
USER’S GUIDE FOR TOMLAB /MINLP1

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4

February 26, 2007

1More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.
2Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Väster̊as,

Sweden, kenneth.holmstrom@mdh.se.
3Tomlab Optimization AB, Väster̊as Technology Park, Trefasgatan 4, SE-721 30 Väster̊as, Sweden, anders@tomopt.com.
4Tomlab Optimization Inc., 855 Beech St #121, San Diego, CA, USA, medvall@tomopt.com.

1

http://tomopt.com
mailto:tomlab@tomopt.com
mailto:kenneth.holmstrom@mdh.se
mailto:anders@tomopt.com
mailto:medvall@tomopt.com

Contents

Contents 2

1 Introduction 4

1.1 Overview . 4

1.2 Contents of this Manual . 4

1.3 Prerequisites . 4

2 Using the Matlab Interface 5

3 TOMLAB /MINLP Solver Reference 6

3.1 bqpd . 7

3.1.1 Direct Solver Call . 7

3.1.2 Using TOMLAB . 11

3.2 filterSQP . 14

3.2.1 Direct Solver Call . 14

3.2.2 Using TOMLAB . 19

3.3 minlpBB . 24

3.3.1 Direct Solver Call . 24

3.3.2 Using TOMLAB . 29

3.4 miqpBB . 34

3.4.1 Direct Solver Call . 34

3.4.2 Using TOMLAB . 38

4 The DUNDEE structure 42

5 Algorithmic description 44

5.1 Overview . 44

5.2 Introduction . 44

5.3 Background . 45

5.3.1 Sequential Quadratic Programming . 45

5.3.2 Branch-and-bound . 46

5.4 Integrating SQP and branch-and-bound . 46

5.4.1 The basic SQP algorithm . 47

5.4.2 The globalized SQP algorithm . 49

5.4.3 Quadratic convergence and early branching . 52

2

5.4.4 Nonconvex MINLP problems . 52

5.5 Numerical Experience . 53

5.6 Conclusions . 55

References 56

3

1 Introduction

1.1 Overview

Welcome to the TOMLAB /MINLP User’s Guide. TOMLAB /MINLP includes a suite of 4 solvers in dense and
sparse version and interfaces between The MathWorks’ MATLAB and the MINLP solver package. The solver
package includes the following solvers:

bqpd - For sparse and dense linear and quadratic programming (nonconvex).

filterSQP - For sparse and dense linear, quadratic and nonlinear programming.

minlpBB - For sparse and dense mixed-integer linear, quadratic and nonlinear programming.

miqpBB - For sparse and dense mixed-integer linear and quadratic.

Please visit http://tomopt.com/tomlab/products/minlp/ for more information.

The interface between TOMLAB /MINLP, Matlab and TOMLAB consists of two layers. The first layer gives
direct access from Matlab to MINLP, via calling one Matlab function that calls a pre-compiled MEX file (DLL
under Windows, shared library in UNIX) that defines and solves the problem in MINLP. The second layer is a
Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the
function creates the output in the TOMLAB format.

1.2 Contents of this Manual

• Section 2 gives the basic information needed to run the Matlab interface.

• Section 3 provides all the solver references for bqpd, filterSQP, minlpBB, and miqpBB.

• Section 4 presents the fields used in the special structure Prob.DUNDEE.

1.3 Prerequisites

In this manual we assume that the user is familiar with MINLP, TOMLAB and the Matlab language.

4

http://tomopt.com/tomlab/products/minlp/

2 Using the Matlab Interface

The main routines in the two-layer design of the interface are shown in Table 1. Page and section references are
given to detailed descriptions on how to use the routines.

Table 1: The interface routines.

Function Description Section Page
bqpd The layer one Matlab interface routine, calls the MEX-file interface

bqpd.dll

3.1.1 7

bqpdTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls bqpd.m.

3.1.2 11

filterSQP The layer one Matlab interface routine, calls the MEX-file interface
filterSQP.dll

3.2.1 14

filterSQPTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls filterSQP.m.

3.2.2 19

minlpBB The layer one Matlab interface routine, calls the MEX-file interface
minlpBB.dll

3.3.1 24

minlpBBTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls minlpBB.m.

3.3.2 29

miqpBB The layer one Matlab interface routine, calls the MEX-file interface
miqpBB.dll

3.4.1 34

miqpBBTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls minlpBB.m.

3.4.2 38

The MINLP control parameters are possible to set from Matlab.

They can be set as inputs to the interface routine bqpd and the others. The user sets fields in a structure called
Prob.DUNDEE.optPar. The following example shows how to set the print level.

Prob.DUNDEE.optPar(1) = 1; % Setting the print level

5

3 TOMLAB /MINLP Solver Reference

The MINLP solvers are a set of Fortran solvers that were developed by Roger Fletcher and Sven Leyffer, Univer-
sity of Dundee, Scotland. All solvers are available for sparse and dense continuous and mixed-integer quadratic
programming (qp,miqp) and continuous and mixed-integer nonlinear constrained optimization.

Table 2 lists the solvers included in TOMLAB /MINLP. The solvers are called using a set of MEX-file interfaces
developed as part of TOMLAB. All functionality of the MINLP solvers are available and changeable in the
TOMLAB framework in Matlab.

Detailed descriptions of the TOMLAB /MINLP solvers are given in the following sections. Extensive TOMLAB
m-file help is also available, for example help minlpBBTL in Matlab will display the features of the minlpBB solver
using the TOMLAB format.

TOMLAB /MINLP package solves mixed-integer nonlinear programming (minlp) problem defined as

min
x

f(x)

s/t

−∞ < xL ≤ x ≤ xU < ∞
bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU , xj ∈ N ∀j ∈I,

(1)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 . The variables x ∈ I, the index
subset of 1, ..., n, are restricted to be integers.

mixed-integer quadratic programming (miqp) problems defined as

min
x

f(x) = 1
2xT Fx + cT x

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(2)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 . The variables x ∈ I, the index subset of
1, ..., n, are restricted to be integers.
as well as sub-types of these problems.

6

Table 2: Solver routines in TOMLAB /MINLP.

Function Description Reference
bqpd Quadratic programming using a null-space method. bqpdTL.m

miqpBB Mixed-integer quadratic programming using bqpd as subsolver. miqpBBTL.m

filterSQP Constrained nonlinear minimization using a Filtered Sequential QP
method.

filterSQPTL.m

minlpBB Constrained, mixed-integer nonlinear minimization using a branch-
and-bound search scheme. filterSQP is used as NLP solver.

minlpBBTL.m

3.1 bqpd

The BQPD code solves quadratic programming (minimization of a quadratic function subject to linear constraints)
and linear programming problems. If the Hessian matrix Q is positive definite, then a global solution is found. A
global solution is also found in the case of linear programming (Q=0). When Q is indefinite, a Kuhn-Tucker point
that is usually a local solution is found.

The code implements a null-space active set method with a technique for resolving degeneracy that guarantees
that cycling does not occur even when round-off errors are present. Feasibility is obtained by minimizing a sum
of constraint violations. The Devex method for avoiding near-zero pivots is used to promote stability. The matrix
algebra is implemented so that the algorithm can take advantage of sparse factors of the basis matrix. Factors
of the reduced Hessian matrix are stored in a dense format, an approach that is most effective when the number
of free variables is relatively small. The user must supply a subroutine to evaluate the Hessian matrix Q, so that
sparsity in Q can be exploited. An extreme case occurs when Q=0 and the QP reduces to a linear program. The
code is written to take maximum advantage of this situation, so that it also provides an efficient method for linear
programming.

3.1.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.1.2 for information on how to use bqpd with TOMLAB.

Purpose
bqpd solves quadratic optimization problems defined as

min
x

f(x) = 1
2xT Fx + cT x

s/t
x ,

bL ≤ Ax ≤ bU

(3)

where c, x ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rn+m1 .

Calling Syntax

7

[Inform, x k, Obj, g, Iter, k, ls, e, peq, lp, v k] = bqpds(A, x 0, bl, bu, H, fLowBnd, mlp, mode, kmax, PriLev,
PrintFile, k, ls, e, peq, lp, optPar, Prob, moremem);

The sparse version MEX is bqpds, the dense is bqpdd.

Description of Inputs

The following fields are used:

A Constraint matrix, n x m+1 (SPARSE).

bl Lower bounds on (x, Ax).

bu Upper bounds on (x, Ax).

x 0 Initial x vector (if empty set as 0).

H Quadratic matrix, n x n, SPARSE or DENSE, empty if LP problem. If H is a
string, H should be the name of a function routine, e.g if H = ’HxComp’ then
the function routine.

function Hx = HxComp(x, nState, Prob)

should compute H * x. The user must define this routine nState == 1 if calling
for the first time, otherwise 0. Third argument, the Prob structure, should only
be used if calling BQPD with the additional input parameter Prob, see below.

Tomlab implements this callback to the predefined Matlab function HxFunc.m,
using the call if Prob.DUNDEE.callback == 1.

fLowBnd Lower bound on optimal f(x).

mlp Maximum number of levels of recursion.

mode Mode of operation, default set as 2*Prob.WarmStart.

kmax Max dimension of reduced space (k), default n, set as 0 if LP.

PriLev Print Level. (0 = off, 1 = summary, 2 = scalar information, 3 = verbose)

PrintFile Name of the Print file. Unit 9 is used. Name includes the path, maximal
number of characters = 500. Output is written on file bqpd.txt, if not given.
To make bqpd to not open and not write anything to file: Set PriLev = 0.

For Warm Start:

8

The following fields are used:, continued

k Dimension of the reduced space (Warm Start).

ls Indices of active constraints, first n-k used for warm start.

e Steepest-edge normalization coefficients (Warm Start).

peq Pointer to the end of equality constraint indices in ls (Warm Start).

lp List of pointers to recursion information in ls (Warm Start).

optPar Vector of optimization parameters. If -999, set to default. Length from 0 to 20
allowed.

optPar(1): iprint Print level in BQPD, default 0.
optPar(2): tol Relative accuracy in solution, default 1E-10.
optPar(3): emin Use cscale (constraint scaling) 0.0 no scaling, default 1.0.
optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic, default 5E-4.
optPar(5): nrep Max number of refinement steps, default 2.
optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
optPar(7): nres Max number of restarts if unsuccessful, default 2.
optPar(8): nfreq The max interval between refactorizations, default 500.

Prob Sending the Prob structure is optional, only of use if sending H as a function
string, see input H.

moremem Scalar or 2x1-vector with workspace increase. If <0, use default strategy. If
scalar, use same increase for both real and integer workspaces. If vector, first
element is for real workspace, second for integer.

Description of Outputs

The following fields are used:

Inform Result of BQPD run, 0 = Optimal solution found. See the same parameter in
section 3.1.2.

x k Solution vector with n decision variable values.

Obj Objective function value at optimum. If infeasible, the sum of infeasibilities

g Gradient at solution.

Iter Number of iterations.

9

The following fields are used:, continued

For Warm Start:

k Dimension of the reduced space (Warm Start).

ls Indices of active constraints, first n-k used for warm start.

e Steepest-edge normalization coefficients (Warm Start).

peq Pointer to the end of equality constraint indices in ls (Warm Start).

lp List of pointers to recursion information in ls (Warm Start).

v k Lagrange parameters.

10

3.1.2 Using TOMLAB

Purpose
bqpdTL solves nonlinear optimization problems defined as

min
x

f(x) = 1
2xT Fx + cT x

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(4)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign(...);
Result = tomRun(’bqpd’, Prob ...);

or

Prob = ProbCheck(Prob,’bpqd’); Result = bqpdTL(Prob);

Call Prob = �Assign(...) or Prob=ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size n x n.

PriLevOpt Print Level (0 = off, 1 = summary, 2 = scalar information, 3 = verbose).

WarmStart If TRUE (=1), use warm start, otherwise cold start.

LargeScale If TRUE (=1), use sparse version, otherwise dense.

DUNDEE.QPmin Lower bound for the QP subproblems. Default: -1E300.

DUNDEE.callback If 1, use a callback to Matlab to compute QP.F * x for different x. Faster when
F is very large and almost dense, avoiding copying of F from Matlab to MEX.

11

Prob, The following fields are used:, continued

DUNDEE.kmax Max dimension of reduced space (k), default n, set as 0 if LP.

DUNDEE.mlp Maximum number of levels of recursion.

DUNDEE.mode Mode of operation, default set as 2*Prob.WarmStart.

DUNDEE.x Solution (Warm Start).

DUNDEE.k Dimension of the reduced space (Warm Start).

DUNDEE.e Steepest-edge normalization coefficients (Warm Start).

DUNDEE.ls Indices of active constraints, first n-k used for warm start.

DUNDEE.lp List of pointers to recursion information in ls (Warm Start).

DUNDEE.peq Pointer to the end of equality constraint indices in ls (Warm Start).

DUNDEE.PrintFile Name of print file. Amount/print type determined by optPar(1). Default name
bqpd.txt.

DUNDEE.optPar Vector of optimization parameters. If -999, set to default Length from 0 to 20
allowed. Elements used:

DUNDEE.optPar(1): iprint Print level in PrintFile, default 0.
DUNDEE.optPar(2): tol Relative accuracy in solution, default 1E-10.
DUNDEE.optPar(3): emin 1.0 Use cscale (constraint scaling) 0.0 no scaling, default 1.0.
DUNDEE.optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic, default 5E-4.
DUNDEE.optPar(5): nrep Max number of refinement steps, default 2.
DUNDEE.optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
DUNDEE.optPar(7): nres Max number of restarts if unsuccessful, default 2.
DUNDEE.optPar(8): nfreq The max interval between refactorizations, default 500.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum or constraint deviation if infeasible.
x k Solution vector.
x 0 Initial solution vector.
g k Exact gradient computed at optimum.

12

Result, The following fields are used:, continued

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from bqpd.m (similar to TOMLAB).
Inform BQPD information parameter.

0 - Solution obtained
1 - Unbounded problem detected (f(x)¡=fLow occurred)
2 - Lower bound bl(i) > bu(i) (upper bound) for some i
3 - Infeasible problem detected in Phase 1
4 - Incorrect setting of m, n, kmax, mlp, mode or tol
5 - Not enough space in lp
6 - Not enough space for reduced Hessian matrix (increase kmax)
7 - Not enough space for sparse factors
8 - Maximum number of unsuccessful restarts taken

Iter Number of iterations.
MinorIter Number of minor iterations. Always set to 0.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

13

3.2 filterSQP

The solver filterSQP is a Sequential Quadratic Programming solver suitable for solving large, sparse or dense
linear, quadratic and nonlinear programming problems. The method avoids the use of penalty functions. Global
convergence is enforced through the use of a trust-region and the new concept of a ”filter” which accepts a trial
point whenever the objective or the constraint violation is improved compared to all previous iterates. The size of
the trust-region is reduced if the step is rejected and increased if it is accepted (provided the agreement between
the quadratic model and the nonlinear functions is sufficiently good).

This method has performed very well in comparative numerical testing, and has the advantage that the user
does not need to supply any estimates of penalty parameters. The NLP problem is specified by means of user
subroutines, and it is necessary to provide information about both first and second derivatives of the nonlinear
functions in the problem.

It must be used in conjunction with the bqpd solver.

3.2.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.2.2 for information on how to use filterSQP with TOMLAB.

Purpose
filterSQP solves constrained nonlinear optimization problems defined as

min
x

f(x)

s/t

x ,

bL ≤ Ax ≤ bU

c(x)

(5)

where x ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .

The full input matrix A has three parts A = A = [g ConsPattern’ A’];
Where g is a vector of length n, values irrelevant, ConsPattern is the 0-1 pattern of the nonlinear constraint
gradients and A is the linear constraint coefficient matrix.

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.

The file ’funcdc.m’ must be defined and contain: function [mode ,c ,dcS] = funcdc(x, Prob, mode, nstate) to
compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

[ifail, x k, f k, c k, v k, lws, istat, rstat] = filSQPs(A, bl, bu, nnCon, x 0, Scale, scmode, fLow, MaxIter, rho, mlp,
kmax, maxf, WarmStart, lws, istat, PriLev, pname, optPar, Prob, moremem);

14

The sparse version MEX is filSQPs, the dense is filSQPd.

Description of Inputs

The following fields are used:

A Gradient matrix [g ConsPattern’ A’] (sparse or dense).

bl Lower bounds on (x,c(x),Ax).

bu Upper bounds on (x,c(x),Ax).

nnCon Number of nonlinear constraints (i.e. length(c(x)).

x 0 Initial x vector (if empty set as 0).

Scale n+m vector scale factors for variables and constraints (same ordering as bl,
bu).

scmode Scale mode:

0 - unit variable and constraint scaling (Scale can be set empty).
1 - User provided scale factors for variables. Scale must be of length n.
2 - Unit variable scaling, user provided constraint scaling. Scale must be of
length n+m, but only the last m elements are used.
3- User provided variable AND constraint scaling. Scale must be of length
n+m (n+nnCon+nnLin)

fLow A lower bound on the objective function value.

MaxIter Maximum number of iterations.

rho Initial trust-region radius.

mlp Maximum level parameter for resolving degeneracy in BQPD.

kmax Maximum size of null-space (at most n).

maxf Maximum size of the filter.

WarmStart Set to 1 to restart the solver. If a warmstart is requested, the input parameters
lws and istat must be provided. Also, n and m (the number of variables and
constraints) may not change.

lws Used only when doing a warmstart. This must be the lws vector returned by
the previous call to filterSQP. Otherwise, set to empty.

15

The following fields are used:, continued

lam Multipliers, n+m values required for warmstarts. If wrong length, zeros are set
in the MEX interface.

istat Used only when doing a warmstart. Must be the first element of the istat
vector returned by the previous call to filterSQP. Otherwise, set to empty.

PriLev Print level. See also input parameter pname.

0 - Silent, except for minor output into ¡pname¿.out
1 - One line per iteration
2 - Scalar information printed
3 - Scalar and vector information printed

pname Problem name, at most 10 characters. The output files are named
<pname>.sum and <pname>.out.

optPar Vector of max length 20 with optimization parameters: If any element is -999,
default value is assigned. Elements 2-8 are BQPD parameters, 1,9-11,19-20 for
filterSQP.

optPar(1): iprint Print level in filterSQP, default 0.
optPar(2): tol Relative tolerance for BQPD subsolver, default 1E-10.
optPar(3): emin 1=Use cscale in BQPD, 0=no scaling , default 1.0.
optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic (BQPD), default 5E-4.
optPar(5): nrep Max number of refinement steps (BQPD), default 2.
optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
optPar(7): nres Max number of restarts if unsuccessful, default 2.
optPar(8): nfreq The max interval between refactorizations, default 500.
optPar(9): NLP eps NLP subproblem tolerance, default 1E-6.
optPar(10): ubd Upper bound on constraint violation used in the filter, default 1E-2.
optPar(11): tt Parameter related to ubd. The actual upper bound is defined by the maximum

of ubd and tt multiplied by the initial constraint violation., default 0.125.
optPar(19): infty A large value representing infinity, default 1E20.
optPar(20): Nonlin If 1, skip linear feasibility tests filterSQP treating all constraints as nonlinear,

default 0.

Prob The Tomlab problem definition structure.

moremem Scalar or 2x1-vector with workspace increase. If <0, use default strategy. If
scalar, use same increase for both real and integer workspaces. If vector, first
element is for real workspace, second for integer.

Description of Outputs

16

The following fields are used:

Inform Exit flag indicating success or failure:

0 - Solution found
1 - Unbounded: feasible point x with f(x)<=fmin found
2 - Linear constraints are infeasible
3 - (Locally) nonlinear infeasible, optimal solution to feasibility problem found
4 - Terminated at point with h(x)<=eps but QP infeasible
5 - Terminated with rho<=eps
6 - Terminated due to too many iterations
7 - Crash in user routine could not be resolved
8 - Unexpected failure in QP solver
9 - Not enough real workspace
10 - Not enough integer workspace

x k Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

f k Function value at optimum x k

c k Nonlinear constraints vector at optimum.

v k Lagrange multipliers vector (bounds, nonlinear, linear).

lws Integer vector (used as input when doing warmstarts).

istat Solution statistics, integer values. First element is required as input if doing a
warmstart.

istat(1) Dimension of nullspace at solution
istat(2) Number of iterations
istat(3) Number of feasibility iterations
istat(4) Number of objective evaluations
istat(5) Number of constraint evaluations
istat(6) Number of gradient evaluations
istat(7) Number of Hessian evaluations
istat(8) Number of QPs with mode<=2
istat(9) Number of QPs with mode>=4
istat(10) Total number of QP pivots
istat(11) Number of SOC steps
istat(12) Maximum size of filter
istat(13) Maximum size of Phase 1 filter
istat(14) Number of QP crashes

rstat Solution statistics, real values.

17

The following fields are used:, continued

rstat(1) l 2 norm of KT residual
rstat(3) Largest modulus multiplier
rstat(4) l inf norm of final step
rstat(5) Final constraint violation h(x)

18

3.2.2 Using TOMLAB

Purpose
filterSQPTL solves constrained nonlinear optimization problems defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(6)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign(...);
Result = tomRun(’filterSQP’, Prob ...);

or

Result = filterSQPTL(funfdf, funcdc, Prob), where the inputs are:

funfdf Name of routine [f, gradf] = funfdf(x, Prob, mode, nstate).
Normally funfdf = nlp fg, included in TOMLAB.

funcdc Name of routine [g, gJac] = funcdc(x, Prob, mode, nstate).
Normally funcdc = nlp cdcS, included in TOMLAB.

Prob Problem structure in TOMLAB format.

Call Prob = �Assign(...) or Prob=ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints. For equality constraints (or fixed variables),
set e.g. b L(k) == b U(k).

LargeScale If 1 use sparse version of solver. The default is 0, the dense version.

PriLevOpt Print level in the filterSQP solver.

WarmStart Indicates that the solver should be warmstarted. See Prob.DUNDEE for nec-
essary arguments when doing warmstarts.

19

Prob, The following fields are used:, continued

optParam Structure with optimization parameters. Fields used:

MaxIter Maximum number of iterations.

DUNDEE Structure with special fields for filterSQP optimization parameters. The fol-
lowing fields are used:

DUNDEE.QPmin Lower bound for the QP subproblems. Default: -1E300.

DUNDEE.rho Initial trust region radius. Default: 10.0 (REAL).

DUNDEE.kmax Maximum size of the null-space, less than or equal to no. of variables. Default:
n (INTEGER).

DUNDEE.maxf Maximum size of the filter. Default: 100 (INTEGER).

DUNDEE.mlp Maximum level parameter for resolving degeneracy in BQPD QP subsolver.
Default: 100 (INTEGER).

DUNDEE.Name Problem name, at most 10 characters. The output files are named
<pname>.sum and <pname>.out. Default name filterSQP, i.e. files filter-
SQP.sum, filterSQP.out.

DUNDEE.optPar Vector of max length 20 with optimization parameters: If any element is -999,
default value is assigned.

DUNDEE.optPar(1): iprint Print level in filterSQP, default 0.
DUNDEE.optPar(2): tol Relative tolerance for BQPD subsolver, default 1E-10.
DUNDEE.optPar(3): emin 1=Use cscale in BQPD, 0=no scaling , default 1.0.
DUNDEE.optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic (BQPD), default 5E-4.
DUNDEE.optPar(5): nrep Max number of refinement steps (BQPD), default 2.
DUNDEE.optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
DUNDEE.optPar(7): nres Max number of restarts if unsuccessful, default 2.
DUNDEE.optPar(8): nfreq The max interval between refactorizations, default 500.
DUNDEE.optPar(9): NLP eps NLP subproblem tolerance, default 1E-6.
DUNDEE.optPar(10): ubd Upper bound on constraint violation used in the filter, default 1E-2.
DUNDEE.optPar(11): tt Parameter related to ubd. The actual upper bound is defined by the maximum

of ubd and tt multiplied by the initial constraint violation., default 0.125.
DUNDEE.optPar(19): infty A large value representing infinity, default 1E20.
DUNDEE.optPar(20): Nonlin If 1, skip linear feasibility tests filterSQP treating all constraints as nonlinear,

default 0.

lws If doing warmstarts, this field is set to the Result.DUNDEE.lws field from the
previous run.

20

Prob, The following fields are used:, continued

istat Similarly, for warmstarts, set istat to Result.DUNDEE.istat from the previous
run. Only the first element is used.

lam Vector of initial multipliers. Necessary for warmstarts, but can always be given
if desired. Must be n+m elements in order to be used.

morereal Increase of REAL workspace. A problem dependent default value is used if <0
or empty.

moreint Increase of INTEGER workspace. A problem dependent default value is used
if <0 or empty.

Scaling parameters: It is possible to supply scale factors for the variables and/or
the constraints. Normally, the DUNDEE solvers does not differentiate between
linear and nonlinear constraints with regard to scaling, but the Tomlab interface
handles this automatically. Thus is it possible to give scale factors e.g. for the
nonlinear constraints only. All scaling values must be greater than zero.

xScale Vector of scale factors for variables. If less than n values given, 1’s are used for
the missing elements.

bScale Vector of scale factors for the linear constraints. If length(bScale) is less than
the number of linear constraints (size(Prob.A,1)), 1’s are used for the missing
elements.

cScale Vector of scale factors for the nonlinear constraints. If length(cScale) is less
than the number of nonlinear constraints, 1’s are used for the missing elements.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
g k Gradient of the function.

x k Solution vector.
x 0 Initial solution vector.

c k Nonlinear constraint residuals.
cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

21

Result, The following fields are used:, continued

bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
== 3;

cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality
== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from filterSQP MEX.

Inform filterSQP information parameter:

0 - Solution found
1 - Unbounded: feasible point x with f(x)<=fmin found
2 - Linear constraints are infeasible
3 - (Locally) nonlinear infeasible, optimal solution to feasibility problem found
4 - Terminated at point with h(x)<=eps but QP infeasible
5 - Terminated with rho<=eps
6 - Too many iterations
7 - Crash in user routine could not be resolved
8 - Unexpected ifail from QP solver. This is often due to too little mem-
ory being allocated and is remedied by setting appropriate values in the
Prob.DUNDEE.morereal and Prob.DUNDEE.moreint parameters.
9 - Not enough REAL workspace
10 - Not enough INTEGER workspace

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

Solver Name of the solver (filterSQP).
SolverAlgorithm Description of the solver.

DUNDEE.lws Workspace vector, should be treated as integer valued. Required if doing warm-
starts.

DUNDEE.lam Vector of multipliers, required if doing warmstarts.

istat Solution statistics, integer values. First element is required as input if doing a
warmstart.

istat(1) Dimension of nullspace at solution
istat(2) Number of iterations
istat(3) Number of feasibility iterations

22

Result, The following fields are used:, continued

istat(4) Number of objective evaluations
istat(5) Number of constraint evaluations
istat(6) Number of gradient evaluations
istat(7) Number of Hessian evaluations
istat(8) Number of QPs with mode<=2
istat(9) Number of QPs with mode>=4
istat(10) Total number of QP pivots
istat(11) Number of SOC steps
istat(12) Maximum size of filter
istat(13) Maximum size of Phase 1 filter
istat(14) Number of QP crashes

rstat Solution statistics, floating point values.

rstat(1) l 2 norm of KT residual
rstat(3) Largest modulus multiplier
rstat(4) l inf norm of final step
rstat(5) Final constraint violation h(x)

23

3.3 minlpBB

The solver minlpBB solves large, sparse or dense mixed-integer linear, quadratic and nonlinear programming
problems. minlpBB implements a branch-and-bound algorithm searching a tree whose nodes correspond to con-
tinuous nonlinearly constrained optimization problems. The user can influence the choice of branching variable by
providing priorities for the integer variables.

The solver must be used in conjunction with both filterSQP and bqpd.

3.3.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.2.2 for information on how to use filterSQP with TOMLAB.

Purpose
filterSQP solves constrained nonlinear optimization problems defined as

min
x

f(x)

s/t

x ,

bL ≤ Ax ≤ bU

c(x)

(7)

where x ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .

The full input matrix A has three parts A = A = [g ConsPattern’ A’];
Where g is a vector of length n, values irrelevant, ConsPattern is the 0-1 pattern of the nonlinear constraint
gradients and A is the linear constraint coefficient matrix.

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.

The file ’funcdc.m’ must be defined and contain: function [mode ,c ,dcS] = funcdc(x, Prob, mode, nstate) to
compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

[ifail, x k, f k, c k, v k, lws, istat, rstat] = filSQPs(A, bl, bu, nnCon, x 0, Scale, scmode, fLow, MaxIter, rho, mlp,
kmax, maxf, WarmStart, lws, istat, PriLev, pname, optPar, Prob, moremem);

The sparse version MEX is filSQPs, the dense is filSQPd.

Description of Inputs

The following fields are used:

A Gradient matrix [g ConsPattern’ A’] (sparse or dense).

24

The following fields are used:, continued

bl Lower bounds on (x,c(x),Ax).

bu Upper bounds on (x,c(x),Ax).

nnCon Number of nonlinear constraints (i.e. length(c(x)).

x 0 Initial x vector (if empty set as 0).

Scale n+m vector scale factors for variables and constraints (same ordering as bl,
bu).

scmode Scale mode:

0 - unit variable and constraint scaling (Scale can be set empty).
1 - User provided scale factors for variables. Scale must be of length n.
2 - Unit variable scaling, user provided constraint scaling. Scale must be of
length n+m, but only the last m elements are used.
3- User provided variable AND constraint scaling. Scale must be of length
n+m (n+nnCon+nnLin)

fLow A lower bound on the objective function value.

MaxIter Maximum number of iterations.

rho Initial trust-region radius.

mlp Maximum level parameter for resolving degeneracy in BQPD.

kmax Maximum size of null-space (at most n).

maxf Maximum size of the filter.

WarmStart Set to 1 to restart the solver. If a warmstart is requested, the input parameters
lws and istat must be provided. Also, n and m (the number of variables and
constraints) may not change.

lws Used only when doing a warmstart. This must be the lws vector returned by
the previous call to filterSQP. Otherwise, set to empty.

lam Multipliers, n+m values required for warmstarts. If wrong length, zeros are set
in the MEX interface.

istat Used only when doing a warmstart. Must be the first element of the istat
vector returned by the previous call to filterSQP. Otherwise, set to empty.

25

The following fields are used:, continued

PriLev Print level. See also input parameter pname.

0 - Silent, except for minor output into ¡pname¿.out
1 - One line per iteration
2 - Scalar information printed
3 - Scalar and vector information printed

pname Problem name, at most 10 characters. The output files are named
<pname>.sum and <pname>.out.

optPar Vector of max length 20 with optimization parameters: If any element is -999,
default value is assigned. Elements 2-8 are BQPD parameters, 1,9-11,19-20 for
filterSQP.

optPar(1): iprint Print level in filterSQP, default 0.
optPar(2): tol Relative tolerance for BQPD subsolver, default 1E-10.
optPar(3): emin 1=Use cscale in BQPD, 0=no scaling , default 1.0.
optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic (BQPD), default 5E-4.
optPar(5): nrep Max number of refinement steps (BQPD), default 2.
optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
optPar(7): nres Max number of restarts if unsuccessful, default 2.
optPar(8): nfreq The max interval between refactorizations, default 500.
optPar(9): NLP eps NLP subproblem tolerance, default 1E-6.
optPar(10): ubd Upper bound on constraint violation used in the filter, default 1E-2.
optPar(11): tt Parameter related to ubd. The actual upper bound is defined by the maximum

of ubd and tt multiplied by the initial constraint violation., default 0.125.
optPar(19): infty A large value representing infinity, default 1E20.
optPar(20): Nonlin If 1, skip linear feasibility tests filterSQP treating all constraints as nonlinear,

default 0.

Prob The Tomlab problem definition structure.

moremem Scalar or 2x1-vector with workspace increase. If <0, use default strategy. If
scalar, use same increase for both real and integer workspaces. If vector, first
element is for real workspace, second for integer.

Description of Outputs

The following fields are used:

Inform Exit flag indicating success or failure:

0 - Solution found
1 - Unbounded: feasible point x with f(x)<=fmin found

26

The following fields are used:, continued

2 - Linear constraints are infeasible
3 - (Locally) nonlinear infeasible, optimal solution to feasibility problem found
4 - Terminated at point with h(x)<=eps but QP infeasible
5 - Terminated with rho<=eps
6 - Terminated due to too many iterations
7 - Crash in user routine could not be resolved
8 - Unexpected failure in QP solver
9 - Not enough real workspace
10 - Not enough integer workspace

x k Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

f k Function value at optimum x k

c k Nonlinear constraints vector at optimum.

v k Lagrange multipliers vector (bounds, nonlinear, linear).

lws Integer vector (used as input when doing warmstarts).

istat Solution statistics, integer values. First element is required as input if doing a
warmstart.

istat(1) Dimension of nullspace at solution
istat(2) Number of iterations
istat(3) Number of feasibility iterations
istat(4) Number of objective evaluations
istat(5) Number of constraint evaluations
istat(6) Number of gradient evaluations
istat(7) Number of Hessian evaluations
istat(8) Number of QPs with mode<=2
istat(9) Number of QPs with mode>=4
istat(10) Total number of QP pivots
istat(11) Number of SOC steps
istat(12) Maximum size of filter
istat(13) Maximum size of Phase 1 filter
istat(14) Number of QP crashes

rstat Solution statistics, real values.

rstat(1) l 2 norm of KT residual
rstat(3) Largest modulus multiplier
rstat(4) l inf norm of final step
rstat(5) Final constraint violation h(x)

27

The following fields are used:, continued

28

3.3.2 Using TOMLAB

Purpose
minlpBBTL solves mixed-integer nonlinear optimization problems defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

cL ≤ c(x) ≤ cU

(8)

where x ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .
The variables x ∈ I, the index subset of 1, ..., n, are restricted to be integers.

In addition, Special Ordered Sets of type 1 (SOS1) can be defined.
The algorithm uses a branch-and-bound scheme with a depth-first search strategy. The NLP relaxations are solved
using the solver filterSQP by R. Fletcher and S. Leyffer.

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign(...);
Result = tomRun(’minlpBB’, Prob ...);

or

Result = minlpBBTL(Prob).

Call Prob = �Assign(...) or Prob=ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

A Linear constraints coefficient matrix.

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints.

LargeScale If 1 use sparse version of solver. The default is 0, the dense version.

PriLevOpt Print level in the minlpBB solver.

optParam.MaxIter Maximum number of iterations.

29

Prob, The following fields are used:, continued

MIP Structure with fields defining the integer properties of the problem. The fol-
lowing fields are used:

IntVars Vector designating which variables are restricted to integer values. This field
is interpreted differently depending on the length.

If length(IntVars) = length(x), it is interpreted as a zero-one vector where all
non-zero elements indicate integer values only for the corresponding variable.

A length less than the problem dimension indicates that IntVars is a vector of
indices for the integer variables, for example [1 2 3 6 7 12]

VarWeight Defines the priorities of the integer variables. Can be any values, but minlpBB
uses integer priorities internally, with higher values implying higher priorities.

sos1 Structure defining the Special Ordered Sets of Type 1 (SOS1). If there are k
sets of type sos1, then sos1(1).var is a vector of indices for variables in sos1,
set 1. sos1(1).row is the row number for the reference row identifying the
ordering information for the sos1 set, i.e. A(sos1(1).row,sos1(1).var) identifies
this information sos1(1).prio sets the priority for sos1 test 1.

sos1(2).var is a vector of indices for variables in sos1, set 2. sos1(2).row is the
row number for the reference row of sos1 set 2. sos1(2).prio is the priority for
sos1 set 2.

sos1(k).var is a vector of indices for variables in sos1, set k. sos1(k).row is the
row number for the reference row of sos1 set k. sos1(k).prio is the priority for
sos1 set k.

DUNDEE Structure with special fields for minlpBB optimization parameters. The fol-
lowing fields are used:

stackmax Maximum size of the LIFO stack storing info about B&B tree. Default: 10000.

QPmin Lower bound for the QP subproblems. Default: -1E300.

rho Initial trust region radius. Default: 10.0 (REAL).

kmax Maximum size of the null-space, less than or equal to no. of variables Default:
n (INTEGER).

maxf Maximum size of the filter Default: 100 (INTEGER).

mlp Maximum level parameter for resolving degeneracy in BQPD QP subsolver..

30

Prob, The following fields are used:, continued

lam Multipliers (n+m) on entry (NOTE: Experimental parameter).

Name Problem name, at most 10 characters. The output files are named
<pname>.sum and <pname>.out. Default name minlpBB, i.e. files
minlpBB.sum, minlpBB.out.

optPar Vector of max length 20 with optimization parameters. If any element is -999,
default value is assigned. The elements used by minlpBB are:

optPar(1): iprint Print level in minlpBB Summary on file minlpBB.sum. More printout on file
minlpBB.out. Default 0.

optPar(2): tol Relative tolerance for BQPD subsolver. Default 1E-10.
optPar(3): emin 1=Use cscale in BQPD, 0=no scaling. Default 1.0.
optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic (BQPD). Default 5E-4.
optPar(5): nrep Max number of refinement steps (BQPD). Default 2.
optPar(6): npiv No repeat if no more than npiv steps were taken. Default 3.
optPar(7): nres Max number of restarts if unsuccessful. Default 2.
optPar(8): nfreq The max interval between refactorizations. Default 500.
optPar(9): NLP eps NLP subproblem tolerance. Default 1E-6.
optPar(10): ubd Upper bound on constraint violation used in the filter. Default 1E-2.
optPar(11): tt Parameter related to ubd. The actual upper bound is defined by the maximum

of ubd and tt multiplied by the initial constraint violation. Default 0.125.
optPar(12): epsilon Tolerance for x-value tests. Default 1E-6.
optPar(13): MIopttol Tolerance for function value tests. Default 1E-4.
optPar(17): branchtype Branch strategy. Currently only 1 strategy.
optPar(19): infty A large value representing infinity. Default 1E20.
optPar(20): Nonlin If 1, skip linear feasibility tests minlpBB treating all constraints as nonlinear.

Default 0.

morereal Number of extra REAL workspace locations. Set to <0 for problem dependent
default strategy.

moreint Number of extra INTEGER workspace locations. Set to <0 for problem de-
pendent default strategy.

Scaling parameters. It is possible to supply scale factors for the variables and/or
the constraints. Normally, the DUNDEE solvers does not differentiate between
linear and nonlinear constraints with regard to scaling, but the TOMLAB
interface handles this automatically. Thus is it possible to give scale factors e.g.
for the nonlinear constraints only. The three parameters in the Prob.DUNDEE
substructure that control scaling are:

xScale Vector of scale factors for variables. If less than n values given, 1’s are used for
the missing elements.

31

Prob, The following fields are used:, continued

bScale Vector of scale factors for the linear constraints. If length(bScale) is less than
the number of linear constraints (size(Prob.A,1)), 1’s are used for the missing
elements.

cScale Vector of scale factors for the nonlinear constraints. If length(cScale) is less
than the number of nonlinear constraints, 1’s are used for the missing elements.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).

f k Function value at optimum.
g k Gradient of the function.

x k Solution vector.
x 0 Initial solution vector.

c k Nonlinear constraint residuals.
cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status.

Inform minlpBB information parameter:

0 - Optimal solution found
1 - Root problem infeasible
2 - Integer infeasible
3 - Stack overflow - some integer solution. obtained
4 - Stack overflow - no integer solution obtained
5 - SQP termination with rho < eps
6 - SQP termination with iter > max iter
7 - Crash in user supplied routines
8 - Unexpected ifail from QP solvers This is often due to too little mem-
ory being allocated and is remedied by setting appropriate values in the
Prob.DUNDEE.morereal and Prob.DUNDEE.moreint parameters.

32

Result, The following fields are used:, continued

9 - Not enough REAL workspace or parameter error
10 - Not enough INTEGER workspace or parameter error

rc Reduced costs. If ninf=0, last m == -v k.

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

Solver Name of the solver (minlpBB).
SolverAlgorithm Description of the solver (sparse or dense, mainly).

33

3.4 miqpBB

The solver miqpBB solves sparse and dense mixed-integer linear and quadratic programs. The package implements
the Branch and Bound method with some special features such as the computation of improved lower bounds and
hot starts for the QP subproblems. miqpBB allows the user to influence the choice of branching variable in two
ways: Firstly by employing user supplied priorities in the branching decision and secondly by supplying a choice
of branching routines. The package is also efficient as an MILP solver.

3.4.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.4.2 for information on how to use miqpBB with TOMLAB.

Purpose
miqpBB solves mixed-integer quadratic optimization problems defined as

min
x

f(x) = 1
2xT Fx + cT x

s/t
x ,

bL ≤ Ax ≤ bU

(9)

where c, x ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rn+m1 .

The variables x ∈ I, the index subset of 1, ..., n, are restricted to be integers.

If F is empty, an LP or MILP problem is solved.

Calling Syntax

[Inform, x k, Obj, Iter] = miqpbb(A, bl, bu, IntVars, Priority, Func, mlp, kmax, stackmax, optPar, PriLev, Print-
File, Prob, moremem);

Description of Inputs

The following fields are used:

[c A’] Linear constraint matrix, dense or sparse n x (m+1) matrix. miqpBB requires
the transpose of the constraint matrix, and also with the linear part of the
objective function as the first column.

bl, bu Lower and upper bounds on variables and constraints. Length must be n+m
where the first n elements are simple bounds on the variables.

IntVars Vector with integer variable indices.

Priority Priorities for the integer variables. Length must the same as that of IntVars.

34

The following fields are used:, continued

Func Name of MATLAB callback function that performs the Hessian - vector multi-
plication F*x. A standard routine is supplied in tomlab/lib/HxFunc.m, using
the Prob.QP.F matrix. If the user for some reason wants to write his own
callback function, it must take arguments similar to those of HxFunc.m. The
second argument nState is always 0.0 in the current version of the solver.

mlp Maximum level parameter for resolving degeneracy in BQPD which is used as
sub-problem solver. If empty, the MEX interface sets mlp to m, the number of
constraints.

kmax Maximum dimension of reduced space. Default (and maximum) value is n, the
number of variables.

stackmax Size of the stack storing information during the tree-search. Default value if
empty: 5000.

optPar Vector of optimization parameters. If -999, set to default. Length from 0 to 20
allowed. The following elements are used by miqpBB:

optPar(1): iprint Print level in miqpbb, default 0.
optPar(2): tol Relative accuracy in solutio, default 1E-10.
optPar(3): emin 1.0 Use cscale (constraint scaling) 0.0 no scaling, default 1.0.
optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic, default 5E-4.
optPar(5): nrep Max number of refinement steps, default 2.
optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
optPar(7): nres Max number of restarts if unsuccessful, default 2.
optPar(8): nfreq The max interval between refactorizations, default 500.
optPar(12): epsilon Tolerance used for x value tests, default 1E-5.
optPar(13): MIopttol Tolerance used for function value tests, default 1E-4.
optPar(14): fIP Upper bound on f(x). Only consider solutions < fIP - epsilon, default 1E20.
optPar(15): timing No Timing = 1, Use timing, = 0. Default, no timing
optPar(16): max time Maximal time allowed for the run in seconds, default 4E3.
optPar(17): branchType Branch on variable with highest priority. If tie:

= 1. Variable with largest fractional part, among those branch on the variable
giving the largest increase in the objective.
= 2. Tactical Fletcher (PMO) branching. The var that solves max(min(e+,e-
)) is chosen. The problem than corresponding to min(e+,e-) is placed on the
stack first.

35

The following fields are used:, continued

= 3. Tactical branching, Padberg/Rinaldi,91, Barahona et al.,89 (i) Choose
the branching variable the one that most violates the integrality restrictions.
i.e. find max(i)min(pi+,pi-) pi+ = int(x(i)+1) - x(i) , pi- = x(i) - int(x(i))
(ii) among those branch on the variable that gives the greatest increase in the
obj. function (iii) Finally a LOWER BOUND is computed on the branched
problems using the bounding method of Fletcher and Leyffer (dual active set
step) DEFAULT = 1.

optPar(18): ifsFirst If 1, then only search for first ifs (ifail=6), Default 0.
optPar(19): infty Real value for infinity, default 1E20.

PriLev Print level in the MEX interface: 0 = off, 1 = only result is printed, 2 = result
and intermediate steps are printed. scalar information, 3 = verbose).

PrintFile Name of print file. Amount/print type determined by PriLev parameter. De-
fault name miqpbbout.txt.

Prob The Tomlab problem description structure. This is a necessary argument if
the standard HxFunc.m callback routine is used. HxFunc uses Prob.QP.F to
calculate the Hessian*vector multiplication.

moremem Scalar or 2x1-vector giving values for extra work memory allocation. If scalar,
the value given is added to both the INTEGER and REAL workspaces. If a
vector is given, the first element controls the REAL workspace increase and
the second the INTEGER workspace. Set one or both elements to values ¡0 for
problem dependent memory increases.

Description of Outputs

The following fields are used:

ifail Status code: the following values are defined:

0 - Solution found
1 - Error in parameters for BQPD
2 - Unbounded QP encountered
3 - Stack overflow - no integer solution found
4 - Stack overflow - some integer solution found
5 - Integer infeasible
6 - (on I/O) only search for first ifs and stop
7 - Infeasible root problem

x k The solution vector, if any found. If ifail is other than 0 or 4, the contents of
x is undefined.

36

The following fields are used:, continued

Obj The value of the objective function at x k.

iter The number of iterations used to solve the problem.

37

3.4.2 Using TOMLAB

Purpose
miqpBBTL solves mixed-integer quadratic optimization problems defined as

min
x

f(x) = 1
2xT Fx + cT x

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(10)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .
The variables x ∈ I, the index subset of 1, ..., n, are restricted to be integers.

If F is empty, an LP or MILP problem is solved.

miqpBBTL converts the problem from the Tomlab structure format and calls either miqpBBs (sparse) or miqpBBd
(dense). On return converts the result to the Tomlab structure format.

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign(...);
Result = tomRun(’miqpBB’, Prob ...);

or

Result = miqpBBTL(Prob);

Call Prob = �Assign(...) or Prob=ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Lower and upper bounds on variables.

b L, b U Lower and upper bounds on linear constraints.

A Linear constraint matrix, dense or sparse m x n matrix.

QP.c Linear coefficients in objective function, size n x 1.

QP.F Quadratic matrix of size n x n.

PriLevOpt Print Level (0 = off, 1 = summary, 2 = scalar information, 3 = verbose). >

10 Pause statements, and maximal printing (debug mode)

LargeScale If TRUE (=1), use sparse version, otherwise dense.

38

Prob, The following fields are used:, continued

optParam.MaxIter Limit of iterations.

MIP.IntVars Defines which variables are integers. Variable indices should be in the range
[1,...,n]. IntVars is a logical vector ==> x(find(IntVars > 0)) are integers.
IntVars is a vector of indices ==> x(IntVars) are integers (if [], then no integers
of type I or B are defined).

MIP.VarWeight Variable priorities. Lower value means higher priority.

DUNDEE.kmax Max dimension of reduced space (k), default n, set as 0 if LP.

DUNDEE.mlp Maximum number of levels of recursion.

DUNDEE.stackmax Maximum size of the LIFO stack storing info about B&B tree. Default 5000.
DUNDEE.PrintFile Name of print file. Amount/print type determined by optPar(1) Default name

miqpBBout.txt.

DUNDEE.optPar Vector of optimization parameters. If -999, set to default Length from 0 to 20
allowed.

DUNDEE.optPar(1) Print level in miqpBB.
= 0 Silent
= 1 Warnings and Errors
= 2 Summary information
= 3 More detailed information

DUNDEE.optPar(2): tol Relative accuracy in solution, default 1E-10.
DUNDEE.optPar(3): emin 1.0 Use cscale (constraint scaling) 0.0 no scaling, default 1.0.
DUNDEE.optPar(4): sgnf Max rel error in two numbers equal in exact arithmetic, default 5E-4.
DUNDEE.optPar(5): nrep Max number of refinement steps, default 2.
DUNDEE.optPar(6): npiv No repeat if no more than npiv steps were taken, default 3.
DUNDEE.optPar(7): nres Max number of restarts if unsuccessful, default 2.
DUNDEE.optPar(8): nfreq The max interval between refactorizations, default 500.
DUNDEE.optPar(12): epsilon Tolerance used for x value tests, default 1E-5.
DUNDEE.optPar(13): MIopttol Tolerance used for function value tests, default 1E-4.
DUNDEE.optPar(14): fIP Upper bound on f(x). Only consider solutions < fIP - MIopttol, default 1E20.
DUNDEE.optPar(15): timing If 1 - use timing, if 0 no timing (default).
DUNDEE.optPar(16): max time Maximal time allowed for the run in seconds, default 4E3.
DUNDEE.optPar(17): branchType Branch on variable with highest priority. If tie:

= 1. Variable with largest fractional part, among those branch on the variable
giving the largest increase in the objective.
= 2. Tactical Fletcher (PMO) branching. The var that solves max(min(e+,e-
)) is chosen. The problem than corresponding to min(e+,e-) is placed on the
stack first.

39

Prob, The following fields are used:, continued

= 3. Tactical branching, Padberg/Rinaldi,91, Barahona et al.,89. (i) Choose
the branching variable the one that most violates the integrality restrictions.
i.e. find max(i)min(pi+,pi-) pi+ = int(x(i)+1) - x(i) , pi- = x(i) - int(x(i))
(ii) among those branch on the variable that gives the greatest increase in the
obj. function (iii) Finally a LOWER BOUND is computed on the branched
problems using the bounding method of Fletcher and Leyffer (dual active set
step) DEFAULT = 1.

DUNDEE.optPar(18): ifsFirst If 1, then only search for first ifs (ifail=6), DEFAULT 0.
DUNDEE.optPar(19): infty Real value for infinity (default 1E20).

DUNDEE.morereal Number of extra REAL workspace locations. Set to <0 for problem dependent
default value.

DUNDEE.moreint Number of extra INTEGER workspace locations. Set to <0 for problem de-
pendent default value.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).

f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from miqpBB.m (similar to TOMLAB).
Inform miqpBB information parameter.

0 - Optimal solution obtained
1 - Error in parameters for BQPD
2 - Unbounded QP encountered
3 - Stack overflow NO ifs found
4 - Stack overflow some ifs obtained
5 - Integer infeasible

40

Result, The following fields are used:, continued

6 - (on I/O) only search for first ifs and stop
7 - Infeasible root problem

rc Reduced costs. NOT SET.

Iter Number of iterations.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. NOT SET.

Solver Name of the solver (miqpBB)
SolverAlgorithm Description of the solver.

DUNDEE.kmax Max dimension of reduced space (k), default n, set as 0 if LP.

DUNDEE.mlp Maximum number of levels of recursion.

DUNDEE.stackmax Maximum size of the LIFO stack storing info about B&B tree.

DUNDEE.mode Mode of operation, default set as 2*Prob.WarmStart.

DUNDEE.x Solution (Warm Start).

DUNDEE.k Dimension of the reduced space (Warm Start).

DUNDEE.e Steepest-edge normalization coefficients (Warm Start).

DUNDEE.ls Indices of active constraints, first n-k used for warm start.

DUNDEE.lp List of pointers to recursion information in ls (Warm Start).

DUNDEE.peq Pointer to the end of equality constraint indices in ls (Warm Start).

41

4 The DUNDEE structure

Table 19: Information stored in the structure Prob.DUNDEE

Field Description

callback If 1, use a callback to Matlab to compute QP.F · x in BQPD and miqpBB
. Faster when F is large and nearly dense. Avoids copying the matrix to
the MEX solvers.

kmax Maximum dimension of the reduced space (k), default equal to dimension
of problem. Set to 0 if solving an LP problem.

mlp Maximum number of levels of recursion.
mode Mode of operation, default set as 2 ∗ Prob.WarmStart.
x Solution (warmstart).
k Dimension of reduced space (warmstart).
e Steepest-edge normalization coefficient (warmstart).
ls Indices of active constraints, first n− k. (warmstart).
lp List of pointers to recursion information in ls (warmstart).
peq Pointer to end of equality constraint indices in ls (warmstart).

PrintFile Name of print file. Amount/print type is determined by
Prob.DUNDEE.optPar(1).

optPar Vector with optimization parameters. Described in Table 20.

42

Table 20: Prob.DUNDEE.optPar values used by TOMLAB /MINLP solvers . −999 in any element gives
default value.

Used by:

Index Name Default Description BQPD miqpBB filterSQP minlpBB

1 iprint 0 Print level in DUNDEE solvers. O O O O

2 tol 10−10 Relative accuracy in BQPD solution. O O O O

3 emin 1 1/0: Use/do not use constraint scaling in BQPD O O O O

4 sgnf 5 · 10−4 Maximum relative error in two numbers equal in

exact arithmetic.

O O O O

5 nrep 2 Maximum number of refinement steps. O O O O

6 npiv 3 No repeat of more than npiv steps were taken. O O O O

7 nres 2 Maximum number of restarts if unsuccessful. O O O O

8 nfreq 500 Maximum interval between refactorizations. O O O O

9 ubd 100 Constraint violation parameter I - - O O

10 tt 0.125 Constraint violation parameter II - - O O

11 NLP eps 10−6 Relative tolerance for NLP solutions - - O O

12 epsilon 10−6 Accuracy for x tests O O O O

13 MIopttol 10−4 Accuracy for f tests - O - O

14 fIP 1020 Upper bound on the IP value wanted. - O - O

15 timing 0 1/0: Use/do not use timing - O - -

16 max time 4000 Maximum time (sec’s) allowed for the run - O - -

17 branchtype 1 Branching strategy (1, 2, 3) - O - -

18 ifsFirst 0 Exit when first IP solution is found - O - -

19 infty 1020 Large value used to represent infinity O O O O

20 Nonlin 0 Treat all constraints as nonlinear if 1 - - O O

43

5 Algorithmic description

5.1 Overview

Classical methods for the solution of MINLP problems decompose the problem by separating the nonlinear part
from the integer part. This approach is largely due to the existence of packaged software for solving Nonlinear
Programming (NLP) and Mixed Integer Linear Programming problems.

In contrast, an integrated approach to solving MINLP problems is considered here. This new algorithm is based
on branch-and-bound, but does not require the NLP problem at each node to be solved to optimality. Instead,
branching is allowed after each iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem
is solved whilst searching the tree. The nonlinear solver that is considered in this manual is a Sequential Quadratic
Programming solver.

A numerical comparison of the new method with nonlinear branch-and-bound is presented and a factor of up to
3 improvement over branch-and-bound is observed.

5.2 Introduction

This manual considers the solution of Mixed Integer Nonlinear Programming (MINLP) problems. Problems of this
type arise when some of the variables are required to take integer values. Applications of MINLP problems include
the design of batch plants (e.g. [17] and [22]), the synthesis of processes (e.g. [7]), the design of distillation sequences
(e.g. [29]), the optimal positioning of products in a multi-attribute space (e.g. [7]), the minimization of waste in
paper cutting [28] and the optimization of core reload patterns for nuclear reactors [1]. For a comprehensive survey
of applications of MINLP applications see Grossmann and Kravanja [16].

MINLP problems can be modelled in the following form

(P)


minimize

x,y
f(x, y)

subject to g(x, y) ≤ 0
x ∈ X, y ∈ Y integer,

where y are the integer variables modelling for instance decisions (y ∈ {0, 1}), numbers of equipment (y ∈
{0, 1, . . . , N}) or discrete sizes and x are the continuous variables.

Classical methods for the solution of (P) “decompose” the problem by separating the nonlinear part from the
integer part. This approach is made possible by the existence of packaged software for solving Nonlinear Pro-
gramming (NLP) and Mixed Integer Linear Programming (MILP) problems. The decomposition is even more
apparent in Outer Approximation ([7] and [10]) and Benders Decomposition ([15] and [13]) where an alternating
sequence of MILP master problems and NLP subproblems obtained by fixing the integer variables is solved (see
also the recent monograph of Floudas [14]). The recent branch-and-cut method for 0-1 convex MINLP of Stubbs
and Mehrotra [27] also separates the nonlinear (lower bounding and cut generation) and integer part of the problem.
Branch-and-bound [6] can also be viewed as a “decomposition” in which the tree-search (integer part) is largely
separated from solving the NLP problems at each node (nonlinear part).

In contrast to these approaches, we considers an integrated approach to MINLP problems. The algorithm developed
here is based on branch-and-bound, but instead of solving an NLP problem at each node of the tree, the tree-search
and the iterative solution of the NLP are interlaced. Thus the nonlinear part of (P) is solved whilst searching the
tree. The nonlinear solver that is considered in this manual is a Sequential Quadratic Programming (SQP) solver.
SQP solves an NLP problem via a sequence of quadratic programming (QP) problem approximations.

44

The basic idea underlying the new approach is to branch early – possibly after a single QP iteration of the SQP
solver. This idea was first presented by Borchers and Mitchell [4]. The present algorithm improves on their idea
in a number of ways:

1. In order to derive lower bounds needed in branch-and-bound Borchers and Mitchell propose to evaluate the
Lagrangian dual. This is effectively an unconstrained nonlinear optimization problem. In Section 5.4 it is
shown that there is no need to compute a lower bound if the linearizations in the SQP solver are interpreted
as cutting planes.

2. In [4] two QP problems are solved before branching. This restriction is due to the fact that a packaged SQP
solver is used. By using our own solver we are able to remove this unnecessary restriction, widening the
scope for early branching.

3. A new heuristic for deciding when to branch early is introduced which does not rely on a fixed parameter,
but takes the second order rate of convergence of the SQP solver into account when deciding whether to
branch or continue with the SQP iteration.

The ideas presented here have a similar motivation as a recent algorithm by Quesada and Grossmann [26]. Their
algorithm is related to outer approximation but avoids the re-solution of related MILP master problems by in-
terrupting the MILP branch-and-bound solver each time an integer node is encountered. At this node an NLP
problem is solved (obtained by fixing all integer variables) and new outer approximations are added to all problems
on the MILP branch-and-bound tree. Thus the MILP is updated and the tree-search resumes. The difference to
the approach considered here is that Quesada and Grossmann still solve NLP problems at some nodes, whereas
the new solver presented here usually solves one quadratic programming (QP) problem at each node.

The algorithmic description is organized as follows. Section 5.3 briefly reviews the SQP method and branch-and-
bound. In Section 5.4 the new algorithm is developed for the special case of convex MINLP problems. Section 5.4.4
introduces a heuristic for handling nonconvex MINLP problems. Finally, Section 5.5 presents a comparison of the
new method with nonlinear branch-and-bound. These results are very encouraging, often improving on branch-
and-bound by a factor of up to 3.

5.3 Background

5.3.1 Sequential Quadratic Programming

A popular iterative method for solving NLP problems is Sequential Quadratic Programming (SQP). The basic
form of SQP methods date back to Wilson [30] and were popularized by Han [19] and Powell [25], see Fletcher [9,
Chapter 12.4] and Conn, Gould and Toint [3] for a selection of other references. In its basic form, SQP solves an
NLP problem via a sequence of quadratic programming (QP) approximations obtained by replacing the nonlinear
constraints by a linear first order Taylor series approximation and the nonlinear objective by a second order Taylor
series approximation augmented by second order information from the constraints. It can be shown under certain
conditions that the SQP method converges quadratically near a solution.

It is well known that the SQP method may fail to converge if it is started far from a local solution. In order to
induce convergence, many popular methods use a penalty function which is a linear combination of the objective
function f and some measure of the constraint violation. A related idea is an augmented Lagrangian function in
which a weighted penalty term is added to a Lagrangian function. A step in an SQP method is then accepted
when it produces a sufficient decrease in the penalty function.

Two frameworks exist which enforce sufficient decrease, namely line-search in the direction of the QP solution or
a trust-region that limits the QP step that is computed (see e.g. [9, Chapter 12.4] and references therein). In our

45

implementation global convergence is promoted through the use of a trust-region and the new concept of a “filter”
[11] which accepts a trial point whenever the objective or the constraint violation is improved compared to all
previous iterates. The size of the trust-region is reduced if the step is rejected and increased if it is accepted.

5.3.2 Branch-and-bound

Branch-and-bound dates back to Land and Doig [23]. The first reference to nonlinear branch-and-bound can be
found in Dakin [6]. It is most conveniently explained in terms of a tree-search.

Initially, all integer restrictions are relaxed and the resulting NLP relaxation is solved. If all integer variables take
an integer value at the solution then this solution also solves the MINLP. Usually, some integer variables take a
non-integer value. The algorithm then selects one of those integer variables which take a non-integer value, say yi

with value ŷi, and branches on it. Branching generates two new NLP problems by adding simple bounds yi ≤ [ŷi]
and yi ≥ [ŷi] + 1 respectively to the NLP relaxation (where [a] is the largest integer not greater than a).

One of the two new NLP problems is selected and solved next. If the integer variables take non-integer values
then branching is repeated, thus generating a branch-and-bound tree whose nodes correspond to NLP problems
and where an edge indicates the addition of a branching bound. If one of the following fathoming rules is satisfied,
then no branching is required, the corresponding node has been fully explored (fathomed) and can be abandoned.
The fathoming rules are

FR1 An infeasible node is detected. In this case the whole subtree starting at this node is infeasible and the node
has been fathomed.

FR2 An integer feasible node is detected. This provides an upper bound on the optimum of the MINLP; no
branching is possible and the node has been fathomed.

FR3 A lower bound on the NLP solution of a node is greater or equal than the current upper bound. In this case
the node is fathomed, since this NLP solution provides a lower bound for all problems in the corresponding
sub-tree.

Once a node has been fathomed the algorithm backtracks to another node which has not been fathomed until all
nodes are fathomed.

Many heuristics exist for selecting a branching variable and for choosing the next problem to be solved after a
node has been fathomed (see surveys by Gupta and Ravindran [18] and Volkovich et.al. [24]).

Branch-and-bound can be inefficient in practice since it requires the solution of one NLP problem per node which
is usually solved iteratively through a sequence of quadratic programming problems. Moreover, a large number of
NLP problems are solved which have often no physical meaning if the integer variables do not take integer values.

5.4 Integrating SQP and branch-and-bound

An alternative to nonlinear branch-and-bound for convex MINLP problems is due to Borchers and Mitchell [4].
They observe that it is not necessary to solve the NLP at each node to optimality before branching and propose an
early branching rule, which branches on an integer variable before the NLP has converged. Borchers and Mitchell
implement this approach and report encouraging numerical results compared to Outer Approximation [5]. In their
implementation the SQP solver is interrupted after two QP solves 1 and branching is done on an integer variable
which is more than a given tolerance away from integrality.

1Ideally one would prefer to interrupt the SQP method after each QP solve. Borchers and Mitchell use an SQP method from the

NAG library which does not allow this.

46

The drawback of the early branching rule is that since the NLP problems are not solved to optimality, there is no
guarantee that the current value of f(x, y) is a lower bound. As a consequence, bounding (fathoming rule FR3)
is no longer applicable. Borchers and Mitchell seek to overcome this difficulty by evaluating the Lagrangian dual
for a given set of multiplier estimates, λ. The evaluation of the Lagrangian dual amounts to solving{

minimize
x,y

f(x, y) + λT g(x, y)

subject to x ∈ X, y ∈ Ŷ

where the Ŷ ⊂ Y now also includes bounds that have been added during the branching.

Note that this evaluation requires the solution of a bound constrained nonlinear optimization problem. In order
to diminish the costs of these additional calculations, Borchers and Mitchell only evaluate the dual every sixth QP
solve.

Clearly, it would be desirable to avoid the solution of this problem and at the same time obtain a lower bounding
property at each QP solve. In the remainder of this section it is shown how this can be achieved by integrating
the iterative NLP solver with the tree search.

Throughout this section it is assumed that both f and g are smooth, convex functions. The nonconvex case is
discussed in Section 5.4.4 where a simple heuristic is proposed. The ideas are first presented in the context of a
basic SQP method without globalization strategy. Next this basic algorithm is modified to allow for the use of a
line-search or a trust-region. It is then shown how the early branching rule can take account of the quadratic rate
of convergence of the SQP method. Finally, a simple heuristic for nonconvex MINLP problems is suggested.

5.4.1 The basic SQP algorithm

This section shows how the solution of the Lagrangian dual can be avoided by interpreting the constraints of the
QP approximation as supporting hyperplanes. If f and g are convex, then the linear approximations of the QP
are outer approximations and this property is exploited to replace the lower bounding.

Consider an NLP problem at a given node of the branch-and-bound tree,

(P̂)


minimize

x,y
f(x, y)

subject to g(x, y) ≤ 0
x ∈ X, y ∈ Ŷ ,

where the integer restrictions have been relaxed and Ŷ ⊂ Y contains bounds that have been added by the branching.
Let f̂ denote the solution of (P̂).

Applying the SQP method to (P̂) results in solving a sequence of QP problems of the form

(QP k)


minimize

d
f (k) +∇f (k)T

d + 1
2dT W (k)d

subject to g(k) +∇g(k)T

d ≤ 0
xk + dx ∈ X, yk + dy ∈ Ŷ .

where f (k) = f(x(k), y(k)) etc. and

W (k) ' ∇2L(k) = ∇2f (k) +
∑

λi∇2g
(k)
i

approximates the Hessian of the Lagrangian,
where λi is the Lagrange multiplier of gi(x, y) ≤ 0 .

47

Unfortunately, the solution of (QP k) does not underestimate f̂ , even if all functions are assumed to be convex.
This implies that fathoming rule FR3 cannot be used if early branching is employed. However, it turns out that
it is not necessary to compute an underestimator explicitly. Instead, a mechanism is needed of terminating the
sequence of (QP k) problems once such an underestimator would become greater than the current upper bound,
U , of the branch-and-bound process. This can be achieved by adding the objective cut

f (k) +∇f (k)T

d ≤ U − ε

to (QP k), where ε > 0 is the optimality tolerance of branch-and-bound. Denote the new QP with this objective
cut by (QP k

c).

(QP k
c)


minimize

d
f (k) +∇f (k)T

d + 1
2dT W (k)d

subject to g(k) +∇g(k)T

d ≤ 0
f (k) +∇f (k)T

d ≤ U − ε

xk + dx ∈ X, yk + dy ∈ Ŷ .

Note that (QP k
c) is the QP that is generated by the SQP method when applied to the following NLP problem

minimize
x,y

f(x, y)

subject to g(x, y) ≤ 0
f(x, y) ≤ U − ε

x ∈ X, y ∈ Ŷ ,

where a nonlinear objective cut has been added to (P̂). This NLP problem is infeasible, if fathoming rule FR3
holds at the solution to (P̂).

It is now possible to replace fathoming rule FR3 applied to (P̂) by a test for feasibility of (QP k
c) (replacing the

bounding in branch-and-bound). This results in the following lemma.

Lemma 1 Let f and g be smooth, convex functions. A sufficient condition for fathoming rule FR3 applied to (P̂)
to be satisfied is that any QP problem (QP k

c) generated by the SQP method in solving (P̂) is infeasible.

Proof: If (QP k
c) is infeasible, then it follows that there exists no step d such that

f (k) +∇f (k)T

d ≤ U − ε (11)

g(k) +∇g(k)T

d ≤ 0. (12)

Since (12) is an outer approximation of the nonlinear constraints of (P̂) and (11) underestimates f , it follows that
there exists no point (x̂, ŷ) ∈ X × Ŷ such that

f(x̂, ŷ) ≤ U − ε.

Thus any lower bound on f at the present node has to be larger than U − ε. Thus to within the tolerance ε, f ≥ U

and fathoming rule FR3 holds. q.e.d.

In practice, an SQP method would use a primal active set QP solver which establishes feasibility first and then
optimizes. Thus the test of Lemma 1 comes at no extra cost. The basic integrated SQP and branch-and-bound
algorithm can now be stated.

48

Algorithm 1: Basic SQP and branch-and-bound

Initialization: Place the continuous relaxation of (P) on the tree and set U = ∞.

while (there are pending nodes in the tree) do
Select an unexplored node.
repeat (SQP iteration)

1. Solve (QP k
c) for a step d(k) of the SQP method.

2. if ((QP k
c) infeasible) then fathom node, exit

3. Set (x(k+1), y(k+1)) = (x(k), y(k)) + (d(k)
x , d

(k)
y).

4. if ((x(k+1), y(k+1)) NLP optimal) then
if (y(k+1) integral) then

Update current best point by setting
(x∗, y∗) = (x(k+1), y(k+1)), f∗ = f (k+1) and U = f∗.

else
Choose a non-integral y

(k+1)
i and branch.

endif
exit

endif
5. Compute the integrality gap θ = maxi |y(k+1)

i − anint(y(k+1)
i)|.

6. if (θ > τ) then
Choose a non-integral y

(k+1)
i and branch, exit

endif
end while

Here anint(y) is the nearest integer to y. Step 2 implements the fathoming rule of Lemma 1 and Step 6 is the
early branching rule. In [4] a value of τ = 0.1 is suggested for the early branching rule and this value has also been
chosen here.

A convergence proof for this algorithm is given in the next section where it is shown how the algorithm has to
be modified if a line-search or a trust-region is used to enforce global convergence for SQP. The key idea in the
convergence proof is that (as in nonlinear branch-and-bound), the union of the child problems that are generated
by branching is equivalent to the parent problem. The fact, that only a single QP has been solved in the parent
problem does not alter this equivalence. Finally, the new fathoming rule implies FR3 and hence, any node that has
been fathomed by Algorithm 1 can also be considered as having been fathomed by nonlinear branch-and-bound.
Thus convergence follows from the convergence of branch-and-bound.

Algorithm 1 has two important advantages over the work in [4]. Firstly, the lower bounding can be implemented
at no additional cost (compared to the need to solve the Lagrangian dual in [4]). Secondly, the lower bounding is
available at all nodes of the branch-and-bound tree (rather than at every sixth node).
Note that if no further branching is possible at a node, then the algorithm resorts to normal SQP at that node.

5.4.2 The globalized SQP algorithm

It is well known that the basic SQP method may fail to converge if started far from a solution. In order to obtain
a globally convergent SQP method, descent in some merit function has to be enforced. There are two concepts
which enforce descent: a line-search and a trust-region. This section describes how the basic algorithm of the
previous section has to be modified to accommodate these global features.

49

The use of a line-search requires only to replace d(k) by α(k)d(k), where α(k) is the step-length chosen in the
line-search. Similarly a Levenberg-Marquardt approach would require minimal change to the algorithm.

An alternative to using a line-search is to use a trust region. Trust-region SQP methods usually possess stronger
convergence properties and this leads us to explore this approach. In this type of approach the step that is
computed in (QP k

c) is restricted to lie within a trust-region. Thus the QP that is being solved at each iteration
becomes

(QP k
c,∞)



minimize
d

f (k) +∇f (k)T

d + 1
2dT W (k)d

subject to g(k) +∇g(k)T

d ≤ 0
f (k) +∇f (k)T

d ≤ U − ε

‖d‖∞ ≤ ρk

xk + dx ∈ X, yk + dy ∈ Ŷ

where ρk is the trust-region radius which is adjusted according to how well the quadratic model of (QP k
c,∞) agrees

with the true function (see [9, Chapter 14.5] for details).

The drawback of using a trust-region in the present context is that the trust-region may cause (QP k
c,∞) to be

infeasible even though the problem without a trust-region (QP k
c) has a non-empty feasible region. Thus Lemma 1

is no longer valid. However, if (QP k
c,∞) is infeasible and the trust-region is inactive, then the argument of Lemma 1

still holds and the node can be fathomed.

Otherwise, the feasibility restoration phase has to be entered and this part of the SQP method is briefly described
next. The aim of the restoration phase is to get closer to the feasible region by minimizing the violation of the
constraints in some norm, subject to the linear constraints x ∈ X, y ∈ Ŷ .

(F)

{
minimize

x,y
‖h+(x, y)‖

subject to x ∈ X, y ∈ Ŷ ,

where

h(x, y) =
(

f(x, y)− (U − ε)
g(x, y)

)
and the operation a+ = max(0, a) is taken componentwise.

50

In this phase, an SQP algorithm is applied to minimize (F). Methods for solving this problem include Yuan [31]
for the l∞ norm, El-Hallabi and Tapia [8] for the l2 norm and Dennis, El-Alem and Williamson [21] for the l1 norm.
These methods converge under mild assumptions similar to those needed for the convergence of SQP methods. The
details of the restoration phase are beyond the scope of this manual and we concentrate instead on the interaction
between this phase and branch-and-bound. In the remainder it will be assumed that this phase converges.

In order to obtain an efficient MINLP solver it is important to also integrate the restoration phase with the
tree-search. After each QP in the restoration phase four possible outcomes arise.

1. (QP k
c,∞) is feasible. In this case the solver exits the restoration phase and resumes SQP and early branching.

2. (QP k
c,∞) is not feasible and a step d(k) is computed for which the trust-region is inactive (‖d(k)‖ < ρk). This

indicates that the current node can be fathomed by Lemma 1.

3. The feasibility restoration converges to a minimum of the constraint violation (x∗, y∗) with ‖h+(x∗, y∗)‖ > 0.
This is taken as an indication that (P̂) has no feasible point with an objective that is lower than the current
upper bound and the corresponding node can be fathomed. Note that convergence of the feasibility SQP
ensures that the trust-region will be inactive at (x∗, y∗).

4. The feasibility restoration SQP continues if none of the above occur.

Thus the feasibility restoration can be terminated before convergence, if 1 or 2 hold above. In the first case early
branching resumes and in the second case, the node can be fathomed.

The modifications required to make Algorithm 1 work for trust-region SQP methods are given below.

Algorithm 2: Trust-region SQP and branch-and-bound

Only steps 1. and 2. need to be changed to:

1’. Compute an acceptable step d(k) of the trust-region SQP method.
2’. if ((QP k

c,∞) infeasible and ‖d(k)‖∞ < ρk) then
fathom node exit

elseif ((QP k
c,∞) infeasible and ‖d(k)‖∞ = ρk) then

Enter feasibility restoration phase:
repeat (SQP iteration for feasibility restoration)

(a) Compute a step of the feasibility restoration.
(b) if (‖d(k)‖∞ < ρk) then fathom node, exit
(c) if ((QP k

c,∞) feasible) then return to normal SQP, exit
(d) if (min ‖g+(x, y)‖ > 0) then fathom node, exit

endif

The following theorem shows that Algorithm 2 converges under standard assumptions (e.g.[7] or [10]).

Theorem 1 If f and g are smooth and convex functions, if X and Y are convex sets, if Y integer is finite and if
the underlying trust-region SQP method is globally convergent, then Algorithm 2 terminates after visiting a finite
number of nodes at the solution (x∗, y∗) of (P).

Proof: The finiteness of Y integer implies that the branch-and-bound tree is finite. Thus the algorithm must
terminate after visiting a finite number of nodes. Nodes are only fathomed if they are infeasible, integer feasible
or if the lower bounding of Lemma 1 holds. Thus an optimal node must eventually be solved and convergence
follows from the convergence of the trust-region SQP method. q.e.d.

51

5.4.3 Quadratic convergence and early branching

When implementing Algorithm 2 the following adverse behaviour has been observed on some problems.

1. Some integer variables converge to a non-integral solution, namely y
(k)
i → ŷi but θ ' 0.02 < τ , i.e. the

integrality gap remains bounded away from zero.

2. The SQP solver converges at second order rate during this time and θ � ‖d(k)‖∞ → 0.

In other words the early branching heuristic is not activated during the second order convergence of the SQP
method so that no early branching takes place in the final stages of the SQP solver (as τ = 0.1 is too large).
One way to avoid this would be to reduce τ , but this would simply repeat the problem at a smaller threshold.
Choosing τ to be of the order of the tolerance of the SQP solver on the other hand would trigger early branching
more often which could duplicate the work to be done if integer variables are converging to an integral solution.

These observations lead to a new early branching heuristic which takes the quadratic rate of convergence of the
SQP method into account. Steps 5. and 6. of Algorithm 2 are replaced by

5’. Compute the integrality gap θ = maxi |y(k+1)
i − anint(y(k+1)

i)|
and the experimental order of convergence p := ln(‖d(k)‖∞)/ ln(‖d(k−1)‖∞).

6’. if (θ > τ or (p > 1.5 and ‖d(k)‖∞ < θ)) then
Choose a non-integral y

(k+1)
i and branch, exit

endif

For a quadratically convergent method one expects that p ' 2 and once quadratic convergence sets in, that
‖d(k+1)‖∞ ' ‖d(k)‖p

∞. Thus if ‖d(k)‖∞ < θ, one cannot expect to reduce the integrality gap to zero in the
remaining SQP iterations.

The new early branching rule resulted in a small but consistent reduction in the number of QP problems solved
(roughly a 5% reduction) compared to the original heuristic.

5.4.4 Nonconvex MINLP problems

In practice many MINLP problems are nonconvex. In this case, the underestimating property of Lemma 1 no
longer holds, as linearizations of nonconvex functions are not necessarily underestimators. Thus it may be possible
that a node is wrongly fathomed on account of Lemma 1 and this could prevent the algorithm from finding the
global minimum.

A rigorous way of extending Algorithm 2 to classes of nonconvex MINLP problems would be to replace the
linearizations by linear underestimators (e.g. Horst and Tuy [20, Chapter VI]). However, it is not clear what effect
this would have on the convergence properties of the SQP method. Instead the following heuristic is proposed,
which consists of replacing 2’. by 2”:

2”. if ((QP k
c,∞) infeasible) then

Enter feasibility restoration phase:
repeat (SQP iteration)

(a) Compute a step of the feasibility restoration.
(c) if ((QP k

c,∞) feasible) then return to normal SQP, exit
(d) if (min ‖g+(x, y)‖ > 0) then fathom node, exit

endif

52

The main difference between 2’. and 2”. is that a node is no longer fathomed if the QP problem is infeasible and
the step lies strictly inside the trust-region (‖d‖ < ρ). Instead a feasibility problem has to be solved to optimality
(Step (d) above) or until a feasible QP problem is encountered (Step (b) above). This heuristic is motivated by
the success of nonlinear branch-and-bound in solving some nonconvex MINLP problems. It ensures that a node is
only fathomed if it would have been fathomed by nonlinear branch-and-bound.
Clearly, there is no guarantee that the feasibility problem is solved to global optimality if the constraints or the
objective are nonconvex.

5.5 Numerical Experience

Nonlinear branch-and-bound and Algorithm 2 have been implemented in Fortran 77 using filterSQP [12] as the
underlying NLP solver. The implementation of Algorithm 2 uses a callback routine that is invoked after each
step of the SQP method. This routine manages the branch-and-bound tree stored on a stack, decides on when to
branch and which problem to solve next. The use of this routine has kept the necessary changes to filterSQP to a
minimum.

Header Description
problem The SIF name of the problem being solved.
n Total number of variables of the problem.
ni Number of integer variables of the problem.
m The total number of constraints (excl. simple bounds).
mn Number of nonlinear constraints.
k The dimension of the null–space at the solution.
NLPs Number of NLP problems solved (branch-and-bound).
nodes Number of nodes visited by Algorithm 2.
QPs Total number of QP (and LP) problems solved.
f-QPs Number of QPs in feasibility restoration.
CPU Seconds of CPU time needed for the solve.

Table 21: Description of headers of the result tables

The test problems are from a wide range of backgrounds. Their characteristics are displayed in Table 22. The
SYNTHES* problems are small process synthesis problems [7]. OPTPRLOC is a problem arising from the optimal
positioning of a product in a multi-attribute space [7]. BATCH is a batch plant design problem that has been
transformed to render it convex [22]. FEEDLOC is a problem arising from the optimal sizing and feed tray
location of a distillation column [29], TRIMLOSS is a trim loss optimization problem that arises in the paper
industry [28] and TRIMLON4 is an equivalent nonconvex formulation of the same problem. All problems are
input as SIF files [2] plus an additional file to identify the integer variables. The test-problems are available at
http://www.mcs.dundee.ac.uk:8080/~sleyffer/MINLP TP/.

Table 21 lists a description of the headers of the result tables. Table 22 list the problem characteristics. The
performance of branch-and-bound and Algorithm 2 is compared in Table 23. All runs were performed on a SUN
SPARC station 4 with 128 Mb memory, using the compiler options -r8 -O and SUN’s f77 Fortran compiler. In
both algorithms a depth first search with branching on the most fractional variable was implemented.

Table 23 shows that branch-and-bound only requires about 2-6 QP solves per node that is solved making it a very
efficient solver. By comparison, Algorithm 2 often visits more nodes in the branch-and-bound tree. That is not
surprising, as the early termination rule is based on a weaker lower bound than FR2. However, the overall number

53

problem n ni m mn Description
SYNTHES1 6 3 6 2 Process synthesis
SYNTHES2 11 5 14 3 Process synthesis
SYNTHES3 17 8 23 4 Process synthesis
OPTPRLOC 30 25 30 25 Optimal product location
BATCH 49 24 73 1 Batch plant design
FEEDLOC 90 37 259 89 Distillation column design (nonconvex)
TRIMLOSS 142 122 75 4 Trimloss optimization
TRIMLON4 24 24 27 4 Trimloss optimization (nonconvex)

Table 22: Problem characteristics of test problems

Branch-and-bound Algorithm 2
problem # NLPs # QPs (# f-QPs) CPU # nodes # QPs (# f-QPs) CPU
SYNTHES1 5 18 (0) 0.1 5 13 (0) 0.1
SYNTHES2 17 53 (0) 0.4 17 40 (0) 0.3
SYNTHES3 25 80 (0) 0.8 25 64 (3) 0.8
OPTPRLOC 109 491 (119) 8.5 112 232 (28) 5.3
BATCH 143 371 (10) 8.9 181 391 (11) 14.8
FEEDLOC 47 340 (35) 70.8 55 103 (4) 29.0
TRIMLOSS 1336 3820 (160) 254.3 944 1624 (1) 90.3
TRIMLON4 887 1775 (66) 19.0 566 900 (112) 13.3

Table 23: Results for branch-and-bound and Algorithm 2

of QP problems that are being solved is reduced by 20% – 80%. This results in a similar reduction in terms of
CPU time compared to branch-and-bound. For the largest problem, Algorithm 2 is 3 times faster than nonlinear
branch-and-bound.

These results are roughly in line with what one might expect taking into account that branch-and-bound solves
between 3 and 5 QPs per NLP node. They are somewhat better than the results in [5].

Even though problem TRIMLON4 is nonconvex, Algorithm 2 terminated with the global minimum. For the
nonconvex problem FEEDLOC, Algorithm 2 did not find an integer feasible point. This behaviour is due to the
fact that the linearization are not outer approximations in the nonconvex case and shows that the early termination
rule does not hold for nonconvex MINLP problems. Running Algorithm 2 in nonconvex mode (see Section 5.4.4)
produced the same minimum as branch-and-bound. As one would expect, the performance of Algorithm 2 in
nonconvex mode is not as competitive as in convex mode (see Table 24) but still competitive with branch-and-
bound. Better heuristics for nonconvex MINLP problems remain an open problem.

Branch-and-bound Algorithm 2
problem # NLPs # QPs (# f-QPs) CPU # nodes # QPs (# f-QPs) CPU
FEEDLOC 47 340 (35) 70.8 65 159 (75) 55.9
TRIMLON4 887 1775 (66) 19.0 984 1606 (259) 21.9

Table 24: Results for Algorithm 2 in nonconvex mode

54

5.6 Conclusions

We have presented an algorithm for MINLP problems which interlaces the iterative solution of each NLP node
with the branch-and-bound tree search.
The algorithm presented here can also be interpreted as an improved lower bounding scheme for branch-and-bound.

An implementation of this idea gave a factor of up to 3 improvement in terms of CPU time compared to branch-
and-bound.

55

References

[1] J.E. Hoogenboom T. Illés E. de Klerk C. Roos A.J. Quist, R. van Geemert and T. Terlaky. Optimization of
a nuclear reactor core reload pattern using nonlinear optimization and search heuristics. 1997.

[2] N.I.M. Gould A.R. Conn and Ph.L. Toint. Lancelot: a fortran package for large-scale nonlinear optimization
(release a). 1992.

[3] N.I.M. Gould A.R. Conn and Ph.L. Toint. Methods for nonlinear constraints in optimization calculations. To
appear in ”The State of the Art in Numerical Analysis”, I. Duff and G.A. Watson (eds.), 1996.

[4] B. Borchers and J.E. Mitchell. An improved branch and bound algorithm for Mixed Integer Nonlinear
Programming. Computers and Operations Research, 21, 1994.

[5] B. Borchers and J.E. Mitchell. A computational comparison of branch and bound and outer approximation
methods for 0-1 mixed integer nonlinear programs. Computers and Operations Research, 24, 1997.

[6] R.J. Dakin. A tree search algorithm for mixed integer programming problems. Computer Journal, 8:250–255,
1965.

[7] M. Duran and I.E. Grossmann. An outer-approximation algorithm for a class of mixed–integer nonlinear
programs. Mathematical Programming, 36:307–339, 1986.

[8] M. El-Hallabi and R.A. Tapia. An inexact trust-region feasible-point algorithm for nonlinear systems of
equalities and inequalities. 1995.

[9] R. Fletcher. Practical Methods of Optimization, 2nd edition. 1987.

[10] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approximation. Mathematical
Programming, 66:327–349, 1994.

[11] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. 1997.

[12] R. Fletcher and S. Leyffer. User manual for filterSQP. 1998.

[13] O.E. Flippo and A.H.G. Rinnoy Kan. Decomposition in general mathematical programming. Mathematical
Programming, 60:361–382, 1993.

[14] C.A. Floudas. Nonlinear and mixed–integer optimization. 1995.

[15] A.M. Geoffrion. Generalized benders decomposition. Journal of Optimization Theory and Applications,
10:237–260, 1972.

[16] I.E. Grossmann and Z. Kravanja. Mixed–integer nonlinear programming: A survey of algorithms and appli-
cations. 1997.

[17] I.E. Grossmann and R.W.H. Sargent. Optimal design of multipurpose batch plants. Ind. Engng. Chem.
Process Des. Dev., 18:343–348, 1979.

[18] O.K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear integer programming.
Management Science, 31:1533–1546, 1985.

[19] S.P. Han. A globally convergent method for nonlinear programming. Journal of Optimization Theory and
Application, 22, 1977.

56

[20] R. Horst and H. Tuy. A radial basis function method for global optimization. Global Optimization: Deter-
ministic Approaches, 2nd edition, 1993.

[21] M. El-Alem J.E. Dennis and K.A. Williamson. A trust-region approach to nonlinear systems of equalities and
inequalities. SIAM Journal on Optimization, 9:291–315, 1999.

[22] G.R. Kocis and I.E. Grossmann. Global optimization of nonconvex mixed–integer nonlinear programming
(MINLP) problems in process synthesis. Industrial Engineering Chemistry Research, 27:1407–1421, 1988.

[23] A.H. Land and A.G Doig. An automatic method for solving discrete programming problems. Econometrica,
28:497–520, 1960.

[24] V.A. Roshchin O.V. Volkovich and I.V. Sergienko. Models and methods of solution of quadratic integer
programming problems. Cybernetics, 23:289–305, 1987.

[25] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In G.A. Watson,
editor, Numerical Analysis, 1977, pages 144–157, 1978.

[26] I. Quesada and I.E. Grossmann. An LP/NLP based branch–and–bound algorithm for convex MINLP opti-
mization problems. Computers and Chemical Engineering, 16:937–947, 1992.

[27] R.A. Stubbs and S. Mehrotra. A branch–and–cut method for 0–1 mixed convex programming. Technical
report 96-01, Department of IE/MS, Northwestern University, Evanston, IL 60208, USA, 1996.

[28] J. Isaksson T. Westerlund and I. Harjunkoski. Solving a production optimization problem in the paper
industry. Report 95–146–A, Department of Chemical Engineering, Abo Akademi, Abo, Finland, 1995.

[29] J. Viswanathan and I.E. Grossmann. Optimal feed location and number of trays for distillation columns with
multiple feeds. 32:2942–2949, 1993.

[30] R.B. Wilson. A simplicial algorithm for concave programming. 2001.

[31] Y. Yuan. Trust region algorithms for nonlinear equations. 1994.

57

	Contents
	1 Introduction
	1.1 Overview
	1.2 Contents of this Manual
	1.3 Prerequisites

	2 Using the Matlab Interface
	3 TOMLAB /MINLP Solver Reference
	3.1 bqpd
	3.1.1 Direct Solver Call
	3.1.2 Using TOMLAB

	3.2 filterSQP
	3.2.1 Direct Solver Call
	3.2.2 Using TOMLAB

	3.3 minlpBB
	3.3.1 Direct Solver Call
	3.3.2 Using TOMLAB

	3.4 miqpBB
	3.4.1 Direct Solver Call
	3.4.2 Using TOMLAB

	4 The DUNDEE structure
	5 Algorithmic description
	5.1 Overview
	5.2 Introduction
	5.3 Background
	5.3.1 Sequential Quadratic Programming
	5.3.2 Branch-and-bound

	5.4 Integrating SQP and branch-and-bound
	5.4.1 The basic SQP algorithm
	5.4.2 The globalized SQP algorithm
	5.4.3 Quadratic convergence and early branching
	5.4.4 Nonconvex MINLP problems

	5.5 Numerical Experience
	5.6 Conclusions

	References

