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1 Introduction

1.1 Overview

Welcome to the TOMLAB /NLPQL User’s Guidee. TOMLAB /NLPQL includes the NLPQLP, NLPJOB and
DFNLP solvers from Klaus Schittkowski and an interface to The MathWorks’ MATLAB.

TOMLAB /NLPQL solves general nonlinear mathematical programming problems with equality and inequality
constraints. It is assumed that all problem functions are continuously differentiable.

The internal algorithm is a sequential quadratic programming (SQP) method. Proceeding from a quadratic ap-
proximation of the Lagrangian function and a linearization of the constraints, a quadratic subproblem is formulated
and solved by dual code. Subsequently a line search is performed with respect to two alternative merit functions
and the Hessian approximation is updated by the modified BFGS-formula.

TOMLAB /NLPJOB solves multicriteria optimization problems. NLPJOB offers a total of 15 different possibilities
to transform the objective function vector into a scalar function. An SQP method is also used to solve the problem
in this case.

TOMLAB /DFNLP is a sequential quadratic programming method for solving nonlinear data fitting problems. The
algorithm introduces new decision variables as well as constraints to formulate a smooth nonlinear programming
problem, which is solved by SQP.

1.2 Contents of this Manual

e Section 1 provides a basic overview of the TOMLAB /NLPQL solver package.

e Section 2 provides an overview of the Matlab interface to NLPQL.

Section 3 describes how to set NLPQL solver options from Matlab.

Section 4 gives detailed information about the interface routine nipqlTL.

Section 5 gives detailed information about the interface routine nipjobTL.

Section 6 gives detailed information about the interface routine dfnipTL.

1.3 More information

Please visit the following links for more information:

e http://tomopt.com/tomlab/products/nlpql/

e http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpgl.htm

1.4 Prerequisites

In this manual we assume that the user is familiar with global optimization and nonlinear programming, setting up
problems in TOMLAB (in particular constrained nonlinear (con) problems) and the Matlab language in general.


http://tomopt.com/tomlab/products/nlpql/
http://www.uni-bayreuth.de/departments/math/~kschittkowski/nlpql.htm

2 Using the Matlab Interface

The NLPQL solver is accessed via the tomRun driver routine, which calls the nlpglTL interface routine. The solver
itself is located in the MEX file nilpgl. The same applies for the other two solvers.

Observe that clsAssign should be used when defining the problem for NLPJOB and DFNLP, as the problem solved
is multi criteria, i.e. has several objective functions.

Table 1: The interface routines.

Function Description Section Page
nipglTL The interface routine called by the TOMLAB driver routine tomRun. 4.1 5
This routine then calls the MEX file nipql

nlpjobTL The interface routine called by the TOMLAB driver routine tomRun. 5.1 8
This routine then calls the MEX file nlpjob

dfnlpTL The interface routine called by the TOMLAB driver routine tomRun. 6.1 13
This routine then calls the MEX file dfnip

3 Setting NLPQL Options

All NLPQL control parameters are possible to set from Matlab.

3.1 Setting options using the Prob.NLPQL structure

The parameters can be set as subfields in the Prob. NLPQL structure. The following example shows how to set a
limit on the maximum number of iterations.

Prob = conAssign(...) % Setup problem, see help conAssign for more information

Prob.NLPQL.maxit = 2000; % Setting maximum number of iterations

The maximum number of iterations can also be done through the TOMLAB parameter Mazlter:
Prob.optParam.MaxIter = 200;

In the cases where a solver specific parameter has a corresponding TOMLAB general parameter, the latter is used
only if the user has not given the solver specific parameter.

A complete description of the available NLPQL parameters can be found in Section 4.1.



4 TOMLAB /NLPQL Solver Reference

A detailed description of the TOMLAB /NLPQL [1] solver interface is given below. Also see the M-file help for
nlpglTL.m.

4.1 nlpqlTL

Purpose
Solves constrained nonlinear programming problems.

NLPQL solves problems of the form

min  f(z)

x

s/t oz, < oz < ay (1)
by < Az < by
cr < clz) < v

where x, 2,2y € R", A € R™*" by by € R™ and c¢(x),cp, cy € R™2.

Calling Syntax
Prob = conAssign( ... );
Result = tomRun('nlpql’,Prob,...);

Description of Inputs

Prob  Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.

xL, 2. U Bounds on variables.

b_L, b_U Bounds on linear constraints.

c.L, c.U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b_L(k) == b_U(k).
PriLevOpt Print level in MEX interface.

WarmStart If true, use warm start, otherwise cold start. When using WarmStart the
following parameters are required:

NLPQL.u Contains the multipliers with respect to the actual iterate stored in the first
column of X. The first M locations contain the multipliers of the M nonlinear
constraints, the subsequent N locations the multipliers of the lower bounds,
and the final N locations the multipliers of the upper bounds. At an opti-
mal solution, all multipliers with respect to inequality constraints should be
nonnegative.



Prob  Problem description structure. The following fields are used:, continued

Description of Outputs

Result

NLPQL.c

NLPQL.d

NLPQL

maxfun

maxit

acc

accqp

PrintFile

On return, C contains the last computed approximation of the Hessian matrix
of the Lagrangian function stored in form of an LDL decomposition. C contains
the lower triangular factor of an LDL factorization of the final quasi-Newton
matrix (without diagonal elements, which are always one). In the driving
program, the row dimension of C has to be equal to NMAX.

The elements of the diagonal matrix of the LDL decomposition of the quasi-
Newton matrix are stored in the one-dimensional array D.

Structure with special fields for the NLPQL solver:

The integer variable defines an upper bound for the number of function calls
during the line search.

Maximum number of outer iterations, where one iteration corresponds to one
formulation and solution of the quadratic programming subproblem, or, alter-
natively, one evaluation of gradients.

The user has to specify the desired final accuracy (e.g. 1.0e-7). The termina-
tion accuracy should not be smaller than the accuracy by which gradients are
computed.

The tolerance is needed for the QP solver to perform several tests, for example
whether optimality conditions are satisfied or whether a number is considered
as zero or not. If ACCQP is less or equal to zero, then the machine precision
is computed by NLPQL and subsequently multiplied by 1.0e+4.

Name of NLPQL Print file. Amount and type of printing determined by
PriLevOpt.

Structure with result from optimization. The following fields are set:

fk
g-k

z_k
z_0

ck

cJac

xState

Function value at optimum.
Gradient of the function.

Solution vector.
Initial solution vector.

Nonlinear constraint residuals.
Nonlinear constraint gradients.

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;



Structure with result from optimization. The following fields are set:, continued

bState
cState
EzitFlag
FExitText
Inform
FuncEv
GradEv
ConstrEv
QP.B

Solver
SolverAlgorithm

NLPQL.act

NLPQL.u
NLPQL.c

NLPQL.d

State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Exit status from NLPQL MEX.
Exit text from NLPQL MEX.
NLPQL information parameter.
Number of function evaluations.
Number of gradient evaluations.
Number of constraint evaluations.

Basis vector in TOMLAB QP standard.

Name of the solver (NLPQL).
Description of the solver.

The logical array indicates constraints, which NLPQL considers to be active at
the last computed iterate.

See inputs.
See inputs.

See inputs.



5 TOMLAB /NLPJOB Solver Reference

A detailed description of the TOMLAB /NLPJOB [2] solver interface is given below. Also see the M-file help for
nlpjobTL.m. The 15 different possibilities for the scalar objective function are listed below.

5.1 nlpjobTL

Purpose
Solves multicriteria nonlinear programming problems.

NLPJOB solves problems of the form

min  f(1,2),...., f(L, x)

x

s/t oz, < oz < ay (2)
by < Az < by
cr < clz) < v

where x, 2,2y € R", A € R™*" by by € R™ and c¢(x),cp, cy € R™2.
L is the number of objective functions. For details on the objective function see that different methods below.

Calling Syntax
Prob = clsAssign( ... );
Result = tomRun(’'nlpjob’,Prob,...);

Description of Inputs

Prob  Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.

x L, z.U Bounds on variables.

b_L, b_U Bounds on linear constraints.

c.L, c.U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b_L(k) == b_U(k).

PriLevOpt Print level in MEX interface.
NLPJOB Structure with special fields for the NLPJOB solver:
model Desired scalar transformation as indicated below.
1 Weighted sum: The scalar objective function is the weighted sum of individual

objectives, i.e., F(X) := W1« F1(X)+ W2+ F2(X)+...+ WL« FL(X) , where
W1, ..., WL are non-negative weights given by the user.



Prob  Problem description structure. The following fields are used:, continued

2 Hierarchical optimization method: The idea is to formulate a sequence of L

scalar optimization problems with respect to the individual objective functions
subject to bounds on previously computed optimal values, i.e., we minimize
F(X):= FI(X),I=1,.,L subject to the original and the additional con-
straints FJ(X) <= (1 + EJ/100) « F.J , J = 1,...,I-1 , where EJ is the given
coefficient of relative function increment as defined by the user and where FJ is
the individual minimum. It is assumed that the objective functions are ordered

with respect to their importance.

3 Trade-off method: One objective is selected by the user and the other ones

are considered as constraints with respect to individual minima, i.e., F(X) :
FI(X) is minimized subject to the original and some additional constraints of
the form FJ(X) <= EJ,J =1,...,L,J <> I , where EJ is a bound value of

the J-th objective function.

4 Method of distance functions in L1-norm: A sum of absolute values of the
differences of objective functions from predetermined goals Y1, ..., YL is min-
imized, i.e., F(X):=|F1(X)—-Y1|+ ..+ |FL(X) — YL| The goals are given
by the user and their choice requires some knowledge about the ideal solution

vector.

5 Method of distance functions in L2-norm: A sum of squared values of the differ-
ences of objective functions from predetermined goals Y1, ..., Y1 is minimized,
F(X):=(F1(X)=Y1)?+..+ (FL(X)—YL)? Again the goals are provided

by the user.

9 Global criterion method: The scalar function to be minimized, is the sum of
relative distances of individual objectives from their known minimal values, i.e.,
F(X):=(FI(X)—-F1)/|F1|+...+ (FL(X)— FL)/|FL| where F1, ..., FL are
the optimal function values obtained by minimizing F1(x), ..., FL(x) subject

to original constraints.

7 Global criterion method in L2-norm: The scalar function to be minimized, is
the sum of squared distances of individual objectives from their known optimal
values, i.e., F(X) := (F1- F1(X))/F1)?+...+ ((FL—FL(X))/FL))? where

F1, ..., FL are the individual optimal function values.

8 Min-max method no. 1: The maximum of absolute values of all objectives is

minimized, i.e., F(X):= MAX(|[FI(X)|,I =1,...,L)

9 Min-max method no. 2: The maximum of all objectives is minimized, i.e.,

F(X):= MAX(FI(X),I=1,..,L)



Prob  Problem description structure. The following fields are used:, continued

10

11

12

13

14

15

man

maxf

maxit

acc

Min-max method no. 3: The maximum of absolute distances of objective
function values from given goals Y1, ..., YL is minimized, i.e., F(X) :=
MAX(|FI(X)—-YI|,I=1,...,L). The goals must be determined by the user.

Min-max method no. 4: The maximum of relative distances of objective func-
tion values from ideal values is minimized, ie., F(X) := MAX((FI(X) —
FI)/|FI|,I =1,...,L)

Min-max method no. 5: The maximum of weighted relative distances of ob-
jective function values from individual minimal values is minimized, F(X) :=
MAX(WI x(FI(X) — FI)/|IFI|,I = 1,...,L). Weights must be provided by
the user.

Min-max method no. 6: The maximum of weighted objective function values
is minimized, i.e., F(X) := MAX(WIx FI(X),I = 1,...,L) Weights must be
provided by the user.

Weighted global criterion method: The scalar function to be minimized, is the
weighted sum of relative distances of individual objectives from their goals, i.e.,
F(X):=(FLI(X)-Y1)/|Y1|+..4+ (FL(X)—YL)/|YL| The weights W1, ...,
WL and the goals Y1, ..., YL must be set by the user.

Weighted global criterion method in L2-norm: The scalar function to be mini-
mized, is the weighted sum of squared relative distances of individual objectives
from their goals, i.e., F(X) := ((F1(X)-Y1)/Y1)*+..4+((FL(X)-YL)/YL)?
The weights W1, ..., WL and the goals Y1, ..., YL must be set by the user.

If necessary (model = 2 or 3), imin defines the index of the objective function
to be take into account for the desired scalar transformation.

The integer variable defines an upper bound for the number of function calls
during the line search (e.g. 20).

Maximum number of iterations, where one iteration corresponds to one formu-
lation and solution of the quadratic programming subproblem, or, alternatively,
one evaluation of gradients (e.g. 100).

The user has to specify the desired final accuracy (e.g. 1.0e-7). The termination

accuracy should not be much smaller than the accuracy by which gradients are
computed.

10



Prob  Problem description structure. The following fields are used:, continued

schou The real variable allows an automatic scaling of the problem functions. If at the
starting point x_0, a function value is greater than SCBOU (e.g. E+3), then
the function is divided by the square root. If SCBOU is set to any negative
number, then the objective function will be multiplied by the value stored in
WA(MMAX+1) and the Jth constraint function by the value stored in WA(J),

J=1,.. M.

w Weight vector of dimension L, to be filled with suitable values when calling
NLPJOB depending on the transformation model: MODEL=1,10,12,13,14,15
- weights, MODEL=2 - bounds, MODEL=3 - bounds for objective functions,

MODEL=4,5 - goal values.

& For MODEL=2,6,7,11,12,14,15, FK has to contain the optimal values of the

individual scalar subproblems when calling NLPJOB.

PrintFile Name of NLPJOB Print file. Amount and type of printing determined by

PriLevOpt.

Description of Outputs

Result  Structure with result from optimization. The following fields are set:

fk Function value at optimum.

g-k Gradient of the function.

x_k Solution vector.

2-0 Initial solution vector.

ck Nonlinear constraint residuals.

cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality
e — ;

EzitFlag Exit status from NLPJOB MEX.

EritText Exit text from NLPJOB MEX.

Inform NLPJOB information parameter.

FuncFEv Number of function evaluations.

GradFv Number of gradient evaluations.

ConstrEv Number of constraint evaluations.

11



Result

Structure with result from optimization. The following fields are set:, continued

QP.B

Solver
SolverAlgorithm

NLPJOB.u

NLPJOB.act

Basis vector in TOMLAB QP standard.

Name of the solver (NLPJOB).
Description of the solver.

Contains the multipliers with respect to the actual iterate stored in X. The first
M locations contain the multipliers of the nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the final N locations the
multipliers of the upper bounds subject to the scalar subproblem chosen. At an
optimal solution, all multipliers with respect to inequality constraints should
be nonnegative.

The logical array indicates constraints, which NLPJOB considers to be active
at the last computed iterate.

12



6 TOMLAB /DFNLP Solver Reference

A detailed description of the TOMLAB /DFNLP [3] solver interface is given below. Also see the M-file help for
dfnlpTL.m.

6.1 dfnlpTL

Purpose
Solves nonlinear data fitting problems.

DFEFNLP solves problems of the form

min  f(1,2),...., f(L, x)

x

s/t oz, < oz < ay (3)
by < Az < by
cr < clz) < v

where x, 2,2y € R", A € R™*" by by € R™ and c¢(x),cp, cy € R™2.
L is the number of objective functions. For details on the objective function see that different methods below.

Calling Syntax
Prob = clsAssign( ... );
Result = tomRun(’dfnlp’,Prob,...);

Description of Inputs

Prob  Problem description structure. The following fields are used:

A Linear constraints coefficient matrix.

x L, z.U Bounds on variables.

b_L, b_U Bounds on linear constraints.

c.L, c.U Bounds on nonlinear constraints. For equality constraints (or fixed variables),

set e.g. b_L(k) == b_U(k).

PriLevOpt Print level in MEX interface.
DFNLP Structure with special fields for the DFNLP solver:
model Desired scalar transformation as indicated below.
1 L1 - DATA FITTING: Minimize |F(1, X)|+...+|F(L, X)| by introducing L ad-

ditional variables Z(1),...,Z(L) and L + L additional inequality constraints, the
above problem is transformed into a smooth nonlinear programming problem,
that is then solved by a sequential quadratic programming algorithm.

13



Prob  Problem description structure. The following fields are used:, continued

Description of Outputs

Result

2

mazxfun

maxit

acc

ressiz

PrintFile

L2 - OR LEAST SQUARES DATA FITTING: Minimize F(1,X)% + ... +
F(L, X)? The algorithm transform the above problem into an equivalent nonlin-
ear programming problem by introducing L additional variables Z(1), ..., Z(L).
The new objective function is H(X, Z) = 0.5%(Z(1)*+...+Z(L)?) and L equal-
ity constraints of the form F(J, X) — Z(J) = 0 are formulated, J =1, ..., L.

MAXIMUM-NORM DATA FITTING: Minimize Maximum —F(I,X)— :
I=1,...,.L. The problem is transformed into a smooth nonlinear programming
problem by introducing one additional variable Z yielding the objective func-
tion H(X,Z) = Z and L + L additional inequality constraints of the form
-F(J,X)+Z>=0,J=1,..,.LF(J,X)+Z>=0,J=1,...,L.

MAXIMUM FUNCTION: Minimize Maximum F(I,X) : I=1,..,L Similar
to the model above, one additional variable X is introduced to get a sim-
ple objective function of the type H(X,Z) = Z and L additional restrictions
-F(J,X)+Z>=0,J=1,... L.

The integer variable defines an upper bound for the number of function calls
during the line search.

Maximum number of outer iterations, where one iteration corresponds to one
formulation and solution of the quadratic programming subproblem, or, alter-
natively, one evaluation of gradients.

The user has to specify the desired final accuracy (e.g. 1.0e-7). The termina-
tion accuracy should not be smaller than the accuracy by which gradients are
computed.

The user must indicate a guess for the approximate size of the least squares
residual, i.e. a low positive real number if the residual is supposed to be small,
and a large one in the order of 1 if the residual is supposed to be large. If
model is not equal to 2, ressiz must not be set by the user.

Name of DFNLP Print file. Amount and type of printing determined by
PriLevOpt.

Structure with result from optimization. The following fields are set:

f-k
g-k

z_k

Function value at optimum.
Gradient of the function.

Solution vector.

14



Result

Structure with result from optimization. The following fields are set:, continued

0

ck
cJac

xState
bState

cState

FEzitFlag
EzitText
Inform

FuncEv
GradEv
ConstrEv
QP.B

Solver
SolverAlgorithm

DFNLP.u

DFNLP.act

Initial solution vector.

Nonlinear constraint residuals.
Nonlinear constraint gradients.

State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

Exit status from DFNLP MEX.
Exit text from DFNLP MEX.
DFNLP information parameter.

Number of function evaluations.
Number of gradient evaluations.
Number of constraint evaluations.

Basis vector in TOMLAB QP standard.

Name of the solver (DFNLP).
Description of the solver.

Contains the multipliers with respect to the actual iterate stored in X. The first
M locations contain the multipliers of the nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the final N locations the
multipliers of the upper bounds subject to the scalar subproblem chosen. At an
optimal solution, all multipliers with respect to inequality constraints should
be nonnegative.

The logical array indicates constraints, which DFNLP considers to be active at
the last computed iterate.

15
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