].
- sos1 A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k sets of type sos1, then sos1(k).var is a vector of indices for variables of type sos1 in set k. sos1(k).row is the row number for the reference row identifying the ordering information for the sos1 set, i.e. A(sos1(k).row,sos1(k).var) identifies this information. As ordering information, also the objective function coefficients c could be used. Then as row number, 0 is instead given in sos1(k).row.
- sos2 A structure defining the Special Ordered Sets of Type Two (sos2). Specified in the same way as sos1 sets; see sos1 input variable description.
- *logfile* Name of file to write the GUROBI log information to. If empty, no log is written.
- *savefile* Name of file to write GUROBI problem just prior to calling the GUROBI solver. The file extension will control the type of file generated (mps, lp or rlp).
- *iisRequest* IIS request. Set this to 1 if IIS information is needed for infeasible models.
- *iisFile* Name of file to write IIS information to. No file is written if this input parameter is empty or if no such information is available. The file name must have the extension .ilp
- saRequest Structure telling whether and how you want GUROBI to perform a sensitivity analysis (SA). You can complete an SA on the objective function, right hand side vector, lower and upper bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

index contain indices to variables or constraints of which to return possible value ranges.

The following inputs are used:, continued

The .index array has to be sorted, ascending.

To get an SA of objective function on the four variables 120 to 123 (included) and variable 19, the saRequest structure would look like this:

 $saRequest.obj.index = [19\ 120\ 121\ 122\ 123];$

The result is returned through the output parameter 'sa'.

basis Vector with GUROBI starting basis. If re-solving a similar problem several times, this can be set to the 'basis' output argument of an earlier call to gurobi.m. The length of this vector must be equal to the sum of the number of rows (m) and columns (n).

The first m elements contain row basis information, with the following possible values for non-ranged rows:

0 associated slack/surplus/artificial variable nonbasic at value 0.0 1 associated slack/surplus/artificial variable basic

and for ranged rows (both upper and lower bounded)

0 associated slack/surplus/artificial variable nonbasic at its lower bound 1 associated slack/surplus/artificial variable basic 2 associated slack/surplus/artificial variable nonbasic at its upper bound

The last n elements, i.e. basis(m+1:m+n) contain column basis information:

0 variable at lower bound1 variable is basic2 variable at upper bound3 variable free and nonbasic

xIP Vector with MIP starting solution, if known. Missing values may be set to NaN. Length should be equal to number of columns in problem.

Description of Outputs

The following fields are used:

x slack v rc f_k	Solution vector x with decision variable values $(n \times 1 \text{ vector})$. Slack variables $(m \times 1 \text{ vector})$. Lagrangian multipliers (dual solution vector) $(m \times 1 \text{ vector})$. Reduced costs. Lagrangian multipliers for simple bounds on x . Objective function value at optimum.
ninf $sinf$	Number of infeasibilities. Sum of infeasibilities.
Inform basis lpiter glnodes	See section A.3. Basis status of constraints and variables, $((m+n) \times 1 \text{ vector})$. See inputs for more information. Number of simplex iterations. Number of nodes visited.
iis	Structure containing IIS information. For example, if $lb = [1; 2; 3; 4]$, then the lower bounds for variables 1-4 are part of the IIS set.
	If there were ranged constraints among the original constraints, the lb/ub outputs may contain indices higher than the original number of variables, since ranged constraints are transformed using slacks and those slack variables may become IIS set members. Fields:
	iisStatus: Status flag. Possible values:
	0 - IIS exist. 10015 - Model is feasible. 10016 - Model is a MIP.
	lb: Variable whose lower bounds are in the IIS.ub: Variable whose upper bounds are in the IIS.constr: Constraints that are in the IIS.
sa	Structure with information about the requested SA, if requested. The fields:
obj	Ranges for the variables in the objective function.
rhs	Ranges for the right hand side values.
xl	Ranges for the lower bound values.
xu	Ranges for the upper bound values.

The following fields are used:, continued

These fields are structures themselves. All four structures have identical field names:

status Status of the SA operation. Possible values:

1 = Successful.
0 = SA not requested.
-1 = Error: begin is greater than end.
-2 = Error: The selected range (begin...end) stretches out of available variables or constraints.
-3 = Error: No SA available. *lower* The lower range. *upper* The upper range.

Description

The interface routine gurobi calls GUROBI to solve LP, and MILP problems. The matrix A is transformed in to the GUROBI sparse matrix format.

Error checking is made on the lengths of the vectors and matrices.

A.2 gurobiTL

Purpose

GUROBI solves mixed-integer linear (MILP) problems of the form

$$\min_{x} \quad f(x) = c^{T}x \\ s/t \quad x_{L} \leq x \leq x_{U} \\ b_{L} \leq Ax \leq b_{U} \\ x_{i} \text{ integer } i \in I$$

where $c, x, x_L, x_U \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ and $b_L, b_U \in \mathbb{R}^m$. The variables $x \in I$, the index subset of 1, ..., n, are restricted to be integers.

Calling Syntax

Prob = ProbCheck(Prob, 'gurobi'); Result = gurobiTL(Prob); or Result = tomRun('gurobi', Prob, 1);

Description of Inputs

Problem description structure. The following fields are used:

QP.c	Linear objective function cost coefficients, vector $n \times 1$.
$\begin{array}{c} A \\ b_{-}L \\ b_{-}U \end{array}$	Linear constraint matrix for linear constraints, dense or sparse $m \times n$ matrix. Lower bounds on the linear constraints. Upper bounds on the linear constraints.
$x_{-}L$	Lower bounds on design parameters x. If empty assumed to be $-Inf$.
$x_{-}U$	Upper bounds on design parameters x . If empty assumed to be Inf .
PriLevOpt	 Printing level in gurobi.m file and the GUROBI C-interface. = 0 Silent = 1 Warnings and Errors = 2 Summary information = 3 More detailed information > 10 Pause statements, and maximal printing (debug mode)
MIP	Structure holding information about mixed integer optimization.
grbControl	Structure, where the fields are set to the GUROBI parameters that the user wants to specify (not case-sensitive). For example: grbControl.LPMETHOD = 0 %Primal instead of Dual simplex grbControl.IterationLimit = 20 % Limit the simplex iterations

Problem description structure. The following fields are used:, continued

IntVars	Defines which variables are integers, of the general type I or binary B . Variable indices should be in the range $[1,,n]$. If $IntVars$ is a logical vector then all variables i where IntVars(i) > 0 are defined to be integers. If $IntVars$ is determined to be a vector of indices then $x(IntVars)$ are defined as integers. If the input is empty ([]), then no integers of type I or B are defined. The interface routine gurobi.m checks which of the integer variables have lower bound $x_L = 0$ and upper bound $x_U = 1$, i.e. are binary $0/1$ variables.
SC	A vector with indices for the integer variables of type <i>Semi-continuous</i> (SC), i.e. that takes either the value 0 or a real value in the range $[x_L(i), x_U(i)]$, assuming for some j , that i = SC(j), where i is an variable number in the range $[1,, n]$.
SI	A vector with indices for the integer variables of type <i>Semi-integer</i> (SI), i.e. that takes either the value 0 or an integer value in the range $[x_L(i), x_U(i)]$, assuming for some j , that i = SI(j), where i is an variable number in the range $[1,, n]$.
sos1	A structure defining the Special Ordered Sets of Type One (sos1). Assume there are k sets of type sos1, then $sos1(k).var$ is a vector of indices for variables of type sos1 in set k. $sos1(k).row$ is the row number for the reference row identifying the ordering information for the sos1 set, i.e. $A(sos1(k).row,sos1(k).var)$ identifies this information. As ordering information, also the objective function coefficients c could be used. Then as row number, 0 is instead given in $sos1(k).row$.
sos2	A structure defining the Special Ordered Sets of Type Two ($sos2$). Specified exactly as $sos1$ sets, see $MIP.sos1$ input variable description.
basis	Basis for warm start of solution process. See Section A.1 for more information.
xIP	Vector with MIP starting solution, if known. NaN can be used to indicate missing values. Length should be equal to number of columns in problem. Values of continuous variables are ignored.
GUROBI	Structure with solver specific parameters for logging and saving problems. The following fields are used:
LogFile SaveFile	Name of file to write the GUROBI log information to. If empty, no log is written. Name of file to write GUROBI problem just prior to calling the GUROBI solver. The file extension will control the type of file generated (mps, lp or rlp).
iis Request	IIS request. Set this to 1 if IIS information is needed for infeasible models.
iisFile	Name of file to write IIS information to. No file is written if this input parameter is empty or if no such information is available. The file name must have the extension .ilp

Problem description structure. The following fields are used:, continued

sa Structure telling whether and how you want GUROBI to perform a sensitivity analysis (SA).
 You can complete an SA on the objective function, right hand side vector, lower and upper bounds. The saRequest structure contains four sub structures:

.obj, .rhs, .xl, .xu

Each one of these contain the field:

.index

index contain indices to variables or constraints of which to return possible value ranges.

The .index array has to be sorted, ascending.

To get an SA of objective function on the four variables 120 to 123 (included) and variable 19, the saRequest structure would look like this:

 $saRequest.obj.index = [19\ 120\ 121\ 122\ 123];$

The result is returned through the output parameter 'sa'.

Description of Outputs

Result structure. The following fields are used:

Iter	Number of iterations, or nodes visited.
ExitFlag	 0: Successful. 1: Time/Iterations limit exceeded. 2: Unbounded. 4: Infeasible. 10: Input errors. -1: Other errors.
ExitText	See A.3.
Inform	Result of GUROBI run. See section A.3 for details on the ExitText and possible Inform values.
<i>x_0</i>	Initial starting point not known, set as empty.
$egin{array}{llllllllllllllllllllllllllllllllllll$	Function value at optimum, $f(x_k)$. Gradient value at optimum, c . Optimal solution vector x_k . Lagrangian multipliers (for bounds and dual solution vector). Set as $v_k = [rc; v]$, where rc is the <i>n</i> -vector of reduced costs and v holds the <i>m</i> dual variables.

Result. The following fields are used:, continued

xState	State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;	
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality ==		
Solver SolverAlgorithm FuncEv GradEv ConstrEv Prob	Solver used - GUROBI . Solver algorithm used. Number of function evaluations. Set to <i>Iter</i> . Number of gradient evaluations. Set to <i>Iter</i> . Number of constraint evaluations. Set to <i>Iter</i> . Problem structure used.	
MIP.ninf MIP.sinf MIP.slack MIP.lpiter MIP.glnodes MIP.basis	Number of infeasibilities. Sum of infeasibilities. Slack variables $(m \times 1 \text{ vector})$. Number of LP iterations. Number of nodes visited. Basis status of constraints and variables ($(m+n) \times 1 \text{ vector}$) in the GUROBI format, fields xState and bState has the same information in the TOMLAB format. See Section A.1 for more information.	
GUROBI.sa	Structure with information about the requested SA, if requested. The fields:	
obj	Ranges for the variables in the objective function.	
rhs	Ranges for the right hand side values.	
xl	Ranges for the lower bound values.	
xu	Ranges for the upper bound values.	
These fields are s	tructures themselves. All four structures have identical field names:	
status	Status of the SA operation. Possible values:	
	 1 = Successful. 0 = SA not requested. -1 = Error: begin is greater than end. -2 = Error: The selected range (beginend) stretches out of available variables or constraints. -3 = Error: No SA available. 	
lower	The lower range.	
upper	The upper range.	

Result. The following fields are used:, continued

GUROBLiis Structure containing IIS information. For example, if lb = [1; 2; 3; 4], then the lower bounds for variables 1-4 are part of the IIS set.

If there were ranged constraints among the original constraints, the lb/ub outputs may contain indices higher than the original number of variables, since ranged constraints are transformed using slacks and those slack variables may become IIS set members. Fields:

iisStatus: Status flag. Possible values:

0 - IIS exist. 10015 - Model is feasible. 10016 - Model is a MIP.

lb: Variable whose lower bounds are in the IIS. ub: Variable whose upper bounds are in the IIS. constr: Constraints that are in the IIS.

Description

The interface routine gurobi calls GUROBI to solve LP, and MILP problems. The matrix A is transformed in to the GUROBI sparse matrix format.

An empty objective coefficient *c*-vector is set to the zero-vector.

Examples

See mip_prob

M-files Used gurobi.m

A.3 grbStatus

Purpose

grbStatus analyzes the GUROBI output Inform code and returns the GUROBI solution status message in ExitText and the TOMLAB exit flag in ExitFlag.

Calling Syntax

[ExitText, ExitFlag] = grbStatus(Inform)

Description of Inputs

The following inputs are used:

Inform Result of GUROBI run.

1	Model is loaded, but no solution information is available
2	Model was solved to optimality (subject to tolerances), and an optimal solution
	is available
3	Model was proven to be infeasible
4	Model was proven to be either infeasible or unbounded
5	Model was proven to be unbounded
6	Optimal objective for model was proven to be worse than the value specified in
	the CUTOFF parameter. No solution information is available
7	Optimization terminated because the total number of simplex iterations
	performed exceeded the value specified in the ITERATIONLIMIT parameter
8	Optimization terminated because the total number of branch-and-cut nodes
	explored exceeded the value specified in the NODELIMIT parameter
9	Optimization terminated because the time expended exceeded the value
	specified in the TIMELIMIT parameter
10	Optimization terminated because the number of solutions found reached the
	value specified in the SOLUTIONLIMIT parameter
11	Optimization was terminated by the user
12	Optimization was terminated due to unrecoverable numerical difficulties

otherwise Unknown status

Description of Outputs

The following fields are used:

ExitText	Text interpretation of GUROBI result.
ExitFlag	TOMLAB standard exit flag.

B The Matlab Interface Routines - Test Routines

B.1 grbaircrew

Purpose

Test of an air-crew schedule generation problem.

Calling Syntax

grbaircrew

Description

Test of an air-crew schedule generation problem. Based on D.M.Ryan, Airline Industry, Encyclopedia of Operations Research and Management Science. Two subfunctions are used (defined at the end of the *grbaircrew.m* file): The function generateToDs create ToDs, i.e. Tours of Duty. The function sectordata generates some test data.

M-files Used abc2gap.m, gurobi.m

B.2 grbbiptest

Purpose

Test of TOMLAB /GUROBI level 1 interface solving three larger binary integer linear optimization problems calling the GUROBI solver.

Calling Syntax

function grbbiptest(Cut, PreSolve, grbControl)

Description of Input

Cut	Value of the cut strategy control parameter, default $Cut = -1$. Cut = -1, auto select of $Cut = 1$ or $Cut = 2$. Cut = 0, no cuts.
	Cut = 1, conservative cut strategy. Cut = 2, aggressive cut strategy
PreSolve	Value of the PRESOLVE control parameter, default $PreSolve = 1$. PreSolve = 0: no presolve. PreSolve = 1, do presolve.
grbControl	The initial GUROBI parameter structure. Here the user may set additional control parameters. Default empty.

Description

Test of three larger binary integer linear optimization problems calling the GUROBI solver. The test problem 1 and 2 have 1956 variables, 23 equalities and four inequalities with both lower and upper bounds set.

Test problem 1, in *bilp1.mat*, is randomly generated. It has several minima with optimal zero value. GUROBI runs faster if avoiding the use of a cut strategy, and skipping presolve. Test problem 2, in *bilp2.mat*, has a unique minimum. Runs faster if avoiding the use of presolve.

Test problem 3, in bilp1211.mat, has 1656 variables, 23 equalities and four inequalities with lower and upper bounds set. Runs very slow without the use of cuts. A call grbbiptest(0,0) gives the fastest execution for the first two problems, but will be extremely slow for the third problem.

Timings are made with the Matlab functions *tic* and *toc*.

M-files Used gurobi.m, grbPrint.m

B.3 grbiptest

Purpose

Test of the TOMLAB /GUROBI level 1 interface solving three larger integer linear optimization problems calling the GUROBI solver.

Calling Syntax

function grbiptest(Cut, PreSolve, grbControl)

Description of Input

Cut	Value of the cut strategy parameters, default $Cut = -1$. Cut = -1, auto select of $Cut = 1$ or $Cut = 2$. Cut = 0, no cuts. $Cut = 1$, conservative cut strategy. Cut = 2, aggressive cut strategy
	See grbbiptest, page 22.
PreSolve	Value of the PRESOLVE control parameter, default $PreSolve = 1$. PreSolve = 0, no presolve. PreSolve = 1, do presolve.
grbControl	The initial grbControl structure. Here the user may set additional control parameter. Default empty.

Description

Test of three larger integer linear optimization problems calling the GUROBI solver. The test problems have 61 variables and 138 linear inequalities. 32 of the 138 inequalities are just zero rows in the matrix A. The three problems are stored in *ilp*061.*mat*, *ilp*062.*mat* and *ilp*063.*mat*.

Code is included to remove the 32 zero rows, and compute better upper bounds using the positivity of the matrix elements, right hand side and the variables. But this does not influence the timing much, the GUROBI presolve will do all these problem changes.

Timings are made with the Matlab functions *tic* and *toc*.

M-files Used gurobi, xprinti, grbPrint

B.4 grbtomtest1

Purpose

Test of using TOMLAB to call GUROBI for problems defined in the TOMLAB IF format.

Calling Syntax

grbtomtest1

Description

Test of using TOMLAB to call GUROBI for problems defined in the TOMLAB IF format. The examples show the solution of LP and MILP problems.

M-files Used

tom Run.

See Also

gurobiTL.

B.5 grbtomtest2

Purpose

Test of using TOMLAB to call GUROBI for problems defined in the TOMLAB format.

Calling Syntax

grbtomtest2

Description

Test of using TOMLAB to call GUROBI for problems defined in the TOMLAB format. The routine *mipAssign* is used to define the problem. A simple problem is solved with GUROBI both as an LP problem and as a MILP problem.

M-files Used

mipAssign, tomRun and PrintResult.

See Also gurobiTL and gurobi.

B.6 grbKnaps

Purpose

GUROBI Matlab Level 1 interface Knapsack test routine

Calling Syntax

grbKnaps(P, Cut)

Description of Input

PProblem number 1-3. Default 1.CutCut strategy. 0 = no cuts, 1 = cuts, 2 = aggressive cuts. Default 0.

Description

The GUROBI Matlab level 1 interface knapsack test routine runs three different test problems. It is possible to change cut strategy and use heuristics defined in callbacks.

Currently defined knapsack problems:

Problem	Name	Knapsacks	Variables
1	Weingartner 1	2	28
2	Hansen, Plateau 1	4	28
3	PB 4	2	29

M-files Used

gurobi.m

B.7 grbKnapsTL

Purpose

GUROBI Matlab Level 2 interface Knapsack test routine

Calling Syntax

grbKnapsTL(P, Cut)

Description of Input

P	Problem number 1-3. Default 1.
Cut	Cut strategy. $0 = \text{no cuts}, 1 = \text{cuts}, 2 = \text{aggressive cuts}$. Default 0.

Description

The GUROBI Matlab level 2 interface knapsack test routine runs three different test problems. It is possible to change cut strategy.

Currently defined knapsack problems:

Problem	Name	Knapsacks	Variables
1	Weingartner 1	2	28
2	Hansen, Plateau 1	4	28
3	PB 4	2	29

M-files Used

gurobi.m

B.8 grbTest1

Purpose

Test routine 1, calls GUROBI Matlab level 1 interface to solve a GAP problem.

Calling Syntax

 $\mathbf{x} = \mathrm{grbTest1}$

Description

Running a generalized assignment problem (GAP) from Wolsey [?, 9.8.16, pp165]. In this test the linear sos1 constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), grbTest1 is using the utility abc2gap to reformulate the problem into the standard form suitable for GUROBI.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy.

M-files Used abc2gap.m,gurobi.m

B.9 grbTest2

Purpose

Test routine 2, calls GUROBI Matlab level 1 interface to solve a GAP problem.

Calling Syntax

x = grbTest2

Description

Running a generalized assignment problem (GAP) from Wolsey [?, 9.8.16, pp165]. In this test sos1 variables are used.

Given the matrices A (constraints) and C (costs), grbTest2 is using the utility abc2gap to reformulate the problem into the standard form suitable for GUROBI.

The number of iterations are increased, no presolve is used, and an aggressive cut strategy is applied.

M-files Used abc2gap.m, gurobi.m

See Also grbTest3.m

B.10 grbTest3

Purpose

Test routine 3, calls GUROBI Matlab level 1 interface to solve a GAP problem.

Calling Syntax

x = grbTest3

Description

Running a generalized assignment problem (GAP) from Wolsey [?, 9.6, pp159]. In this test the linear sos1 constraints are defined explicitly.

Given the matrices A (constraints) and C (costs), grbTest1 is using the utility abc2gap to reformulate the problem into the standard form suitable for GUROBI.

The number of iterations are increased, no presolve is used, and no cut strategy is used.

M-files Used abc2gap.m, gurobi.m

See Also grbTest2

B.11 grbTestIIS

Purpose

Demonstration of the TOMLAB /GUROBI IIS feature.

Calling Syntax

x = grbTestIIS()

Description

Modify bounds to produce an infeasibility and invoke GUROBI again with IIS enabled.

B.12 grbTestSA

Purpose

Demonstration of the GUROBI SA feature.

Calling Syntax

x = grbTestSA()

Description

Run sensitivity analysis for a set of variables in the objective and in the constraints.

C GUROBI Parameters

C.1 Setting GUROBI Parameters in Matlab

The behavior of the GUROBI solver is controlled by means of a large number of *parameters*. It is possible to set all of these parameters from Matlab.

If using the *gurobiTL* interface for solving problems defined in a TOMLAB *Prob* structure, the field *Prob.MIP.grbControl* is used to set values for parameters. The user needs to set only those parameters that he/she wants to change.

The non-TOMLAB format gurobi.m interface has a corresponding input parameter, grbControl.

When setting parameter values in the *grbControl* structure, this prefix should be omitted. For example, to set the iterations for the dual simplex optimizer do:

```
>> grbControl.ITERATIONLIMIT = 1000;
>> grbControl.LPMETHOD = 0;
```

The complete list of GUROBI parameters are given in the Tables below:

C.2 Termination

These parameters affect the termination of the algorithms. If the algorithm exceeds any of these limits, it will terminate and report a non-optimal termination status.

TOMLAB parameter	Value	
grbControl.Cutoff	Any number.	
	Default: INF	
	bjective value; optimization will terminate if the engine determines that the model is worse than the specified cutoff.	
grbControl.IterationLimit	Any non-negative integer.	
	Default: INF	
Description: Limits the numb	ber of simplex iterations performed.	
grbControl.NodeLimit	Any non-negative integer	
	Default: INF	
Description: Limits the number of MIP nodes explored (MIP only).		
grbControl.SolutionLimit	Any positive integer	
	Default: 1	
Description: Limits the number of feasible solutions found (MIP only).		
grbControl.TimeLimit	Any non-negative number	
	Default: 0	
Description: Limits the total time expended (in seconds).		

C.3 Tolerances

These parameters control the allowable feasibility or optimality violations.

TOMLAB parameter	Value	
grbControl.FeasibilityTol	Any number from 10^{-9} to 10^{-2} .	
	Default: 10^{-6}	
Description: Primal feasibility	y tolerance. All constraints must be satisfied to a tolerance of FeasibilityTol.	
grbControl.IntFeasTol	Any number from 10^{-9} to 10^{-1} .	
	Default: 10^{-5}	
Description: Integer feasibilit	y tolerance (MIP only). An integrality restriction on a variable is considered	
satisfied when the variable's val	ue is less than INTFEASTOL from the nearest integer value.	
grbControl.MarkowitzTol	Any number from 10^{-4} to 0.999.	
	Default: 0.0078125	
Description: Threshold pivoting tolerance. Used to limit numerical error in the simplex algorithm. A larger		
value may avoid numerical problems in rare situations, but it will also harm performance.		
grbControl.MIPGap	Any number ≥ 0	
	Default: 10^{-4}	
Description: Relative MIP optimality gap (MIP only). The MIP engine will terminate (with an optimal		
result) when the gap between the lower and upper objective bound is less than MIPGap times the upper bound.		
grbControl.OptimalityTol	Any number from 10^{-9} to 10^{-2} .	
	Default: 10^{-6}	
Description: Dual feasibility t	olerance. Reduced costs must all be smaller than OptimalityTol in the improving	
direction in order for a model to be declared optimal.		

C.4 Simplex

These parameters control the operation of the simplex algorithms.

TOMLAB parameter	Value	
grbControl.LPMethod	Any integer from 0 to 1.	
	Default: 1	
Description: Simplex algorith	m (0=primal, 1=dual). The selected algorithm is used when solving continuous	
models, and when solving node	relaxations within the MIP solver.	
grbControl.NormAdjust	Any number from -1 to 3.	
	Default: -1	
Description: Chooses from among multiple pricing norm variants. The default value of -1 chooses automati-		
cally.		

TOMLAB parameter	Value	
grbControl.ObjScale	Any number ≥ -1 .	
	Default: 0.0	
-	el objective by the specified value to avoid numerical errors that may result from	
	. The default value of 0 decides on the scaling automatically. A value less than	
	ent to the specified power as the scaling (so ObjScale=-0.5 would scale by the	
square root of the largest objec	· · · · · · · · · · · · · · · · · · ·	
grbControl.PerturbValue	Any number from 0 to 10^{-2} .	
	Default: 0.0002	
Description: Magnitude of sir	nplex perturbation (when required).	
grbControl.Quad	Any number from -1 to 1.	
	Default: -1	
Description: Enables or disables quad precision computation in simplex. The -1 default setting allows the		
algorithm to decide.		
grbControl.ScaleFlag	Any integer from 0 to 1.	
	Default: 1	
Description: Enables or disables model scaling.		
grbControl.SimplexPricing	Any integer from -1 to 3	
	Default: -1	
Description: Determines sim	plex variable pricing strategy. Available options are Automatic (-1), Partial	
Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge (3).		

C.5 MIP

These parameters control the operation of the MIP algorithms.

TOMLAB parameter	Value	
grbControl.Heuristics	Any number from 0 to 1.	
	Default: 0.05	
Description: Controls the at	mount of time spent in MIP heuristics. Larger values produce more and better	
feasible solutions, at a cost of slower progress in the best bound.		
grbControl.NodefileDir	Any directory string	
	Default: .	
Description: Determines the directory into which nodes are written when node memory usage exceeds the		
specified NodefileStart value.		

TOMLAB parameter	Value	
grbControl.NodefileStart	Any number ≥ 0 .	
	Default: Inf	
Description: Controls the po	int at which MIP tree nodes are written to disk. Whenever node storage exceeds	
the specified value (in GBytes), nodes are written to disk.	
grbControl.RootMethod	Any number from 0 to 1.	
	Default: 0	
Description: Simplex algorit	hm used for MIP root relaxation (0=primal, 1=dual).	
grbControl.SubMIPNodes	Any number ≥ 0 .	
	Default: 500	
Description: Limits the number of nodes explored by the RINS heuristic. Exploring more nodes can produce		
better solutions, but it generally takes longer.		
grbControl.VarBranch	Any integer from -1 to 3.	
	Default: -1	
Description: Controls the branch variable selection strategy. The default -1 setting makes an automatic choice,		
depending on problem characteristics. Available alternatives are Pseudo Reduced Cost Branching (0), Pseudo		
Shadow Price Branching (1), Maximum Infeasibility Branching (2), and Strong Branching (3).		

C.6 MIP Cuts

These parameters affect the generation of MIP cutting planes. In all cases, a value of -1 corresponds to an automatic setting, which allows the solver to determine the appropriate level of aggressiveness in the cut generation. Unless otherwise noted, settings of 0, 1, and 2 correspond to no cut generation, conservative cut generation, or aggressive cut generation, respectively. The Cuts parameter provides global cut control, affecting the generation of all cuts. This parameter also has a setting of 3, which corresponds to very aggressive cut generation. The other parameters override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to 0 would generate all cut types aggressively, except clique cuts which would not be generated at all).

TOMLAB parameter	Value	
grbControl.Cuts	Any integer from -1 to 3.	
	Default: -1	
Description: Global cut generation control.		
grbControl.CliqueCuts	Any integer from -1 to 2.	
	Default: -1	
Description: Controls clique cut generation. Overrides the Cuts parameter.		
grbControl.CoverCuts	Any integer from -1 to 2.	
	Default: -1	
Description: Controls cover cut generation. Overrides the Cuts parameter.		

TOMLAB parameter	Value		
grbControl.FlowCoverCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls flow o	over cut generation. Overrides the Cuts parameter.		
grbControl.FlowPathCuts Any integer from -1 to 2.			
Broconcional rows actioned			
	Default: -1		
Description: Controls flow path cut generation. Overrides the Cuts parameter.			
grbControl.GUBCoverCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls GUB cover cut generation. Overrides the Cuts parameter.			
grbControl.ImpliedCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls implie	Description: Controls implied bound cut generation. Overrides the Cuts parameter.		
grbControl.MIPSepCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls MIP separation cut generation. Overrides the Cuts parameter.			
grbControl.MIRCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls MIR cut generation. Overrides the Cuts parameter.			
grbControl.ZeroHalfCuts	Any integer from -1 to 2.		
	Default: -1		
Description: Controls zero-half cut generation. Overrides the Cuts parameter.			
grbControl.CutAggPasses	Any integer ≥ -1 .		
	D-flt. 1		
Description: A non-negative	Default: -1 value indicates the maximum number of constraint aggregation passes performed		
during cut generation. Overrides the Cuts parameter.			
grbControl.GomoryPasses	Any integer ≥ -1 .		
J			
	Default: -1		
Description: A non-negative value indicates the maximum number of Gomory cut passes performed. Overrides			
the Cuts parameter.			

C.7 Other

Other parameters.

TOMLAB parameter	Value	
grbControl.Aggregate	Any integer from 0 to 1.	
	Default: 1	
Description: Enables or disal	bles aggregation in presolve. In rare instances, aggregation can lead to an	
accumulation of numerical errors. Turning it off can sometimes improve solution accuracy.		
grbControl.DisplayInterval	Any integer ≥ 1 .	
	Default: 5	
Description: Controls the frequency at which log lines are printed (in seconds).		
grbControl.IISMethod	Any integer from -1 to 1.	
	Default: -1	
Description: Chooses the US n	nethod to use. Method 0 is often faster, while method 1 can produce a smaller	
IIS. The default value of -1 chooses automatically.		
grbControl.OutputFlag	Any integer from 0 to 1.	
	Default: 1	
Description: Enables or disables engine output.		
grbControl.PreCrush	Any integer from 0 to 1.	
	Default: 0	
Description: Allows presolve to translate constraints on the original model to equivalent constraints on the presolved model. Turn this parameter on when you are using callbacks to add your own cuts.		
grbControl.Presolve	Any integer from -1 to 2.	
	Default: -1	
Description: Controls the presolve level. A value of -1 corresponds to an automatic setting. Other options		
are off (0) , conservative (1) , or a	ggressive (2).	
grbControl.Threads	Any integer from 0 to NProc.	
	Default: 0	
Description: Controls the number of threads to apply to parallel MIP. The default value of 0 sets the thread count equal to the maximum value, which is the number of processors in the machine		
count equal to the maximum value, which is the number of processors in the machine.		