
USER’S GUIDE FOR TOMLAB /PENOPT1

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4

November 6, 2006

1More information available at the TOMLAB home page: http://tomopt.com. E-mail: tomlab@tomopt.com.
2Professor in Optimization, Mälardalen University, Department of Mathematics and Physics, P.O. Box 883, SE-721 23 Väster̊as,

Sweden, kenneth.holmstrom@mdh.se.
3Tomlab Optimization AB, Väster̊as Technology Park, Trefasgatan 4, SE-721 30 Väster̊as, Sweden, anders@tomopt.com.
4Tomlab Optimization Inc., 855 Beech St #121, San Diego, CA, USA, medvall@tomopt.com.

1

http://tomopt.com
mailto:tomlab@tomopt.com
mailto:kenneth.holmstrom@mdh.se
mailto:anders@tomopt.com
mailto:medvall@tomopt.com

Contents

Contents 2

1 Introduction 3

1.1 Overview . 3

1.2 Contents of this Manual . 3

1.3 Prerequisites . 3

2 Using the Matlab Interface 4

3 TOMLAB /PENOPT Solver Reference 5

3.1 PENBMI . 6

3.1.1 penfeas bmi . 6

3.1.2 penbmiTL . 8

3.2 PENSDP . 13

3.2.1 penfeas sdp . 13

3.2.2 pensdpTL . 15

References 19

2

1 Introduction

1.1 Overview

Welcome to the TOMLAB /PENOPT User’s Guide. TOMLAB /PENOPT includes either PENSDP or PENBMI
(depends on the license) and interfaces between The MathWorks’ MATLAB and the solver packages from PENOPT
GbR. The package includes one of the following solvers:

PENBMI - For large, sparse semidefinite programming problems with linear and bilinear matrix inequality con-
straints.

PENSDP - For large, sparse linear semidefinite programming problems with linear constraints. It also solves
feasibility problems for systems of linear matrix inequalities.

Please visit http://tomopt.com/tomlab/products/pensdp/, http://tomopt.com/tomlab/products/penbmi/

and http://www.penopt.com for more information.

For PENBMI two different input formats may be used for the problem formulation: The PENBMI Structural
Format, an extension of the PENSDP format for linear problems, and the TOMLAB format for semidefinite prob-
lems. Apart from solving the BMI problem, the user can check feasibility of the system of linear and bilinear
matrix inequalities.

For PENSDP three different input formats may be used for problem formulation: The standard sparse SDPA
format used in SDPLIB, the PENSDP Structural Format, and the TOMLAB format for semidefinite problems.

Problems defined in SeDuMi Matlab format may easily be converted to SDPA format and solved by TOMLAB
/PENSDP. The conversion routine, called writesdp, was written by Brian Borcher.

Apart from solving the SDP problem, the user can check feasibility of the system of linear matrix inequalities.

The interface between TOMLAB /PENOPT, Matlab and TOMLAB consists of two layers. The first layer gives
direct access from Matlab to PENOPT, via calling a Matlab function that calls a pre-compiled MEX file (DLL
under Windows, shared library in UNIX) that defines and solves the problem in PENOPT. The second layer is a
Matlab function that takes the input in the TOMLAB format, and calls the first layer function. On return the
function creates the output in the TOMLAB format.

1.2 Contents of this Manual

• Section 2 gives the basic information needed to run the Matlab interface.

• Section 3 provides all the solver references for PENBMI and PENSDP.

1.3 Prerequisites

In this manual we assume that the user is familiar with semidefinite programming, TOMLAB and the Matlab
language.

3

http://tomopt.com/tomlab/products/pensdp/
http://tomopt.com/tomlab/products/penbmi/
http://www.penopt.com

2 Using the Matlab Interface

The main routines in the two-layer design of the interface are shown in Table 1. Page and section references are
given to detailed descriptions on how to use the routines.

Table 1: The interface routines.

Function Description Section Page
penbmiTL The layer two interface routine called by the TOMLAB driver rou-

tine tomRun. This routine then calls penbmi.m, which in turn calls
penbmi.dll.

3.1.2 8

penfeas bmi The layer two TOMLAB interface routine that calls pen.m. Converts
the input Prob format before calling penbmiQ.dll and converts back
to the output Result structure.

3.1.1 6

pensdpTL The layer two interface routine called by the TOMLAB driver rou-
tine tomRun. This routine then calls pensdp.m, which in turn calls
pensdp.dll.

3.2.2 15

penfeas sdp The layer two TOMLAB interface routine that calls pen.m. Converts
the input Prob format before calling pensdp.dll and converts back to
the output Result structure.

3.2.1 13

The PENOPT control parameters are possible to set from Matlab.

They can be set as inputs to the interface routine penbmiTL for example and the others. The user sets fields
in a structure called Prob.PENOPT. The following example shows how to set the maximum number of overall
iterations.

Prob.PENOPT.ioptions(2) = 200; % Setting maximum number of iterations

4

3 TOMLAB /PENOPT Solver Reference

The PENOPT solvers are a set of solvers that were developed by the PENOPT GbR. Table 2 lists the solvers
included in TOMLAB /PENOPT. The solvers are called using a set of MEX-file interfaces developed as part of
TOMLAB. All functionality of the PENOPT solvers are available and changeable in the TOMLAB framework in
Matlab.

Detailed descriptions of the TOMLAB /PENOPT solvers are given in the following sections. Also see the M-file
help for each solver.

Additional solvers reference guides for the TOMLAB /PENOPT solvers are available for download from the TOM-
LAB home page http://tomopt.com. Extensive TOMLAB m-file help is also available, for example help penbmiTL
in Matlab will display the features of the PENBMI solver using the TOMLAB format.

TOMLAB /PENOPT solves

The linear semi-definite programming problem with linear matrix inequalities (sdp) is defined as

min
x

f(x) = cT x

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

Qi
0 +

n∑
k=1

Qi
kxk 4 0, i = 1, . . . ,m.

(1)

where c, x, xL, xU ∈ Rn, A ∈ Rml×n, bL, bU ∈ Rml and Qi
k are symmetric matrices of similar dimensions in each

constraint i. If there are several LMI constraints, each may have it’s own dimension.

The linear semi-definite programming problem with bilinear matrix inequalities (bmi) is defined sim-
ilarly to (1) but with the matrix following inequality constraints

Qi
0 +

n∑
k=1

Qi
kxk +

n∑
k=1

n∑
l=1

xkxlK
i
kl 4 0 (2)

The MEX solvers pensdp and penbmi treat sdp and bmi problems, respectively. These are available in the
TOMLAB /PENSDP and TOMLAB /PENBMI toolboxes.

The MEX-file solver pensdp available in the TOMLAB /PENSDP toolbox implements a penalty method aimed at
large-scale dense and sparse sdp problems. The interface to the solver allows for data input in the sparse SDPA
input format as well as a TOMLAB specific format corresponding to (1).

The MEX-file solver penbmi available in the TOMLAB /PENBMI toolbox is similar to pensdp, with added support
for the bilinear matrix inequalities (2).

The add-on toolbox TOMLAB /PENOPT solves linear semi-definite programming problems with linear and bi-
linear matrix inequalities. The solvers are listed in Table 2. They are written in a combination of Matlab and C
code.

5

http://tomopt.com

Table 2: Solvers in TOMLAB /PENOPT.

Function Description Reference Page
penbmi Sparse and dense linear semi-definite programming using a penalty

algorithm.
8

penfeas sdp Feasibility check of systems of linear matrix inequalities, using pensdp. 6

pensdp Sparse and dense linear semi-definite programming using a penalty
algorithm.

15

penfeas sdp Feasibility check of systems of linear matrix inequalities, using pensdp. 13

3.1 PENBMI

TOMLAB /PENBMI was developed in co-operation with PENOPT GbR. The following pages describe the solvers
and the feasibility checks.

3.1.1 penfeas bmi

Purpose
penfeas bmi checks the feasibility of a system of bilinear matrix inequalities (BMI):

A0
i +

n∑
k=1

A
(i)
k xk +

n∑
k=1

n∑
l=1

xkxlK
(i)
kl 4 0, k = 1, 2, . . . ,m

with symmetric matrices Ai
k,Ki

kl ∈ Rdl×dl , k, l = 1, . . . , n, i = 1, . . . ,m and x ∈ Rn.

Calling Syntax
[ifeas, feas, xfeas] = penfeas bmi(p, x 0, options)

Description of Inputs

p PENBMI format structure, e.g. from sdpa2pen.

x 0 Inital guess of the feasible point. Default = 0.

options Optional 3× 1 vector. May be omitted, in which case the defaults below are used.

options(1) Output level of PENBMI solver. Default = 0.
options(2) Upper bound on ‖x‖∞. Default = 1000.

If < 0, no box bounds are applied.
options(3) Weighting parameter in the objective function. Default 10−4.

6

Description of Outputs

ifeas Feasibility of the system:
0 System is strictly feasible
1 System is feasible but not necessarily strictly feasible
-1 System is probably infeasible

feas Value of the minimized maximal eigenvalue of BMI.

xfeas Feasible point

Algorithm
The feasibility of the system of BMI’s is checked by solving the following bmi problem:

min
x∈Rn,λ∈R

f(x, λ) = λ + w‖x‖22
s.t. −xbound ≤ x ≤ xbound

Ai
0 +

n∑
k=1

Ai
kxk 4 λIn×n, i = 1, . . . ,m

where xbound is taken from input argument options(2), or ∞ if options(2) < 0.

When λ < 0, the system is strictly feasible; when λ = 0, the system is feasible but has no interior point. When
λ > 0 for any xbound, the system may be infeasible.

As the semidefinite problem solved is nonconvex and penbmiQ is a local method, it cannot be guaranteed that
the solution λ is a global minimum. Consequently, the (local) optimum λloc found by penbmiQ may be a positive
number (indicating infeasibility), although the system is feasible (i.e., the global optimum λglob < 0). In such a
case, the user may try various initial points x 0, and also different weighting parameter w (option(3)).

In practice, the conditions on feasibility are as follows: λ < −10−6 means strict feasibility, |λ| < 10−6 means
feasibility (not strict) and λ > 10−6 indicates infeasibility. The user can decide by the actual value of the output
parameter feas (including the optimal λ).

For the case when the BMI system is unbounded, we have to add artificial bounds on x, otherwise PENBMI might
diverge. Of course, it may happen that the feasible point lies outside these bounds. In this case penfeas bmi claims
infeasibility, although the system is actually feasible. When in doubts, the user may try to gradually increase
xbound (parameter options(2)).

On the other hand, for very ill-conditioned and unbounded systems, the default bound 1000 may be too large and
PENBMI may not converge. In this case, the user is advised either to increase the weighting parameter w (to 0.01
and bigger) or to decrease the bound (parameter options(2)) to a smaller number (100–1).

M-files Used
pen.m

MEX-files Used
penbmiQ

See Also
penfeas sdp.m

7

3.1.2 penbmiTL

Purpose
Solve (linear) semi-definite programming problems.

penbmiTL solves problems of the form

min
x

f(x) = cT x

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

Q
(0)
i +

n∑
k=1

Q
(i)
k xk +

n∑
k=1

n∑
l=1

xkxlK
(i)
kl � 0, k = 1, 2, . . . ,m

(3)

where x, xL, xU ∈ Rn, A ∈ Rml×n, bL, bU ∈ Rml and Q
(i)
k are sparse or dense symmetric matrices. The matrix

sizes may vary between different matrix inequalities but must be the same in each particular constraint.

Calling Syntax
Result = tomRun(’penbmi’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

QP.c Vector with coefficients for linear objective function.

A Linear constraints matrix.
b L Lower bound for linear constraints.
b U Upper bound for linear constraints.

x L Lower bound on variables.
x U Upper bound on variables.

x 0 Starting point.

PENOPT Structure with special fields for SDP parameters. Fields used are:

LMI Structure array with matrices for the linear terms of the matrix inequalities.
See Examples on page 17 for a discussion of how to set this correctly.

ioptions 8× 1 vector with options, defaults in (). Any element set to a value less than
zero will be replaced by a default value, in some cases fetched from standard
Tomlab parameters.

ioptions(1) 0/1: use default/user defined values for options.
ioptions(2) Maximum number of iterations for overall algorithm (50). If not given,

Prob.optParam.MaxIter is used.

8

Prob Problem description structure. The following fields are used:, continued

ioptions(3) Maximum number of iterations in unconstrained optimization (100). If not
given, Prob.optParam.MinorIter is used.

ioptions(4) Output level: 0/(1)/2/3 = silent / summary / brief / full.
ioptions(5) (0)/1: Check density of Hessian / Assume dense.
ioptions(6) (0)/1: (Do not) use linesearch in unconstrained minimization.
ioptions(7) (0)/1: (Do not) write solution vector to output file.
ioptions(8) (0)/1: (Do not) write computed multipliers to output file.

foptions 1× 7 vector with options, defaults in ().

foptions(1) Scaling factor linear constraints; must be positive. (1.0).
foptions(2) Restriction for multiplier update; linear constraints (0.7).
foptions(3) Restriction for multiplier update; matrix constraints (0.1).
foptions(4) Stopping criterium for overall algorithm (10−7). Tomlab equivalent:

Prob.optParam.eps f.
foptions(5) Lower bound for the penalty parameters (10−6).
foptions(6) Lower bound for the multipliers (10−14).
foptions(7) Stopping criterium for unconstrained minimization (10−2).

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum, c.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in the TOMLAB User’s Guide.

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: Illegal x 0.
5: No feasible point x 0 found.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.

9

Result Structure with result from optimization. The following fields are changed:, continued

Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
pensdp implements a penalty algorithm based on the PBM method of Ben-Tal and Zibulevsky. It is possible to
give input data in three different formats:

• Standard sparse SPDA format

• PENSDP Structural format

• Tomlab Quick format

In all three cases, problem setup is done via sdpAssign.

See Also
sdpAssign.m, sdpa2pen.m, sdpDemo.m, tomlab/docs/penbmi.pdf

Warnings
Currently penbmi does not work well solving problems of sdp type.

Examples
Setting the LMI constraints is best described by an example. Assume 3 variables x = (x1, x2, x3) and 2 linear
matrix inequalities of sizes 3× 3 and 2× 2 respectively, here given on block-diagonal form:


0

0
0

0
1

 +


2 −1 0

2 0
2

1
−1

 x1

+


0

0
0

3
−3

 x2 +


2 0 −1

2 0
2

0
0

 x3 � 0

The LMI structure could then be initialized with the following commands:

% Constraint 1

>> LMI(1,1).Q0 = [];

>> LMI(1,1).Q = [2 -1 0 ; ...

0 2 0 ; ...

10

0 0 2];

>> LMI(1,2).Q = [];

>> LMI(1,3).Q = [2 0 -1 ; ...

0 2 0 ; ...

0 0 2];

% Constraint 2, diagonal matrices only

>> LMI(2,1).Q0 = diag([0, 1]);

>> LMI(2,1).Q = diag([1,-1]);

>> LMI(2,2).Q = diag([3,-3]);

>> LMI(2,3).Q = [];

% Use LMI in call to sdpAssign:

>> Prob=sdpAssign(c,LMI,...)

% ... or set directly into Prob.PENSDP.LMI field:

>> Prob.PENSDP.LMI = LMI;

Some points of interest:

• The LMI structure must be of correct size. This is important if a LMI constraint has zero matrices for
the highest numbered variables. If the above example had zero coefficient matrices for x3, the user would
have to set LMI(1,3).Q = [] explicitly, so that the LMI structure array is really 2× 3. (LMI(2,3).Q would
automatically become empty in this case, unless set otherwise by the user).

• MATLAB sparse format is allowed and encouraged.

• Only the upper triangular part of each matrix is used (symmetry is assumed).

Input in Sparse SDPA Format is handled by the conversion routine sdpa2pen. For example, the problem defined
in tomlab/examples/arch0.dat-s can be solved using the following statements:

>> p = sdpa2pen(’arch0.dat-s’)

p =

vars: 174

fobj: [1x174 double]

constr: 174

ci: [1x174 double]

bi_dim: [1x174 double]

bi_idx: [1x174 double]

bi_val: [1x174 double]

mconstr: 1

ai_dim: 175

ai_row: [1x2874 double]

ai_col: [1x2874 double]

ai_val: [1x2874 double]

msizes: 161

ai_idx: [175x1 double]

11

ai_nzs: [175x1 double]

x0: [1x174 double]

ioptions: 0

foptions: []

>> Prob = sdpAssign(p); % Can call sdpAssign with only ’p’ structure

>> Result = tomRun(’pensdp’,Prob); % Call tomRun to solve problem

12

3.2 PENSDP

TOMLAB /PENSDP was developed in co-operation with PENOPT GbR. The following pages describe the solvers
and the feasibility checks.

3.2.1 penfeas sdp

Purpose
penfeas sdp checks the feasibility of a system of linear matrix inequalities (LMI):

Ai
0 +

n∑
k=1

Ai
kxk 4 0, i = 1, . . . ,m

with symmetric matrices Ai
k ∈ Rdl×dl , k = 1, . . . , n, i = 1, . . . ,m and x ∈ Rn.

Calling Syntax
[ifeas, feas, xfeas] = penfeas sdp(p, options)

Description of Inputs

p PENSDP format structure, e.g. from sdpa2pen.

options Optional 2× 1 vector. May be omitted, in which case the defaults below are used.

options(1) Output level of PENSDP solver. Default = 0.
options(2) Upper bound on ‖x‖∞. Default = 1000.

If < 0, no box bounds are applied.

13

Description of Outputs

ifeas Feasibility of the system:
0 System is strictly feasible
1 System is feasible but not necessarily strictly feasible
-1 System is probably infeasible

feas Value of the minimized maximal eigenvalue of LMI.

xfeas Feasible point

Algorithm
The feasibility of the system of LMI’s is checked by solving the following sdp problem:

min
x∈Rn,λ∈R

f(x, λ) = λ

s.t. −xbound ≤ x ≤ xbound

Ai
0 +

n∑
k=1

Ai
kxk 4 λIn×n, i = 1, . . . ,m

where xbound is taken from input argument options(2), or ∞ if options(2) < 0.

When λ < 0, the system is strictly feasible; when λ = 0, the system is feasible but has no interior point. When
λ > 0 for any xbound, the system is infeasible.

In practice, the conditions on feasibility are as follows: λ < −10−6 means strict feasibility, |λ| < 10−6 means
feasibility (not strict) and λ > 10−6 indicates infeasibility. The user can decide by the actual value of the output
parameter feas (including the optimal λ).

For the case when the LMI system is unbounded, we have to add artificial bounds on x, otherwise PENSDP might
diverge. Of course, it may happen that the feasible point lies outside these bounds. In this case penfeas sdp claims
infeasibility, although the system is actually feasible. When in doubts, the user may try to gradually increase
xbound (parameter options(2)). On the other hand, for very ill-conditioned and unbounded systems, the default
bound 1000 may be too large and PENSDP may not converge. In this case, the user is advised to decrease
parameter options(2) to a smaller number (100–1).

M-files Used
pen.m

MEX-files Used
pensdp

See Also
penfeas bmi.m

14

3.2.2 pensdpTL

Purpose
Solve (linear) semi-definite programming problems.

pensdpTL solves problems of the form

min
x

f(x) = cT x

s/t xL ≤ x ≤ xU

bL ≤ Ax ≤ bU

Q
(0)
i +

∑n
k=1 Q

(i)
k xk � 0, k = 1, 2, . . . ,mLMI

(4)

where x, xL, xU ∈ Rn, A ∈ Rml×n, bL, bU ∈ Rml and Q
(i)
k are sparse or dense symmetric matrices. The matrix

sizes may vary between different linear matrix inequalities (LMI) but must be the same in each particular constraint.

Calling Syntax
Result = tomRun(’pensdp’,Prob,...)

Description of Inputs

Prob Problem description structure. The following fields are used:

QP.c Vector with coefficients for linear objective function.

A Linear constraints matrix.
b L Lower bound for linear constraints.
b U Upper bound for linear constraints.

x L Lower bound on variables.
x U Upper bound on variables.

x 0 Starting point.

PriLevOpt Print level in pensdpTL and MEX interface. The print level in the solver is
controlled by PENOPT.ioptions(4).

PENOPT Structure with special fields for SDP parameters. Fields used are:

LMI Structure array with matrices for the linear matrix inequalities. See Examples
on page 17 for a discussion of how to set this correctly.

ioptions 8× 1 vector with options, defaults in (). Any element set to a value less than
zero will be replaced by a default value, in some cases fetched from standard
Tomlab parameters.

ioptions(1) 0/1: use default/user defined values for options.
ioptions(2) Maximum number of iterations for overall algorithm (50). If not given,

Prob.optParam.MaxIter is used.15

Prob Problem description structure. The following fields are used:, continued

ioptions(3) Maximum number of iterations in unconstrained optimization (100). If not
given, Prob.optParam.MinorIter is used.

ioptions(4) Output level: 0/(1)/2/3 = silent/summary/brief/full. Tomlab parameter:
Prob.PriLevOpt.

ioptions(5) (0)/1: Check density of Hessian / Assume dense.
ioptions(6) (0)/1: (Do not) use linesearch in unconstrained minimization.
ioptions(7) (0)/1: (Do not) write solution vector to output file.
ioptions(8) (0)/1: (Do not) write computed multipliers to output file.

foptions 7× 1 vector with optimization parameters, defaults in ():
foptions(1) Scaling factor linear constraints; must be positive. (1.0).
foptions(2) Restriction for multiplier update; linear constraints (0.7).
foptions(3) Restriction for multiplier update; matrix constraints (0.1).
foptions(4) Stopping criterium for overall algorithm (10−7). Tomlab equivalent:

Prob.optParam.eps f.
foptions(5) Lower bound for the penalty parameters (10−6).
foptions(6) Lower bound for the multipliers (10−14).
foptions(7) Stopping criterium for unconstrained minimization (10−2).

Description of Outputs

Result Structure with result from optimization. The following fields are changed:

x k Optimal point.
f k Function value at optimum.
g k Gradient value at optimum, c.
v k Lagrange multipliers.

x 0 Starting point.
f 0 Function value at start.

xState State of each variable, described in the TOMLAB User’s Guide.

Iter Number of iterations.
ExitFlag 0: OK.

1: Maximal number of iterations reached.
2: Unbounded feasible region.
3: Rank problems. Can not find any solution point.
4: Illegal x 0.
5: No feasible point x 0 found.

Inform If ExitF lag > 0, Inform = ExitF lag.
QP.B Optimal active set. See input variable QP.B.

16

Result Structure with result from optimization. The following fields are changed:, continued

Solver Solver used.
SolverAlgorithm Solver algorithm used.
FuncEv Number of function evaluations. Equal to Iter.
ConstrEv Number of constraint evaluations. Equal to Iter.
Prob Problem structure used.

Description
pensdp implements a penalty algorithm based on the PBM method of Ben-Tal and Zibulevsky. It is possible to
give input data in three different formats:

• Standard sparse SPDA format

• PENSDP Structural format

• Tomlab Quick format

In all three cases, problem setup is done via sdpAssign.

See Also
sdpAssign.m, sdpa2pen.m, sdpDemo.m, tomlab/docs/pensdp.pdf, penfeas sdp.m

Examples
Setting the LMI constraints is best described by an example. Assume 3 variables x = (x1, x2, x3) and 2 linear
matrix inequalities of sizes 3× 3 and 2× 2 respectively, here given on block-diagonal form:


0

0
0

0
1

 +


2 −1 0

2 0
2

1
−1

 x1

+


0

0
0

3
−3

 x2 +


2 0 −1

2 0
2

0
0

 x3 � 0

The LMI structure should then be initialized with the following commands:

% Constraint 1

>> LMI(1,1).Q0 = [];

>> LMI(1,1).Q = [2 -1 0 ; ...

0 2 0 ; ...

0 0 2];

>> LMI(1,2).Q = [];

>> LMI(1,3).Q = [2 0 -1 ; ...

17

0 2 0 ; ...

0 0 2];

% Constraint 2, diagonal matrices only

>> LMI(2,1).Q0 = diag([0, 1]);

>> LMI(2,1).Q = diag([1,-1]);

>> LMI(2,2).Q = diag([3,-3]);

>> LMI(2,3).Q = [];

% Use LMI in call to sdpAssign:

>> Prob=sdpAssign(c,LMI,...)

Some points of interest:

• The LMI structure must be of correct size. This is important if a LMI constraint has zero matrices for
the highest numbered variables. If the above example had zero coefficient matrices for x3, the user would
have to set LMI(1,3).Q = [] explicitly, so that the LMI structure array is really 2× 3. (LMI(2,3).Q would
automatically become empty in this case, unless set otherwise by the user).

• MATLAB sparse format is allowed and encouraged.

• Only the upper triangular part of each matrix is used (symmetry is assumed).

Input in Sparse SDPA Format is handled by the conversion routine sdpa2pen. For example, the problem defined
in tomlab/examples/arch0.dat-s can be solved using the following statements:

>> p = sdpa2pen(’arch0.dat-s’)

p =

vars: 174

fobj: [1x174 double]

constr: 174

ci: [1x174 double]

bi_dim: [1x174 double]

bi_idx: [1x174 double]

bi_val: [1x174 double]

mconstr: 1

ai_dim: 175

ai_row: [1x2874 double]

ai_col: [1x2874 double]

ai_val: [1x2874 double]

msizes: 161

ai_idx: [175x1 double]

ai_nzs: [175x1 double]

x0: [1x174 double]

ioptions: 0

foptions: []

>> Prob=sdpAssign(p); % Can call sdpAssign with only ’p’ structure

>> Result=tomRun(’pensdp’,Prob); % Call tomRun to solve problem

18

References

19

	Contents
	1 Introduction
	1.1 Overview
	1.2 Contents of this Manual
	1.3 Prerequisites

	2 Using the Matlab Interface
	3 TOMLAB /PENOPT Solver Reference
	3.1 PENBMI
	3.1.1 penfeas_bmi
	3.1.2 penbmiTL

	3.2 PENSDP
	3.2.1 penfeas_sdp
	3.2.2 pensdpTL

	References

