
USER’S GUIDE FOR TOMLAB /SOL1

Kenneth Holmström2, Anders O. Göran3 and Marcus M. Edvall4
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1 Introduction

1.1 Overview

Welcome to the TOMLAB /SOL User’s Guide. TOMLAB /SOL includes a wide range of solver and interfaces
between The MathWorks’ MATLAB and all solvers developed by Stanford Systems Optimization Laboratory. The
solver package includes binaries for the following solvers:

MINOS - For large-scale sparse general nonlinear programming problems.

LP-MINOS - For large-scale sparse linear programming problems.

QP-MINOS - For large-scale sparse quadratic programming problems.

LPOPT - For dense linear programming problems.

QPOPT - For dense convex quadratic programming problems.

LSSOL - For dense linear and convex quadratic programs, and constrained linear least squares problems.

NLSSOL - For nonlinear least squares with linear and nonlinear constraints.

NPSOL - For dense linear, quadratic and nonlinear programming.

SNOPT - For large-scale, sparse, linear and nonlinear programming.

SQOPT - For sparse linear and quadratic programming.

Please visit http://tomopt.com/tomlab/products/sol/ for more information.

The interface between TOMLAB /SOL, Matlab and TOMLAB consists of two layers. The first layer gives direct
access from Matlab to SOL, via calling a Matlab function that calls a pre-compiled MEX file (DLL under Windows,
shared library in UNIX) that defines and solves the problem in SOL. The second layer is a Matlab function that
takes the input in the TOMLAB format, and calls the first layer function. On return the function creates the
output in the TOMLAB format.

1.2 Contents of this Manual

• Section 2 gives the basic information needed to run the Matlab interface.

• Section 3 provides all the solver references for MINOS, LP-MINOS, QP-MINOS, LPOPT, QPOPT, LSSOL,
NLSSOL, NPSOL, SNOPT, and SQOPT.

• Section 4 discusses the use of TOMLAB /SOL in more detail.

1.3 Prerequisites

In this manual we assume that the user is familiar with SOL, the various SOL Reference Manuals, TOMLAB and
the Matlab language.
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2 Using the Matlab Interface

The main routines in the two-layer design of the interface are shown in Table 1. Page and section references are
given to detailed descriptions on how to use the routines.

Table 1: The interface routines.

Function Description Section Page
minos The layer one Matlab interface routine, calls the MEX-file interface

minos.dll

3.1.1 12

minosTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls minos.m.

3.1.2 18

minosLPTL The layer two TOMLAB interface routine that calls minosLPTL.m.
Converts the input Prob format before calling minos.m and converts
back to the output Result structure. This option only handles linear
programming problems

3.2.1 25

minosQPTL The layer two TOMLAB interface routine that calls minosQPTL.m.
Converts the input Prob format before calling minos.m and con-
verts back to the output Result structure. This option only handles
quadratic programming problems

3.3.1 31

lpopt The layer one Matlab interface routine, calls the MEX-file interface
lpopt.dll

3.4.1 38

lpoptTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls lpopt.m.

3.4.2 41

qpopt The layer one Matlab interface routine, calls the MEX-file interface
qpopt.dll

3.5.1 45

qpoptTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls qpopt.m.

3.5.2 49

lssol The layer one Matlab interface routine, calls the MEX-file interface
lssol.dll

3.6.1 54

lssolTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls lssol.m.

3.6.2 57

nlssol The layer one Matlab interface routine, calls the MEX-file interface
nlssol.dll

3.7.1 61

nlssolTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls nlssol.m.

3.7.2 65

npsol The layer one Matlab interface routine, calls the MEX-file interface
npsol.dll

3.8.1 69

npsolTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls npsol.m.

3.8.2 73

snopt The layer one Matlab interface routine, calls the MEX-file interface
snopt.dll

3.9.1 78

snoptTL The layer two interface routine called by the TOMLAB driver routine
tomRun. This routine then calls snopt.m.

3.9.2 84

sqopt The layer one Matlab interface routine, calls the MEX-file interface
sqopt.dll

3.10.1 93
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Table 1: The interface routines, continued

Function Description Section Page
sqoptTL The layer two interface routine called by the TOMLAB driver routine

tomRun. This routine then calls sqopt.m.
3.10.2 98

The SOL control parameters are possible to set from Matlab.

They can be set as inputs to the interface routine minos for example and the others. The user sets fields in a
structure called Prob.SOL.optPar, where the subfield names follow the SOL standard for setting solver options.
The following example shows how to set the maximum number of iterations.

Prob.SOL.optPar(30) = 500; % Setting maximum number of iterations
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3 TOMLAB /SOL Solver Reference

The SOL solvers are a set of Fortran solvers that were developed by the Stanford Systems Optimization Laboratory
(SOL). Table 2 lists the solvers included in TOMLAB /SOL. The solvers are called using a set of MEX-file interfaces
developed as part of TOMLAB. All functionality of the SOL solvers are available and changeable in the TOMLAB
framework in Matlab.

Detailed descriptions of the TOMLAB /SOL solvers are given in the following sections. Also see the M-file help
for each solver.

The solvers reference guides for the TOMLAB /SOL solvers are available for download from the TOMLAB home
page http://tomopt.com. There is also detailed instruction for using the solvers in Section 4. Extensive TOM-
LAB m-file help is also available, for example help snoptTL in Matlab will display the features of the SNOPT
solver using the TOMLAB format.

TOMLAB /SOL solves nonlinear optimization problems (con) defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(1)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

quadratic programming (qp) problems defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(2)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

linear programming (lp) problems defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(3)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

linear least squares (lls) problems defined as

min
x

f(x) = 1
2 ||Cx− d||

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(4)

10
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where x, xL, xU ∈ Rn, d ∈ RM , C ∈ RM×n, A ∈ Rm1×n, bL, bU ∈ Rm1 .

and constrained nonlinear least squares problems defined as

min
x

f(x) = 1
2r(x)T r(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(5)

where x, xL, xU ∈ Rn, r(x) ∈ RM , A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Table 2: The SOL optimization solvers in TOMLAB /SOL.

Function Description Reference Page
MINOS 5.5 Sparse linear and nonlinear programming with linear and nonlin-

ear constraints.
[27]

LP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
linear programming.

[27]

QP-MINOS A special version of the MINOS 5.5 MEX-file interface for sparse
quadratic programming.

[27]

LPOPT 1.0-10 Dense linear programming. [16]
QPOPT 1.0-10 Non-convex quadratic programming with dense constraint matrix

and sparse or dense quadratic matrix.
[16]

LSSOL 1.05-4 Dense linear and quadratic programs (convex), and constrained
linear least squares problems.

[15]

NLSSOL 5.0-2 Constrained nonlinear least squares. NLSSOL is based on
NPSOL. No reference except for general NPSOL reference.

[20]

NPSOL 5.02 Dense linear and nonlinear programming with linear and nonlinear
constraints.

[20]

SNOPT 7.1-1 Large, sparse linear and nonlinear programming with linear and
nonlinear constraints.

[19, 17]

SQOPT 7.1-1 Sparse convex quadratic programming. [18]

11



3.1 MINOS

3.1.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.1.2 for information on how to use MINOS with TOMLAB.

Purpose
minos solves nonlinear optimization problems defined as

min
x

f(x)

s/t

x ,

bL ≤ Ax ≤ bU
c(x)

(6)

where x ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .

or quadratic optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t

x ,

bL ≤ g(x) ≤ bU
Ax

(7)

where c, x ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

The full input matrix A has three parts A = [d/dx g(x); A; c’];

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.

The file ’funcdc.m’ must be defined and contain: function [mode ,c ,dcS] = funcdc(x, Prob, mode, nstate) to
compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

NOTE: The matrix dcS MUST be a SPARSE MATLAB matrix. Do dcS = sparse(dcS); after dcS has been com-
puted.

[hs, xs, pi, rc, Inform, nS, nInf, sInf, Obj, iwCount, gObj, fCon, gCon] = minos(H, A, bl, bu, nnCon, nnObj,
nnJac, Prob, iObj, optPar, Warm, hs, xs, pi, nS, SpecsFile, PrintFile, SummFile, PriLev, ObjAdd, moremem,
ProbName );

Description of Inputs

12



The following fields are used:

H Matrix n x n in a quadratic programming (QP) problem. DENSE or SPARSE.
Leave empty if LP, or NLP problem.

A Constraint matrix, m x n SPARSE (nonlinear, linear and objective) m > 0
always!!! Define dummy constraint for unconstrained problems.

bl Lower bounds on (x,g(x),Ax,c’).

bu Upper bounds on (x,g(x),Ax,c’).

NOTE! The bl and bu values for the last nonlinear constraint c must have
reverse signs and be put in each other places: If cL <= c(x) <= cU , then
bl = −cU and bu = −cL. This is because the bounds acts as the constraints on
the slack variables for the nonlinear constraints.

nnCon Number of nonlinear constraints.

nnObj Number of nonlinear objective variables.

nnJac Number of nonlinear Jacobian variables.

Prob Must be a structure. No check is made in the MEX interface. If TOMLAB
calls minos, then Prob is the standard TOMLAB problem structure, otherwise
the user should set:

Prob.P = ProblemNumber, where ProblemNumber is some integer.

If the problem is a LP or QP problem (H defined), the user does not have to
specify anything else in the structure.

For a general nonlinear objective or nonlinear constraints names of two user
written routines must be given:

funfdf, actual name stored in Prob.FUNCS.fg, with syntax [mode, f, g] =
funfdf(x, Prob, mode, nstate).

funcdc, actual name stored in Prob.FUNCS.cdc, with syntax [mode, c, dcS] =
funcdc(x, Prob, mode, nstate).

MINOS is calling the TOMLAB routines nlp fg.m and nlp cdcS.m in the call-
back, and they call funfdf and funcdc, respectively.

13



The following fields are used:, continued

If these fields in Prob are empty (Prob.FUNCS.fg, Prob.FUNCS.cdc), the
TOMLAB callback routines calls the usual function routines. Then the
Prob struct should be normally defined, and the fields Prob.FUNCS.f,
Prob.FUNCS.g, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way
(e.g. by the routine mFiles.m, or one of the Assign-routines like conAssign.m).

If the mode parameter is 0, funfdf should return f, otherwise both f and the
gradient vector g. If the mode parameter is 0, funcdc should return c, otherwise
both c and dcS. Note that each row in dcS corresponds to a constraint, and
that dcS must be a SPARSE matrix.

The user could also write his own versions of the routines nlp fg.m and
nlp cdcS.m and put them before in the path.

iObj Says which row of A is a free row containing a linear objective vector c. If there
is no such vector, iObj = 0. Otherwise, this row must come after any nonlinear
rows, so that nnCon <= iObj <= m.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If using only default options, set optPar as an empty
matrix.

Warm Flag, if true: warm start. Default cold start (if empty). If ’Warm Start’ xs, nS
and hs must be supplied with correct values.

hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).

xs Initial vector, optionally including m slacks at the end. If warm start, full xs
must be supplied.

pi Lagrangian multipliers for the nnCon nonlinear constraints. If empty, set as 0.

nS # of superbasics. Only used if calling again with a Warm Start.

SpecsFile Name of the SPECS input parameter file, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Printing level in the minos m-file and minos MEX-interface.

14



The following fields are used:, continued

= 0 Silent
= 1 Summary information
= 2 More detailed information

ObjAdd Constant added to the objective for printing purposes, typically 0.

moremem Add extra memory for the sparse LU, might speed up the optimization. 1E6
is 10MB of memory. If empty, set as 0.

ProbName Name of the problem. ¡=100 characters are used in the MEX interface. In
the MINOS solver the first 8 characters are used in the printed solution and in
some routines that output BASIS files. Blank is OK.

Description of Outputs

The following fields are used:

hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).
Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility

tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

xs Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

pi Lagrangian multipliers (dual solution vector) (m x 1 vector)

rc Vector of reduced costs, g− (A I )Tπ, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are −π. Reduced costs vector is of n+m length.
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The following fields are used:, continued

Inform Result of MINOS run.

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).
5 The Superbasics limit is too small.
6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.
13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.

nS # of superbasics.

nInf Number of infeasibilities.

sInf Sum of infeasibilities.

Obj Objective function value at optimum.

iwCount Number of iterations (major and minor), function and constraint calls.

gObj Gradient of the nonlinear objective.

fCon Nonlinear constraint vector.

gCon Gradient vector (non-zeros) of the nonlinear constraint vector.
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The following fields are used:, continued
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3.1.2 Using TOMLAB

Purpose
minosTL solves nonlinear optimization problems defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(8)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign( ... );
Result = tomRun(’minos’, Prob, 1);

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run.

SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is
10MB of memory. Default n+m1+m2 (number of variables + linear + nonlin-
ear constraints).
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Prob, The following fields are used:, continued

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.
c k Nonlinear constraint residuals.

cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from minos.m (similar to TOMLAB).

Inform Result of MINOS run.

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).
5 The Superbasics limit is too small.
6 User requested termination (by returning bad value).
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Result, The following fields are used:, continued

7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.
13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.

rc Vector of reduced costs, g− (A I )Tπ, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are −π. Reduced costs vector is of n+m length.

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver Name of the solver (minos).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).
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Result, The following fields are used:, continued

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility

tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS # of superbasics.

SOL.nInf # of infeasibilities.

SOL.sInf Sum of infeasibilities.

21



3.1.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.
Definition: nnL = max(nnObj,nnJac))

Description of Inputs

Table 7: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 0 11111 JFLXB: Jac, fCon,

lambda, x, B=LU
stats

Frequencies I
5. PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 100
7. SOLUTION YES/NO 0 1 1 1 = YES; 0 = NO
8. SUPPRESS PARAMETERS 0 0 1 1 = True

Convergence Tolerances
9. ROW TOLERANCE > 0 1E-6
10. OPTIMALITY TOLERANCE > 0 max(1E − 6, (10epsR)0.5) = 1.73E-6
11. FEASIBILITY TOLERANCE > 0 1E-6

Derivative checking
13. VERIFY LEVEL -1 -1 3 -1,0,1,2,3
14. START OBJECTIVE CHECK AT COL 0 1 nnObj
15. STOP OBJECTIVE CHECK AT COL 0 nnObj nnObj
16. START CONSTRAINT CHECK AT COL 0 1 nnJac
17. STOP CONSTRAINT CHECK AT COL 0 nnJac nnJac

Scaling
18. SCALE OPTION 0 1 or 2 2 2 if LP,1 if NLP

See Section 6.2 for more information.
19. SCALE TOLERANCE > 0 0.9 < 1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 < 1

Other Tolerances
22. LINESEARCH TOLERANCE > 0 0.1 < 1

LU I
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Table 7: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

23. LU FACTORIZATION TOLERANCE 1 100 or 5 100 if LP
24. LU UPDATE TOLERANCE 1 10 or 5 10 if LP
25. LU SWAP TOLERANCE > 0 1.22E-4 eps1/4

26. LU SINGULARITY TOLERANCE > 0 3.25E-11 eps0.67

LP or LC subproblems
27. PIVOT TOLERANCE > 0 3.25E-11 eps0.67

28. CRASH OPTION 0 3 3 0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3(m+m3) + 10nnL

m3=1 if length(Prob.QP.c) > 0, otherwise m3=0.
TOMLAB default: max(10000,3(m+m3) + 10nnL).

31. PARTIAL PRICE 1 10 or 1 10 for LP

SLC method
32. MAXIMIZE 0 0 1 1=maximize
33. LAGRANGIAN 0 1 1 1=YES, 0=NO
34. PENALTY PARAMETER 0.0 1.0
35. MAJOR ITERATIONS LIMIT > 0 50
36. MINOR ITERATIONS LIMIT > 0 40
37. MAJOR DAMPING PARAMETER > 0 2.0
38. MINOR DAMPING PARAMETER > 0 2.0
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3

Is always set by minosTL dependent on Prob.ConsDiff, Prob.NumDiff.
40. RADIUS OF CONVERGENCE 0.0 0.01
41. FUNCTION PRECISION > 0 3.0E-13 eps0.8 = epsR
42. DIFFERENCE INTERVAL > 0 5.48E-7 eps0.4

43. CENTRAL DIFFERENCE INTERVAL > 0 6.69E-5 eps0.8/3

44. COMPLETION 0 1 LC, 0
NC

1 0=PARTIAL
1=FULL

45. UNBOUNDED STEP SIZE > 0 1E10
46. UNBOUNDED OBJECTIVE > 0 1E20

Hessian approximation
47. HESSIAN DIMENSION 1 50 1+nnL
48. SUPERBASICS LIMIT 1 50 1+nnL

TOMLAB default (to avoid termination with Superbasics Limit too small):
If n <= 5000: max(50, n+ 1)
If n > 5000: max(500, n+ 200− size(A, 1)− length(cL))
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).
It will then be set to the same value as the SUPERBASICS LIMIT by MINOS.

Frequencies II
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Table 7: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

51. CHECK FREQUENCY > 0 60
52. EXPAND FREQUENCY > 0 10000
53. FACTORIZATION FREQUENCY > 0 50

LU II
63. LU PARTIAL PIVOTING 0 0 3 0=partial

or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook

Additional parameters
67. AIJ TOLERANCE 0 1E-10

Elements |a(i, j)| < AIJ TOLERANCE are set as 0
70. SUBSPACE > 0 0.5 1 Subspace tolerance

Convergence tolerance in current subspace before consider moving off
another constraint.
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3.2 LP-MINOS

3.2.1 Using TOMLAB

Purpose
minosLPTL solves linear optimization problems defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(9)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = lpAssign( ... );
Result = tomRun(’lp-minos’, Prob ... );

or

Prob = ProbCheck( ... );
Result = minosLPTL(Prob);

Call Prob = lpAssign( ... ) or Prob = ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run (always 0 for LP).
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Prob, The following fields are used:, continued

SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is
10MB of memory. Default n+m (number of variables + linear constraints).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient c (linear objective).

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from minos.m (similar to TOMLAB).

Inform Result of MINOS run.

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).
5 The Superbasics limit is too small.
6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
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Result, The following fields are used:, continued

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.
13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.

rc Vector of reduced costs, g− (A I )Tπ, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are −π. Reduced costs vector is of n+m length.

Iter Number of iterations.
FuncEv Number of function evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver Name of the solver (minos).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).
Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility

tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.
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Result, The following fields are used:, continued

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS # of superbasics.

SOL.nInf # of infeasibilities.

SOL.sInf Sum of infeasibilities.
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3.2.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 10: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 0 1 0=brief 1=LU stats

Frequencies I
5. PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 100
7. SOLUTION YES/NO 0 1 1 1 = YES; 0 = NO
8. SUPPRESS PARAMETERS 0 0 1 1 = True

Convergence Tolerances
10. OPTIMALITY TOLERANCE > 0 1E-6
11. FEASIBILITY TOLERANCE > 0 1E-6

Scaling
18. SCALE OPTION 0 2 2 0,1,2

See Section 6.2 for more information.
19. SCALE TOLERANCE > 0 0.9 < 1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 < 1

LU I
23. LU FACTORIZATION TOLERANCE 1 100
24. LU UPDATE TOLERANCE 1 10
25. LU SWAP TOLERANCE > 0 1.22e-4 eps1/4

26. LU SINGULARITY TOLERANCE > 0 3.25E-11 eps0.67

LP parameters
27. PIVOT TOLERANCE > 0 3.25E-11 eps0.67

28. CRASH OPTION 0 3 3 0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3m
31. PARTIAL PRICE 1 10
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Table 10: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

Solve with tight or loose tols (applies to LP but probably not useful)
44. COMPLETION 0 1 1 0=PARTIAL

1=FULL

Frequencies II
51. CHECK FREQUENCY > 0 60
52. EXPAND FREQUENCY > 0 10000
53. FACTORIZATION FREQUENCY > 0 100

LU II
63. LU PARTIAL PIVOTING 0 0 3 0=partial

or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook

Additional parameters
67. AIJ TOLERANCE 0 1E-10

Elements |a(i, j)| < AIJ TOLERANCE are set as 0
70. SUBSPACE > 0 0.5 1 Subspace tolerance

Convergence tolerance in current subspace before consider moving off
another constraint.
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3.3 QP-MINOS

3.3.1 Using TOMLAB

Purpose
minosQPTL solves quadratic optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(10)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = qpAssign( ... );
Result = tomRun(’qp-minos’, Prob ... );

or

Prob = ProbCheck( ... );
Result = minosQPTL(Prob);

Call Prob = qpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj. nnObj < n is OK.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.
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Prob, The following fields are used:, continued

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run.

SOL.moremem Add more memory if MINOS stops with not enough storage message. 1E6 is
10MB of memory. Default n+m (number of variables + linear constraints).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient c (linear objective).

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from minos.m (similar to TOMLAB).

Inform Result of MINOS run.

0 Optimal solution found.
1 The problem is infeasible.
2 The problem is unbounded (or badly scaled).
3 Too many iterations.
4 Apparent stall. The solution has not changed for a large number of iterations
(e.g. 1000).
5 The Superbasics limit is too small.
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Result, The following fields are used:, continued

6 User requested termination (by returning bad value).
7 Gradient seems to be giving incorrect derivatives.
8 Jacobian seems to be giving incorrect derivatives.
9 The current point cannot be improved.
10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.
11 Cannot find a superbasic to replace a basic variable.
12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.
13 Near-optimal solution found. Should probably be treated as inform = 9.

20 Not enough storage for the basis factorization.
21 Error in basis package.
22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).
30 An OLD BASIS file had dimensions that did not match the current problem.
32 System error. Wrong number of basic variables.
40 Fatal errors in the MPS file.
41 Not enough storage to read the MPS file.
42 Not enough storage to solve the problem.

rc Vector of reduced costs, g− (A I )Tπ, where g is the gradient of the objective
function if xn is feasible, or the gradient of the Phase-1 objective otherwise. If
ninf = 0, the last m entries are −π. Reduced costs vector is of n+m length.

Iter Number of iterations.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. NOT SET.

Solver Name of the solver (minos).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).

33



Result, The following fields are used:, continued

Basic and superbasic variables may be outside their bounds by as much as the
Feasibility tolerance. Note that if scaling is specified, the Feasibility

tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled. Check the “Primal
infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xn(j) lies strictly between its bounds.

If ninf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sinf if scaling was not used).

SOL.nS # of superbasics.

SOL.nInf # of infeasibilities.

SOL.sInf Sum of infeasibilities.
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3.3.2 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by MINOS, unless the value is altered in the SPECS file.

Description of Inputs

Table 13: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 0 1 0=brief 1=LU stats

Frequencies I
5. PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 1
7. SOLUTION YES/NO 0 1 1 1 = YES; 0 = NO
8. SUPPRESS PARAMETERS 0 0 1 1 = True

Convergence Tolerances
10. OPTIMALITY TOLERANCE > 0 max(1E − 6, (10epsR)0.5) = 1.73E-6
11. FEASIBILITY TOLERANCE > 0 1E-6

Derivative checking
13. VERIFY LEVEL -1 -1 3 -1,0,1,2,3
14. START OBJECTIVE CHECK AT COL 0 1 nnObj
15. STOP OBJECTIVE CHECK AT COL 0 nnObj nnObj

Scaling
18. SCALE OPTION 0 1 2

See Section 6.2 for more information.
19. SCALE TOLERANCE > 0 0.9 < 1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 < 1

Other Tolerances
22. LINESEARCH TOLERANCE > 0 0.1 < 1

LU I
23. LU FACTOR TOLERANCE 1 5.0
24. LU UPDATE TOLERANCE 1 5.0
25. LU SWAP TOLERANCE > 0 1.22E-4 eps1/4

26. LU SINGULARITY TOLERANCE > 0 3.25E-11 eps0.67
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Table 13: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

LP parameters
27. PIVOT TOLERANCE > 0 3.25E-11 eps0.67

28. CRASH OPTION 0 3 3 0,1,2,3
29. WEIGHT ON LINEAR OBJECTIVE 0.0 0.0 during Phase 1
30. ITERATIONS LIMIT 0 3(m+m3) + 10nnL

m3=1 if length(Prob.QP.c) > 0, otherwise m3=0.
TOMLAB default: max(10000,3(m+m3) + 10nnL).

31. PARTIAL PRICE 1 1
32. MAXIMIZE 0 0 1 1=maximize

Reduced-gradient method
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3

Is always set by minosqpTL to 3.
41. FUNCTION PRECISION > 0 3.0E-13 eps0.8 = epsR
42. DIFFERENCE INTERVAL > 0 5.48E-8 eps0.4

43. CENTRAL DIFFERENCE INTERVAL > 0 6.69E-5 eps0.8/3

44. COMPLETION 0 1 LC, 0
NC

1 0=PARTIAL
1=FULL

45. UNBOUNDED STEP SIZE > 0 1E10
46. UNBOUNDED OBJECTIVE > 0 1E20

Hessian approximation
47. HESSIAN DIMENSION 1 50 1+nnL
48. SUPERBASICS LIMIT 1 50 1+nnL

TOMLAB default (to avoid termination with Superbasics Limit too small):
If n <= 5000: max(50, n+ 1)
If n > 5000: max(500, n+ 200− size(A, 1)− length(cL))
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).
It will then be set to the same value as the SUPERBASICS LIMIT by MINOS.

Frequencies II
51. CHECK FREQUENCY > 0 60
52. EXPAND FREQUENCY > 0 10000
53. FACTORIZATION FREQUENCY > 0 50

LU II
63. LU PARTIAL PIVOTING 0 0 3 0=partial

or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook

Additional parameters
67. AIJ TOLERANCE 0 1E-10

Elements |a(i, j)| < AIJ TOLERANCE are set as 0
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Table 13: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

70. SUBSPACE > 0 0.5 1 Subspace tolerance
Convergence tolerance in current subspace before consider moving off
another constraint.
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3.4 LPOPT

3.4.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.4.2 for information on how to use LPOPT with TOMLAB.

Purpose
lpopt solves dense linear optimization problems defined as

min
x

f(x) = cTx

s/t
x ,

bL ≤ Ax ≤ bU

(11)

where c, x ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rn+m1 .

If isempty(c) (or all(c==0), then a feasible point problem is solved (FP). Otherwise a standard linear programming
problem is solved (LP)

Calling Syntax

[Inform, Iter, iState, Ax, cLamda, Obj, x] = lpopt(A, bl, bu, c, Warm, x, iState, SpecsFile, PrintFile, SummFile,
PriLev, optPar );

Description of Inputs

The following fields are used:

A Constraint matrix, m x n (DENSE).

bl Lower bounds on (x,Ax), m+n x 1 vector (DENSE).

bu Upper bounds on (x,Ax), m+n x 1 vector (DENSE).

c Linear objective function cost coeffs, n x 1 (DENSE). If length(c) < n, setting
c(1:n)=0;

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start,
then x and iState must be set properly. Normally the values from last call to
lpopt are used.

x Initial estimate of solution vector x. (DENSE) If length(x) ¡ n, the rest of the
elements in x are set to 0.

iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;
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The following fields are used:, continued

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set,bl(i)==bu(i).

SpecsFile Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the lpopt MEX-interface.
= 0 Silent.
= 1 Summary information.
= 2 More detailed information.
if isempty(PriLev), set as 0.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If length(optPar) ¡ 62, lpopt sets the rest of the values to
missing value (-999).

Description of Outputs

The following fields are used:

Inform Result of LPOPT run.
0 = Optimal solution with unique minimizer found.
1 = A dead point was reached.
2 = The solution appears to be unbounded (or badly scaled).
3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.
4 = Too many iterations, in either phase.
5 = The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is too be made.
6 = An input parameter was invalid.
7 = The problem type was not recognized.
Other = UNKNOWN LPOPT Inform value.

Iter Number of iterations.

iState Status of working set, se input description of iState.
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The following fields are used:, continued

Ax A*x.

cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

Obj Objective function value at optimum.

x Solution vector with decision variable values (n x 1 vector).
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3.4.2 Using TOMLAB

Purpose
lpoptTL solves dense linear optimization problems defined as

min
x

f(x) = cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(12)

where c, x, xL, xU ∈ Rn, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = lpAssign( ... );
Result = tomRun(’lpopt’, Prob ... );

or

Prob = ProbCheck( ... );
Result = lpoptTL(Prob);

Call Prob = lpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
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Prob, The following fields are used:, continued

iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient c (linear objective).

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from lpopt.m (similar to TOMLAB).
Inform LPOPT information parameter.

0 = Optimal solution with unique minimizer found.
1 = A dead point was reached.
2 = The solution appears to be unbounded (or badly scaled).
3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.
4 = Too many iterations, in either phase.
5 = The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is too be made.
6 = An input parameter was invalid.
7 = The problem type was not recognized.
Other = UNKNOWN LPOPT Inform value.

rc Reduced costs. If ninf=0, last m == -v k.
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Result, The following fields are used:, continued

Iter Number of iterations.
FuncEv Number of function evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. Not Set.

Solver Name of the solver (lpopt).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.iState State for variables and constraints in iState.
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3.4.3 optPar

Description
Use missing value (-999 or less), when no change of parameter setting is wanted. No call is then done to internal
routines lpprmi, lpprmr and lpprm. The default value will then be used by LPOPT, unless the value is altered in
the SPECS file.

Description of Inputs

Table 18: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

Convergence Tolerances
In LPOPT/QPOPT: macheps = 2−53; eps in Matlab is = 2−52;

10. OPTIMALITY TOLERANCE > 0 1.05E-8 sqrt(macheps)
11. FEASIBILITY TOLERANCE > 0 1.05E-8 sqrt(macheps)

Other Tolerances
21. CRASH TOLERANCE > 0 0.01 < 1
27. RANK TOLERANCE > 0 1.11E-14 100*macheps
30. ITERATION LIMIT >0 max(2000,5(n+m))
33. MIN SUM YES (or NO) 0 0 1 1=min infeas.

IF 1 (MIN SUM YES), minimize the infeasibilities before return.
36. FEASIBILITY PHASE ITERATIONS >0 max(2000,5(n+m))
45. INFINITE STEP SIZE >0 1E20

Frequencies
51. CHECK FREQUENCY > 0 50
52. EXPAND FREQUENCY > 0 5
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3.5 QPOPT

3.5.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.5.2 for information on how to use QPOPT with TOMLAB.

Purpose
qpopt solves dense quadratic optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx+ dTx

s/t
x ,

bL ≤ Ax ≤ bU

(13)

where c, x ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rn+m1 .

If isempty(H) and isempty(c), then a feasible point problem is solved (FP).
If isempty(H), then a linear programming problem is solved (LP).
If isempty(c), then a quadratic programming problem is solved (QP1).
Otherwise a standard quadratic programming problem is solved (QP2).

Calling Syntax

[Inform, Iter, iState, Ax, cLamda, Obj, x] = qpopt (H, A, bl, bu, c, Warm, x, iState, SpecsFile, PrintFile, Summ-
File, PriLev, optPar);

Description of Inputs

The following fields are used:

H Matrix H in quadratic part of objective function (SPARSE or DENSE).

A Constraint matrix, m x n. (DENSE).

bl Lower bounds on (x, Ax), m+n x 1 vector (DENSE).

bu Upper bounds on (x, Ax), m+n x 1 vector (DENSE).

c Linear objective function cost coeffs, n x 1. (DENSE) If length(c) < n, setting
c(1:n)=0;.

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start,
then x and iState must be set properly. Normally the values from last call to
qpopt are used.

x Initial estimate of solution vector x. (DENSE) If length(x) ¡ n, the rest of the
elements in x are set to 0.
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The following fields are used:, continued

iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SpecsFile Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the qpopt MEX-interface.
= 0 Silent.
= 1 Summary information.
= 2 More detailed information.
if isempty(PriLev), set as 0.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If length(optPar) ¡ 62, qpopt sets the rest of the values
to missing value (-999).

Description of Outputs

The following fields are used:

Inform Result of QPOPT run. 0 = Optimal solution found.

0: x is a unique local minimizer. This means that x is feasible (it satisfies
the constraints to the accuracy requested by the Feasibility tolerance),
the reduced gradient is negligible, the Lagrange multipliers are optimal, and
the reduced Hessian is positive definite. If H is positive definite or positive
semidefinite, x is a global minimizer . (All other feasible points give a higher
objective value.) Otherwise, the solution is a local minimizer , which may or
may not be global. (All other points in the immediate neighborhood give a
higher objective.)
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The following fields are used:, continued

1: A dead-point was reached. This might occur if H is not sufficiently posi-
tive definite. If H is positive semidefinite, the solution is a weak minimizer .
(The objective value is a global optimum, but there may be infinitely many
neighboring points with the same objective value.) If H is indefinite, a feasible
direction of decrease may or may not exist (so the point may not be a local or
weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is fea-
sible, the reduced gradient is negligible, the Lagrange multipliers are optimal,
and the reduced Hessian is positive semidefinite.) However, the reduced Hes-
sian is nearly singular, and/or there are some very small multipliers. If H is
indefinite, x is not necessarily a local solution of the problem. Verification of
optimality requires further information, and is in general an NP-hard problem
[39].

2: The solution appears to be unbounded. The objective is not bounded below
in the feasible region, if the elements of x are allowed to be arbitrarily large.
This occurs if a step larger than Infinite Step would have to be taken in
order to continue the algorithm, or the next step would result in a component
of x having magnitude larger than Infinite Bound. It should not occur if H
is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred.
See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is to be made.

6: An input parameter was invalid.

7: The Problem type was not recognized.

Iter Number of iterations.

iState Status of working set, se input description of iState.

Ax A*x.

cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

Obj Objective function value at optimum.

x Solution vector with decision variable values (n x 1 vector).
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The following fields are used:, continued
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3.5.2 Using TOMLAB

Purpose
qpoptTL solves quadratic optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(14)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = qpAssign( ... );
Result = tomRun(’qpopt’, Prob ... );

or

Prob = ProbCheck( ... );
Result = qpoptTL(Prob);

Call Prob = qpAssign( ... ) or Prob=ProbDef to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj. nnObj < n is OK.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;
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Prob, The following fields are used:, continued

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SOL.cLamda Lagrangian multipliers from previous run (Warm start).

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).

f k Function value at optimum.

x k Solution vector.

x 0 Initial solution vector.

g k Exact gradient computed at optimum.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;

bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality
== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from qpopt.m (similar to TOMLAB).

Inform Result of QPOPT run. 0 = Optimal solution found.
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Result, The following fields are used:, continued

0: x is a unique local minimizer. This means that x is feasible (it satisfies
the constraints to the accuracy requested by the Feasibility tolerance),
the reduced gradient is negligible, the Lagrange multipliers are optimal, and
the reduced Hessian is positive definite. If H is positive definite or positive
semidefinite, x is a global minimizer . (All other feasible points give a higher
objective value.) Otherwise, the solution is a local minimizer , which may or
may not be global. (All other points in the immediate neighborhood give a
higher objective.)
1: A dead-point was reached. This might occur if H is not sufficiently posi-
tive definite. If H is positive semidefinite, the solution is a weak minimizer .
(The objective value is a global optimum, but there may be infinitely many
neighboring points with the same objective value.) If H is indefinite, a feasible
direction of decrease may or may not exist (so the point may not be a local or
weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is fea-
sible, the reduced gradient is negligible, the Lagrange multipliers are optimal,
and the reduced Hessian is positive semidefinite.) However, the reduced Hes-
sian is nearly singular, and/or there are some very small multipliers. If H is
indefinite, x is not necessarily a local solution of the problem. Verification of
optimality requires further information, and is in general an NP-hard problem
[39].

2: The solution appears to be unbounded. The objective is not bounded below
in the feasible region, if the elements of x are allowed to be arbitrarily large.
This occurs if a step larger than Infinite Step would have to be taken in
order to continue the algorithm, or the next step would result in a component
of x having magnitude larger than Infinite Bound. It should not occur if H
is sufficiently positive definite.

3: The constraints could not be satisfied. The problem has no feasible solution.

4: One of the iteration limits was reached before normal termination occurred.
See Feasibility Phase Iterations and Optimality Phase Iterations.

5: The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is to be made.

6: An input parameter was invalid.

7: The Problem type was not recognized.

rc Reduced costs. If ninf=0, last m == -v k.

Iter Number of iterations.
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Result, The following fields are used:, continued

FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. Not Set.

Solver Name of the solver (QPOPT).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.cLamda Lagrangian multipliers.

SOL.iState State for variables and constraints in iState.
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3.5.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by QPOPT, unless the value is altered in the SPECS file.

Description of Inputs

Table 23: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

Convergence Tolerances
In LPOPT/QPOPT: macheps = 2−53; eps in Matlab is = 2−52;

10. OPTIMALITY TOLERANCE > 0 1.05E-8 sqrt(macheps)
11. FEASIBILITY TOLERANCE > 0 1.05E-8 sqrt(macheps)

Other Tolerances
21. CRASH TOLERANCE 0 0.01 < 1
27. RANK TOLERANCE > 0 1.1E-14 100*macheps
30. ITERATION LIMIT >0 max(2000,5(n+m))
33. MIN SUM YES (or NO) 0 0 1 1=min infeas.

IF 1 (MIN SUM YES), minimize the infeasibilities before return.

36. FEASIBILITY PHASE ITERATIONS >0 max(2000,5(n+m))
45. INFINITE STEP SIZE >0 1E20
47. HESSIAN ROWS 0 n n 0 if FP or LP

Implicitly given by the dimensions of H in the call from Matlab

48. MAX DEGREES OF FREEDOM 0 n n
ONLY USED IF HESSIAN ROWS == N

Frequencies
51. CHECK FREQUENCY > 0 50
52. EXPAND FREQUENCY > 0 5
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3.6 LSSOL

3.6.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.6.2 for information on how to use LSSOL with TOMLAB.

Purpose
lssol solves least squares optimization problems defined as

min
x

f(x) = 1
2 (y −Hx)T (y −Hx) + cTx

s/t
x,

bL ≤ Ax ≤ bU

(15)

where x ∈ Rn, y ∈ RM , H ∈ RM×n, A ∈ Rm1×n, bL, bU ∈ Rn+m1 .

Dependent on the input of H, y, c and Upper, any of the following ten problems are solved. If m == length(y) >
0, then a LS problem is assumed Upper is > 0 ==> H is upper trapezodial.

Table 24: Problems solved by LSSOL.

H y c Upper Description
empty empty empty – Feasible point problem (FP)
empty empty n x 1 – Linear programming problem (LP)
n x n empty empty 0 Quadratic programming problem (QP1)
n x n empty n x 1 0 Quadratic programming problem (QP2)
n x n empty empty 1 Quadratic programming problem (QP3)
n x n empty n x 1 1 Quadratic programming problem (QP4)
m x n m empty 0 Least squares problem (LS1)
m x n m n x 1 0 Least squares problem (LS2)
m x n m empty 1 Least squares problem (LS3)
m x n m n x 1 1 Least squares problem (LS4)

Calling Syntax

[x, Inform, iState, cLamda, Iter, fObj, r, kx] = lssol(A, bl, bu, c, x, optPar, H, y, Warm, iState, Upper, kx,
SpecsFile, PrintFile, SummFile, PriLev, ProbName );

Description of Inputs

The following fields are used:

A Constraint matrix, nclin x n (DENSE).
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The following fields are used:, continued

bl Lower bounds on (x,Ax), nclin+n x 1 vector (DENSE).

bu Upper bounds on (x,Ax), nclin+n x 1 vector (DENSE).

c Linear objective function cost coeffs, n x 1 (DENSE). If isempty(c), setting
c(1:n)=0;.

x Initial estimate of solution vector x. If isempty(x), x(1:n)=0.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If length(optPar) ¡ 62, lssol sets the rest of the values to
missing value (-999).

H Matrix H in quadratic part of objective function (DENSE). H is either empty
(FP, LP), or quadratic n x n (QP), or m x n (LS).

y Data vector of length m for LS problem, otherwise empty.

Warm If Warm > 0, then warm start, otherwise cold Start. Default 0. If warm start,
then x and iState must be set properly. Normally the values from last call to
lssol are used.

iState Working set (if Warm start) (nclin+m) x 1 (DENSE). If length(iState) ¡
nclin+m, setting iState(1:n+m)=0 & Warm=0.

iState(i)=0: Corresponding constraint not in the initial working set.
iState(i)=1: Inequality constraint at its lower bound in working set.
iState(i)=2: Inequality constraint at its upper bound in working set.
iState(i)=3: Equality constraint in the initial working set, bl(i)==bu(i).

Upper If > 0, then H must be an upper-trapezoidal matrix.

kx Order of the n columns in A for the QP3, QP4, LS3 or LS4 problem.

SpecsFile Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the lssol MEX-interface..

= 0 Silent
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The following fields are used:, continued

= 10 Dimensions are printed
if isempty(PriLev), set as 0.

Description of Outputs

The following fields are used:

x Solution vector with decision variable values (n x 1 vector).
Inform Result of LSSOL run.

0 = Optimal solution with unique minimizer found.
1 = Weak local solution (nonunique) was reached.
2 = The solution appears to be unbounded.
3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.
4 = Too many iterations, in either phase.
5 = 50 changes of working set without change in x, cycling?
6 = An input parameter was invalid.
Other = UNKNOWN LSSOL Inform value.

iState Status of working set, se input description of iState.

cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

Iter Number of iterations.

Ax A*x.

fObj Value of objective function if feasible, or sum of infeasibilities.

r Residual for LS problem.
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3.6.2 Using TOMLAB

Purpose
lssolTL solves least squares optimization problems defined as

min
x

f(x) = 1
2 ||Cx− d||

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(16)

where x, xL, xU ∈ Rn, d ∈ RM , C ∈ RM×n, A ∈ Rm1×n, bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign( ... );
Result = tomRun(’lssol’, Prob ... );

or

Prob = ProbCheck( ... );
Result = lssolTL(Prob);

Call Prob = �Assign( ... ) or Prob = ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj.

PriLevOpt Print level.

Warm If true, use warm start, otherwise cold start.

SOL.xs Solution (and slacks not used) from previous run (Warm start).

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;
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Prob, The following fields are used:, continued

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SOL.cLamda Lagrangian multipliers from previous run (Warm start).

SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SummFile Name of SOL Summary File.

optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Exact gradient computed at optimum.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from lssol.m (similar to TOMLAB).
Inform LSSOL information parameter.

0 = Optimal solution with unique minimizer found.
1 = Weak local solution (nonunique) was reached.
2 = The solution appears to be unbounded.
3 = The constraints could not be satisfied. The problem has no feasible solu-
tion.
4 = Too many iterations, in either phase.
5 = 50 changes of working set without change in x, cycling?
6 = An input parameter was invalid.
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Result, The following fields are used:, continued

Other = UNKNOWN LSSOL Inform value.

rc Reduced costs. If ninf=0, last m == -v k.

Iter Number of iterations.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations. NOT SET.

Solver Name of the solver (LSSOL).
SolverAlgorithm Description of the solver.

SOL.xs Solution and slack variables.

SOL.cLamda Lagrangian multipliers.

SOL.iState State for variables and constraints in iState.
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3.6.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by LSSOL, unless the value is altered in the SPECS file.

Description of Inputs

Table 29: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

Convergence Tolerances
10. OPTIMALITY TOLERANCE > 0 1.1E-8 sqrt(eps)
11. FEASIBILITY TOLERANCE > 0 1.1E-8 sqrt(eps)

Other Tolerances
21. CRASH TOLERANCE > 0 0.01 < 1
27. RANK TOLERANCE > 0 1.1E-14 100*eps
30. ITERATIONS LIMIT > 0 max(50,5(n+m))
36. FEASIBILITY PHASE ITERATIONS > 0 max(50,5(n+m))
45. INFINITE STEP SIZE > 0 1E20
46. INFINITE BOUND SIZE > 0 1E20

60



3.7 NLSSOL

3.7.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.7.2 for information on how to use NLSSOL with TOMLAB.

Purpose
nlssol solves constrained nonlinear least squares problems defined as

min
x

f(x) = 1
2r(x)T r(x)

s/t

x,

bL ≤ Ax ≤ bU
c(x)

(17)

where x ∈ Rn, r(x) ∈ RM , A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .
nlssol uses a sequential quadratic programming algorithm, with a positive-definite quasi-Newton approximation to
the transformed Hessian Q’HQ of the Lagrangian function (which will be stored in the array R).

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [r, J] = funfdf(x, Prob, mode, nstate) to compute the
residual vector r and the Jacobian matrix J at the point x.

The file ’funcdc.m’ must be defined and contain: function [c, dc] = funcdc(x, Prob, mode, nstate) to compute the
nonlinear constraint value c and the constraint Jacobian dc for the nonlinear constraints at the point x.

[x, Inform, iState, cLamda, iwCount, fObj, gObj, r, J, fCon, gCon, H] = nlssol( A, bl, bu, x, Prob, y, optPar,
Warm, H, iState, cLamda, SpecsFile, PrintFile, SummFile, PriLev, ProbName );

Description of Inputs

The following fields are used:

A Constraint matrix, nb x n (DENSE).

bl Lower bounds on (x,Ax,c(x)).

bu Upper bounds on (x,Ax,c(x)).

x Initial x vector (n x 1). If Warm start x must correspond to values in H and
iState.

Prob Must be a structure. No check is made in the MEX interface!

If TOMLAB calls nlssol, then Prob is the standard TOMLAB problem struc-
ture, otherwise the user should set:
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The following fields are used:, continued

Prob.P = ProblemNumber, where ProblemNumber is some integer.

Two user written routines must be written:

funfdf, name stored in Prob.FUNCS.rJ, with syntax [mode, r, J] = funfdf(x,
Prob, mode, nstate)

funcdc, name stored in Prob.FUNCS.cdc, with syntax [mode, c, dc] = funcdc(x,
Prob, mode, nstate)

NLSOL is calling the TOMLAB routines nlp rJ.m and nlp cdc.m in the call-
back, and they call funfdf and funcdc, respectively.

If these fields in Prob are empty (Prob.FUNCS.rJ, Prob.FUNCS.cdc), the
TOMLAB callback routines calls the usual function routines. Then the
Prob struct should be normally defined, and the fields Prob.FUNCS.r,
Prob.FUNCS.J, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way (e.g.
by the routine mFiles.m, or one of the Assign-routines like clsAssign.m).

If the mode parameter is 0, funfdf should return r, otherwise both r and the
Jacobian matrix J. If the mode parameter is 0, funcdc should return c, otherwise
both c and dc. Note that each row in dc corresponds to a constraint, and that
dc should be a dense matrix. If the matrix dc is returned as a sparse Matlab
matrix, nlp cdc will do full(dc) to get a dense matrix.

The user could also write his own versions of the routines nlp rJ.m and
nlp cdc.m and put them before in the path.

y Data vector of length. Number of residuals == length(y) == m.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. Set empty if only using default parameters.

Warm Flag for Warm start (==1) or Cold Start (==0 ), i.e. normal mode. If ’Warm
Start’, iState, cLamda, H and x must supply correct values.

H Hessian matrix, only accessed if Warm start. Must select: Hessian = Yes in
order to do a warm start. Hessian Yes is equivalent to optPar(50) = 1 (default
is 0).

iState Working set (if Warm start) (nb = n+nclin+ncnln) x 1. If length(iState) <
nb, setting iState(1:nb)=0;

iState(i)=0: Corresponding constraint not in the initial working set.
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The following fields are used:, continued

iState(i)=1: Inequality constraint at its lower bound in working set.
iState(i)=2: Inequality constraint at its upper bound in working set.
iState(i)=3: Equality constraint in the initial working set, bl(i)==bu(i).

cLamda Lagrangian multipliers for the n + nclin + ncnln constraints. If Warm start,
cLamda(n+nclin+1:n+nclin+ncnln), the nonlinear Lagrange multipliers, must
correspond to values in iState.

SpecsFile Name of the OPTIONS File, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the nlssol MEX-interface.

= 0 Silent
= 10 Dimensions are printed
if isempty(PriLev), set as 0.

ProbName Name of the problem. ¡=100 characters are used in the MEX interface (Not
used by MEX-interface).

Description of Outputs

The following fields are used:

x Solution vector (n by 1) with n decision variable values.
Inform Result of NLSSOL run.

0 = Optimal solution found.
1 = Optimal solution found but not to requested accuracy.
2 = No feasible point for the linear constraints.
3 = No feasible point for the nonlinear constraints.
4 = Too many major iterations.
5 = Problem is unbounded, or badly scaled.
6 = The current point cannot be improved on.
7 = Large errors found in the derivatives.
9 = An input parameter is invalid.
Other = User requested termination

iState Status of working set, se input description of iState.
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The following fields are used:, continued

cLamda Lagrangian multipliers (dual solution vector) (nb x 1 vector).

iwCount Number of iterations (iwCount(1)), function evaluations (iwCount(2)) and con-
straint evaluations (iwCount(3)).

fObj Objective function value at optimum.

gObj Gradient of the objective, n x 1.

r Residual vector m x 1.

J Jacobian matrix m x n.

fCon Nonlinear constraint vector, ncnln x 1.

gCon Gradient matrix of the nonlinear constraint vector, ncnln x n.

H Cholesky factor of Hessian approximation. Hessian no - reordered variables.
Hessian yes - natural order of variables, used for Warm start.
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3.7.2 Using TOMLAB

Purpose
nlssolTL solves constrained nonlinear least squares problems defined as

min
x

f(x) = 1
2r(x)T r(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(18)

where x, xL, xU ∈ Rn, r(x) ∈ RM , A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Calling Syntax
Using the driver routine tomRun:

Prob = clsAssign( ... );
Result = tomRun(’nlssol’, Prob ... );

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints.

A Linear constraint matrix.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution from previous run, elements xs[1:n].

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SOL.cLamda Lagrangian multipliers (dual solution vector) (nb x 1 vector).
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Prob, The following fields are used:, continued

SOL.H Cholesky factor of Hessian approximation. Hessian no - reordered variables.
Hessian yes - natural order of variables, used for Warm start.

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.

r k Residual vector.
J k Jacobian matrix.
c k Nonlinear constraint residuals.

cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from nlssol.m (similar to TOMLAB).
Inform NLSSOL information parameter.

0 = Optimal solution found.
1 = Optimal solution found but not to requested accuracy.
2 = No feasible point for the linear constraints.
3 = No feasible point for the nonlinear constraints.
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Result, The following fields are used:, continued

4 = Too many major iterations.
5 = Problem is unbounded, or badly scaled.
6 = The current point cannot be improved on.
7 = Large errors found in the derivatives.
9 = An input parameter is invalid.
Other = User requested termination

rc Reduced costs. If ninf=0, last m == -v k.

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver Name of the solver (nlssol).
SolverAlgorithm Description of the solver.

SOL.x Solution vector (n by 1) with n decision variable values.

SOL.iState basis status of constraints + variables, (m + n x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

SOL.cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

SOL.H Cholesky factor of Hessian approximation. Hessian no - reordered variables.
Hessian yes - natural order of variables, used for Warm start.
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3.7.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by NLSSOL, if not the value is altered in the SPECS file (input SpecsFile)

Description of Inputs

Table 34: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

or MAJOR PRINT LEVEL
2. MINOR PRINT LEVEL 0 0 0,1,5,10,20,30

Convergence Tolerances
9. NONLINEAR FEASIBILITY TOLERANCE > 0 1.1E-8 sqrt(eps)
10. OPTIMALITY TOLERANCE > 0 3.0E-13 eps0.8

11. LINEAR FEASIBILITY TOLERANCE > 0 1.1E-8 sqrt(eps)

Derivative checking
13. VERIFY LEVEL -1 -1 3 -1,0,1,2,3
14. START OBJECTIVE CHECK AT COL 0 1 n
15. STOP OBJECTIVE CHECK AT COL 0 n n
16. START CONSTRAINT CHECK AT COL 0 1 n
17. STOP CONSTRAINT CHECK AT COL 0 n n

Other Tolerances
21. CRASH TOLERANCE > 0 0.01 < 1
22. LINESEARCH TOLERANCE > 0 0.9 < 1
30. ITERATIONS LIMIT > 0 max(50,3(n+m L)+10*m N)
36. MINOR ITERATIONS LIMIT > 0 max(50,3(n+m L+m N))
37. STEP LIMIT > 0 2
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3
41. FUNCTION PRECISION > 0 3.0E-13 eps0.8 = epsR
42. DIFFERENCE INTERVAL > 0 5.48E-8 eps0.4

43. CENTRAL DIFFERENCE INTERVAL > 0 6.70E-5 eps0.8/3

45. INFINITE STEP SIZE > 0 max(BIGBND,1E10)
46. INFINITE BOUND SIZE > 0 1E10 = BIGBND
47. JTJ INITIAL HESSIAN 0 1 0 = UNIT
48. RESET FREQUENCY 0 2 Reset to (47)
50. HESSIAN YES or NO 0 0 1 = YES
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3.8 NPSOL

3.8.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.8.2 for information on how to use NPSOL with TOMLAB.

Purpose
npsol solves dense nonlinear optimization problems defined as

min
x

f(x)

s/t

x,

bL ≤ Ax ≤ bU
c(x)

(19)

where x ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.

The file ’funcdc.m’ must be defined and contain: function [mode, c ,dcS] = funcdc(x, Prob, mode, nstate) to
compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

[x, Inform, iState, cLamda, iwCount, fObj, gObj, fCon, gCon, H] = npsol( A, bl, bu, x, Prob, optPar, Warm, H,
iState, cLamda, SpecsFile, PrintFile, SummFile, PriLev, ProbName );

Description of Inputs

The following fields are used:

A Constraint matrix, m x n. (DENSE).

bl Lower bounds on (x,Ax,c(x)).

bu Upper bounds on (x,Ax,c(x)).

x Initial x vector (n x 1). If Warm start x must correspond to values in H and
iState.

Prob Must be a structure. No check is made in the MEX interface.
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The following fields are used:, continued

If TOMLAB calls npsol, then Prob is the standard TOMLAB problem struc-
ture, otherwise the user should set:

Prob.P = ProblemNumber, where ProblemNumber is some integer.

Two user written routines must be written:

funfdf, actual name stored in Prob.FUNCS.fg, with syntax [mode, f, g] =
funfdf(x, Prob, mode, nstate).

funcdc, actual name stored in Prob.FUNCS.cdc, with syntax [mode, c, dc] =
funcdc(x, Prob, mode, nstate).

NPSOL is calling the TOMLAB routines nlp fg.m and nlp cdc.m in the call-
back, and they call funfdf and funcdc, respectively.

If these fields in Prob are empty (Prob.FUNCS.fg, Prob.FUNCS.cdc), the
TOMLAB callback routines calls the usual function routines. Then the
Prob struct should be normally defined, and the fields Prob.FUNCS.f,
Prob.FUNCS.g, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way
(e.g. by the routine mFiles.m, or one of the Assign-routines like conAssign.m).

If the mode parameter is 0, funfdf should return f, otherwise both f and the
gradient vector g. If the mode parameter is 0, funcdc should return c, otherwise
both c and dc. Note that each row in dc corresponds to a constraint, and that
dc should be a dense matrix. If the matrix dc is returned as a sparse Matlab
matrix, nlp cdc will do full(dc) to get a dense matrix.

The user could also write his own versions of the routines nlp fg.m and
nlp cdc.m and put them before in the path.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. Set empty if only using default parameters.

Warm Flag for Warm start (==1) or Cold Start (==0 ), i.e. normal mode. If ’Warm
Start’, iState, cLamda, H and x must supply correct values.

H Hessian matrix, only accessed if Warm start. Must select: Hessian = Yes in
order to do a warm start Hessian Yes is equivalent to optPar(50) = 1 (default
is 0).

iState Working set (if Warm start) (nb = n+nclin+ncnln) x 1 (DENSE). If
length(iState) < nb, setting iState(1:nb)=0;;

iState(i)=0: Corresponding constraint not in the initial working set.
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The following fields are used:, continued

iState(i)=1: Inequality constraint at its lower bound in working set.
iState(i)=2: Inequality constraint at its upper bound in working set.
iState(i)=3: Equality constraint in the initial working set, bl(i)==bu(i).

cLamda Lagrangian multipliers for the n + nclin + ncnln constraints. If Warm start,
cLamda(n+nclin+1:n+nclin+ncnln), the nonlinear Lagrange multipliers, must
correspond to values in iState.

SpecsFile Name of the input parameter file, see TOMLAB Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Print level in the npsol MEX-interface.
= 0 Silent
= 10 Dimensions are printed.

ProbName Name of the problem. ¡=100 characters are used in the MEX interface. (Not
used by MEX-interface).

Description of Outputs

The following fields are used:

x Solution vector (n by 1) with n decision variable values.
Inform Result of NPSOL run.

0 = Optimal solution found.
1 = Optimal solution found but not to requested accuracy.
2 = No feasible point for the linear constraints.
3 = No feasible point for the nonlinear constraints.
4 = Too many major iterations.
6 = The current point cannot be improved on.
7 = Large errors found in the derivatives.
9 = An input parameter is invalid.
Other = User requested termination

iState Status of working set, se input description of iState.

cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

iwCount Number of iterations (iwCount(1)), function evaluations (iwCount(2)) and con-
straint evaluations (iwCount(3)).
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The following fields are used:, continued

fObj Objective function value at optimum.

gObj Gradient of the nonlinear objective.

fCon Nonlinear constraint vector.

gCon Gradient matrix of the nonlinear constraint vector.

H Cholesky factor of Hessian approximation. Hessian no - reordered variables.
Hessian yes - natural order of variables, used for Warm start.
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3.8.2 Using TOMLAB

Purpose
npsolTL solves dense nonlinear optimization problems defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(20)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign( ... );
Result = tomRun(’npsol’, Prob ... );

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints.

A Linear constraint matrix.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution from previous run, elements xs[1:n].

SOL.iState Working set (if Warm start) (n+m) x 1 (DENSE) If length(iState) ¡ n+m,
setting iState(1:n+m)=0;

iState(i)=0: Corresponding constraint not in the initial QP working set.
iState(i)=1: Inequality constraint at its lower bound in QP working set.
iState(i)=2: Inequality constraint at its upper bound in QP working set.
iState(i)=3: Equality constraint in the initial QP working set, bl(i)==bu(i).

SOL.cLamda Lagrangian multipliers (dual solution vector) (nb x 1 vector).
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Prob, The following fields are used:, continued

SOL.H Cholesky factor of Hessian approximation Hessian no - reordered variables Hes-
sian yes - natural order of variables, used for Warm start.

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.
c k Nonlinear constraint residuals.

cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from npsol.m (similar to TOMLAB).
Inform NPSOL information parameter.

0 = Optimal solution found.
1 = Optimal solution found but not to requested accuracy.
2 = No feasible point for the linear constraints.
3 = No feasible point for the nonlinear constraints.
4 = Too many major iterations.
6 = The current point cannot be improved on.
7 = Large errors found in the derivatives.
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Result, The following fields are used:, continued

9 = An input parameter is invalid.
Other = User requested termination

rc Reduced costs. If ninf=0, last m == -v k.

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver Name of the solver (npsol).
SolverAlgorithm Description of the solver.

SOL.x Solution vector (n by 1) with n decision variable values.

SOL.iState basis status of constraints + variables, (m + n x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

SOL.cLamda Lagrangian multipliers (dual solution vector) (m x 1 vector).

SOL.H Cholesky factor of Hessian approximation. Hessian no - reordered variables.
Hessian yes - natural order of variables, used for Warm start.
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3.8.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by NPSOL, if not the value is altered in the SPECS file (input SpecsFile).

Description of Inputs

Table 39: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

Printing
1. PRINT LEVEL 0 10 0,1,5,10,20,30

or MAJOR PRINT LEVEL
2. MINOR PRINT LEVEL 0 0 0,1,5,10,20,30

Convergence Tolerances
9. NONLINEAR FEASIBILITY TOLERANCE > 0 1.1E-8 sqrt(eps)
10. OPTIMALITY TOLERANCE > 0 3.0E-13 eps0.8

11. LINEAR FEASIBILITY TOLERANCE > 0 1.1E-8 sqrt(eps)

Derivative checking
13. VERIFY LEVEL -1 -1 3 -1,0,1,2,3
14. START OBJECTIVE CHECK AT COL 0 1 n
15. STOP OBJECTIVE CHECK AT COL 0 n n
16. START CONSTRAINT CHECK AT COL 0 1 n
17. STOP CONSTRAINT CHECK AT COL 0 n n

Other Tolerances
21. CRASH TOLERANCE > 0 0.01 < 1

Note: Decision variables will be set to the closest bound to the starting point
based on this tolerance before running the optimization.

22. LINESEARCH TOLERANCE > 0 0.9 < 1

30. ITERATIONS LIMIT > 0 max(50,3(n+m L)+10*m N)
36. MINOR ITERATIONS LIMIT > 0 max(50,3(n+m L+m N))
37. STEP LIMIT > 0 2
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3

Is set by npsolTL dependent on Prob.ConsDiff, Prob.NumDiff
41. FUNCTION PRECISION > 0 3.0E-13 eps0.8 = epsR
42. DIFFERENCE INTERVAL > 0 5.48E-8 eps0.4

43. CENTRAL DIFFERENCE INTERVAL > 0 6.70E-5 eps0.8/3

45. INFINITE STEP SIZE > 0 max(BIGBND,1E10)
46. INFINITE BOUND SIZE > 0 1E10 = BIGBND
50. HESSIAN YES or NO 0 0 1 = YES
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Table 39: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment
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3.9 SNOPT

3.9.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.9.2 for information on how to use SNOPT with TOMLAB.

Purpose
snopt solves sparse nonlinear optimization problems defined as

min
x

f(x)

s/t

x ,

bL ≤ Ax ≤ bU
c(x)

(21)

where x,∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rn+m1+m2 and c(x) ∈ Rm2 .

Calling Syntax

The file ’funfdf.m’ must be defined and contain: function [mode, f, g] = funfdf(x, Prob, mode, nstate) to compute
the objective function f and the gradient g at the point x.

The file ’funcdc.m’ must be defined and contain: function [mode ,c ,dcS] = funcdc(x, Prob, mode, nstate) to
compute the nonlinear constraint value c and the constraint Jacobian dcS for the nonlinear constraints at the
point x.

Note that Matlab has dynamic sparse matrix handling and Fortran has static handling. The returned vector
of constraint gradient values must always match the pattern of nonzeros as defined in the call to snopt. One
approach for a general solution to this is given in the Tomlab callback routine nlp cdcS.m, which calls the user
defined ’funcdc’ function.

The fields Prob.P and Prob.ConsPattern must be set, see below.

[hs, xs, pi, rc, Inform, nS, nInf, sInf, Obj, iwCount, gObj, fCon, gCon] = snopt( A, bl, bu, nnCon, nnObj, nnJac,
Prob, iObj, optPar, Warm, hs, xs, pi, nS, SpecsFile, PrintFile, SummFile, PriLev, ObjAdd, moremem, Prob-
Name);

Description of Inputs

The following fields are used:

A Constraint matrix, m x n SPARSE (A consists of nonlinear part, linear part
and one row for the linear objective). m > 0 always.
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The following fields are used:, continued

bl Lower bounds on (x,g(x),Ax,c’).

bu Upper bounds on (x,g(x),Ax,c’).

nnCon Number of nonlinear constraints.

nnObj Number of nonlinear objective variables.

nnJac Number of nonlinear Jacobian variables.

Prob Must be a structure. No check is made in the MEX interface!

If TOMLAB calls snopt, then Prob is the standard TOMLAB problem struc-
ture, otherwise the user should set:

Prob.P = ProblemNumber, where ProblemNumber is some integer.

Prob.ConsPattern = []; or as the nonzero pattern for the constraint Jacobian
as Prob.ConsPattern = ConsPattern;

ConsPattern is a nnCon x n zero-one sparse or dense matrix, where 0 values
indicate zeros in the constraint Jacobian and ones indicate values that might
be non-zero.

If the problem is a LP or QP problem (H defined), then the user does not have
to specify anything more in the structure.

For a general nonlinear objective, or nonlinear constraints names of two user
written routines must be given:

funfdf, actual name stored in Prob.FUNCS.fg, with syntax [mode, f, g] =
funfdf(x, Prob, mode, nstate)

funcdc, actual name stored in Prob.FUNCS.cdc, with syntax [mode, c, dcS] =
funcdc(x, Prob, mode, nstate)

SNOPT is calling the TOMLAB routines nlp fg.m and nlp cdcS.m in the call-
back, and they call funfdf and funcdc, respectively.

If these fields in Prob are empty (Prob.FUNCS.fg, Prob.FUNCS.cdc), the
TOMLAB callback routines calls the usual function routines. Then the
Prob struct should be normally defined, and the fields Prob.FUNCS.f,
Prob.FUNCS.g, Prob.FUNCS.c, Prob.FUNCS.dc be set in the normal way
(e.g. by the routine mFiles.m).
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The following fields are used:, continued

If the mode parameter is 0, funfdf should return f, otherwise both f and the
gradient vector g. If the mode parameter is 0, funcdc should return c, otherwise
both c and dcS. Note that each row in dcS corresponds to a constraint, and
that dcS must be a SPARSE matrix.

The user could also write his own versions of the routines nlp fg.m and
nlp cdcS.m and put them before in the path.

iObj Says which row of A is a free row containing a linear objective vector c. If there
is no such vector, iObj = 0. Otherwise, this row must come after any nonlinear
rows, so that nnCon <= iObj <= m.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. If using only default options, set optPar as an empty
matrix.

Warm Flag, if true: warm start. Default cold start (if empty). If ’Warm Start’ xS,
nS and hs must be supplied with correct values.

hs Basis status of variables + constraints (n+m x 1 vector). State of vari-
ables: 0=nonbasic (on bl), 1=nonbasic (on bu) 2=superbasic (between bounds),
3=basic (between bounds).

xs Initial vector, optionally including m slacks at the end. If warm start, full xs
must be supplied.

pi Lagrangian multipliers for the nnCon nonlinear constraints. If empty, set as 0.

nS # of superbasics. Only used if calling again with a Warm Start.

SpecsFile Name of the SPECS input parameter file, see SNOPT User’s Guide.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

PriLev Printing level in the snopt m-file and snopt MEX-interface.

= 0 Silent
= 1 Summary information
= 2 More detailed information

ObjAdd Constant added to the objective for printing purposes, typically 0.
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The following fields are used:, continued

moremem Add extra memory for the sparse LU, might speed up the optimization. 1E6
is 10MB of memory. If empty, set as 0.

ProbName Name of the problem. ¡=100 characters are used in the MEX interface. In the
SNOPT solver the first 8 characters are used in the printed solution and in
some routines that output BASIS files. Blank is OK.

Description of Outputs

The following fields are used:

hs Basis status of variables + constraints (n+m x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
Minor feasibility tolerance. Note that if scaling is specified, the feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Minor feasibility tolerance, and there may be some nonbasics
for which xs(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sInf if scaling was not used).

xs Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

pi The vector of dual variables π (a set of Lagrange multipliers for the general
constraints). (m x 1 vector).

rc Vector of reduced costs, g−(A −I )Tπ, where g is the gradient of the objective
if xs is feasible (or the gradient of the Phase-1 objective otherwise). The last
m entries are π. The vector is n+m. If nInf=0, last m == pi.

Inform Result of SNOPT run.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
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The following fields are used:, continued

3 requested accuracy could not be achieved

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equalities
13 nonlinear infeasibilities minimized
14 infeasibilities minimized

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached
33 the superbasics limit is too small

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
72 terminated during constraint evaluation
73 terminated during objective evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument
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The following fields are used:, continued

92 basis file dimensions do not match this problem

System error
141 wrong number of basic variables
142 error in basis package

nS The final number of superbasic variables.

nInf Gives the number and the sum (next parameter) of the infeasibilities of
constraints that lie outside their bounds by more than the Feasibility

tolerance.

If the linear constraints are infeasible, xs minimizes the sum of the infeasibilities
of the linear constraints subject to the upper and lower bounds being satisfied.
In this case nInf gives the number of components of ALx lying outside their
upper or lower bounds. The nonlinear constraints are not evaluated.

Otherwise, xs minimizes the sum of the infeasibilities of the nonlinear con-
straints subject to the linear constraints and upper and lower bounds being
satisfied. In this case nInf gives the number of components of f(x) lying
outside their upper or lower bounds.

sInf Sum of infeasibilities. See nInf above.

Obj Objective function value at optimum.

iwCount Number of iterations minor (iwCount(1)) and major (iwCount(2)), function
(iwCount(3:6)) and constraint (iwCount(7:10)) calls.

gObj Gradient of the nonlinear objective.

fCon Nonlinear constraint vector.

gCon Gradient vector (non-zeros) of the nonlinear constraint vector.
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3.9.2 Using TOMLAB

Purpose
snoptTL solves nonlinear optimization problems defined as

min
x

f(x)

s/t

xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU

(22)

where x, xL, xU ∈ Rn, f(x) ∈ R, A ∈ Rm1×n, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign( ... );
Result = tomRun(’snopt’, Prob ... );

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

c L, c U Bounds on nonlinear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.xs Solution and slacks from previous run.

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run.

SOL.hElastic Defines which variables are elastic in elastic mode. hElastic(j):
0 = variable j is non-elastic and cannot be infeasible.
1 = variable j can violate its lower bound.
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Prob, The following fields are used:, continued

2 = variable j can violate its upper bound.
3 = variable j can violate either its lower or upper bound.

SOL.moremem Add more memory if SNOPT stops with not enough storage message. 1E6 is
10MB of memory. Default 0.

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.
c k Nonlinear constraint residuals.

cJac Nonlinear constraint gradients.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;
cState State of nonlinear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from snoptTL.m (similar to TOMLAB).
Inform Result of SNOPT run.

Finished successfully
1 optimality conditions satisfied
2 feasible point found
3 requested accuracy could not be achieved
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Result, The following fields are used:, continued

The problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equalities
13 nonlinear infeasibilities minimized
14 infeasibilities minimized

The problem appears to be unbounded
21 unbounded objective
22 constraint violation limit reached

Resource limit error
31 iteration limit reached
32 major iteration limit reached
33 the superbasics limit is too small

Terminated after numerical difficulties
41 current point cannot be improved
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis

Error in the user-supplied functions
51 incorrect objective derivatives
52 incorrect constraint derivatives

Undefined user-supplied functions
61 undefined function at the first feasible point
62 undefined function at the initial point
63 unable to proceed into undefined region

User requested termination
72 terminated during constraint evaluation
73 terminated during objective evaluation
74 terminated from monitor routine

Insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

Input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem
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Result, The following fields are used:, continued

System error
141 wrong number of basic variables
142 error in basis package

rc Vector of reduced costs, g−(A −I )Tπ, where g is the gradient of the objective
if xs is feasible (or the gradient of the Phase-1 objective otherwise). The last
m entries are π. The vector is n+m. If nInf=0, last m == pi.

Iter Number of iterations.
FuncEv Number of function evaluations.
GradEv Number of gradient evaluations.
ConstrEv Number of constraint evaluations.

QP.B Basis vector in TOMLAB QP standard.

MinorIter Number of minor iterations.

Solver Name of the solver (snopt).
SolverAlgorithm Description of the solver.

SOL.xs Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

SOL.hs Basis status of variables + constraints (n+m x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
Minor feasibility tolerance. Note that if scaling is specified, the feasibility
tolerance applies to the variables of the scaled problem. In this case, the
variables of the original problem may be as much as 0.1 outside their bounds,
but this is unlikely unless the problem is very badly scaled.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Minor feasibility tolerance, and there may be some nonbasics
for which xs(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sInf if scaling was not used).

SOL.nS The final number of superbasic variables.

87



Result, The following fields are used:, continued

SOL.nInf Gives the number and the sum (next parameter) of the infeasibilities of
constraints that lie outside their bounds by more than the Feasibility

tolerance.

If the linear constraints are infeasible, xs minimizes the sum of the infeasibilities
of the linear constraints subject to the upper and lower bounds being satisfied.
In this case nInf gives the number of components of ALx lying outside their
upper or lower bounds. The nonlinear constraints are not evaluated.

Otherwise, xs minimizes the sum of the infeasibilities of the nonlinear con-
straints subject to the linear constraints and upper and lower bounds being
satisfied. In this case nInf gives the number of components of f(x) lying
outside their upper or lower bounds.

SOL.sInf Sum of infeasibilities. See nInf above.
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3.9.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by SNOPT, if not the value is altered in the SPECS file (input SpecsFile).
Definition: nnL = max(nnObj,nnJac)) - Used in #38 and #47.

Description of Inputs

Table 44: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

The SQP method I - Printing
1. MAJOR PRINT LEVEL 0 1 11111

QP subproblems I - Printing
2. MINOR PRINT LEVEL 0 1 10 0, 1 or 10

Frequencies I
5. PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 100
7. SOLUTION YES/NO 0 1 1 1 = YES; 0 = NO
8. SUPPRESS OPTIONS LISTING 0 0 1 1 = True

Also called SUPPRESS PARAMETERS

The SQP Method II - Convergence Tolerances
9. MAJOR FEASIBILITY TOLERANCE > 0 1E-6

Nonlinear constraints I
10. MAJOR OPTIMALITY TOLERANCE > 0 max(2E − 6, (10epsR)0.5) = 1.73E-6

eps R == optPar(41), Default relative function precision eps R gives (10 ∗ epsR)0.5 = 1.73E − 6.

QP subproblems II - Convergence Tolerances
11. MINOR FEASIBILITY TOLERANCE > 0 1E-6

Feasibility tolerance on linear constraints .
12. MINOR OPTIMALITY TOLERANCE > 0 1E-6

Derivative checking
13. VERIFY LEVEL -1 -1 3 -1,0,1,2,3
14. START OBJECTIVE CHECK AT COL 0 1 nnObj
15. STOP OBJECTIVE CHECK AT COL 0 nnObj nnObj
16. START CONSTRAINT CHECK AT COL 0 1 nnJac
17. STOP CONSTRAINT CHECK AT COL 0 nnJac nnJac

QP subproblems III
18. SCALE OPTION 0 0 or 2 2 2 if LP,0 if NLP
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Table 44: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

19. SCALE TOLERANCE > 0 0.9 < 1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 < 1

The SQP Method III
22. LINESEARCH TOLERANCE > 0 0.9 < 1

LU I
23. LU FACTORIZATION TOLERANCE 1 100/3.99 100 if LP
24. LU UPDATE TOLERANCE 1 10/3.99 10 if LP
25. LU SWAP TOLERANCE > 0 1.22E-4 eps(1/4)
26. LU SINGULARITY TOLERANCE > 0 3.25E-11 eps0.67

QP subproblems IV
27. PIVOT TOLERANCE > 0 3.25E-11 eps(0.67)
28. CRASH OPTION 0 3 3 0,1,2,3
29. ELASTIC WEIGHT 0 10000.0
30. ITERATIONS LIMIT 0 10000 or 20m, if more

Maximal sum of minor iterations
31. PARTIAL PRICE 0 10 or 1 10 for LP

The SQP Method IV
32. MAXIMIZE 0 0 1 1=maximize
33. FEASIBLE POINT 0 0 1 1=feasible pnt

Nonlinear constraints I
34. VIOLATION LIMIT > 0 1e6

The SQP Method V
35. MAJOR ITERATIONS LIMIT > 0 max(1000, 3 ∗max(n,m))

Maximal number of major iterations
36. MINOR ITERATIONS LIMIT > 0 500

Maximal number of minor iterations, i.e. in the solution of QP or simplex
37. MAJOR STEP LIMIT > 0 2

Hessian Approximation I
38. HESSIAN FREQUENCY > 0 99999999

The SQP Method VI
39. DERIVATIVE LEVEL 0 3 3 0,1,2,3
40. DERIVATIVE LINESEARCH 0 1 1 0=NONDERIVATIVE

0 is quadratic - gives quadratic, without gradient values
1 is cubic - gives cubic, always using gradient values
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Table 44: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

Default: 0 if numerical derivatives, otherwise 1
41. FUNCTION PRECISION > 0 3.0E-13 eps0.8 = epsR
42. DIFFERENCE INTERVAL > 0 5.48E-7 eps0.4

43. CENTRAL DIFFERENCE INTERVAL > 0 6.70E-5 eps0.8/3

44. PROXIMAL POINT METHOD 1 1 2 1,2
Minimize the 1-norm (or 2-norm) of ||(x− x0)|| to find an initial point
that is feasible subject to simple bounds and linear constraints.

45. UNBOUNDED STEP SIZE > 0 1E20
46. UNBOUNDED OBJECTIVE > 0 1E15

Hessian Approximation II
47. HESSIAN FULL MEMORY 0 1 1 =1 if nnL <= 75

or HESSIAN LIMITED MEMORY =0 if nnL > 75

The SQP Method VII
48. SUPERBASICS LIMIT > 0 max(500,n+1)

TOMLAB extension (to avoid termination with Superbasics Limit too small):
Set = n+ 1 if n− size(A, 1)− length(cL) > 450 and n <= 5000
If n > 5000: max(500, n− size(A, 1)− length(cL))
Avoid setting REDUCED HESSIAN (number of columns in reduced Hessian).
It will then be set to the same value as the SUPERBASICS LIMIT by SNOPT.

Hessian Approximation III
49. HESSIAN UPDATES > 0 20

Maximum number of QN (Quasi-Newton) updates.
If HESSIAN FULL MEMORY, default is 99999999, otherwise 20.

50. HESSIAN FLUSH > 0 99999999

Frequencies II
51. CHECK FREQUENCY > 0 60
52. EXPAND FREQUENCY > 0 10000
53. FACTORIZATION FREQUENCY > 0 50

LU II
63. LU PARTIAL PIVOTING 0 0 3 0=partial

or LU COMPLETE PIVOTING 1=complete
or LU ROOK PIVOTING 2=rook
or LU DIAGONAL PIVOTING 3=diagonal

The SQP Method VIII
64. PENALTY PARAMETER >= 0 0.0

Initial penalty parameter.
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Table 44: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

QP subproblems V
65. NEW SUPERBASICS > 0 99

Also MINOR SUPERBASICS. Maximal number of new superbasics per major iteration.
66. QPSOLVER CHOLESKY 0 0 2 0=Cholesky

or QPSOLVER CG 1=CG
or QPSOLVER QN 2=Quasi-Newton

CG

Conjugate-Gradient QP solver
67. CG TOLERANCE > 0 1e− 2
68. CG ITERATIONS > 0 100 Max number of CG

iters
69. QPSOLVER CHOLESKY 0 0 1 QN preconditioned

CG
also called QG PRECONDITIONING. Default 1 if QPSOLVER QN.

70. SUBSPACE 0 0.1 1 Subspace tolerance
Quasi-Newton QP rg tolerance.

The SQP Method IX
71. HESSIAN DIMENSION > 0 min(2000, nnL+

1)
=1 if LP problem
(n upper limit)

also called REDUCED HESSIAN. Number of columns in Reduced Hessian.
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3.10 SQOPT

3.10.1 Direct Solver Call

A direct solver call is not recommended unless the user is 100 % sure that no other solvers will be used for the
problem. Please refer to Section 3.10.2 for information on how to use SQOPT with TOMLAB.

Purpose
sqopt solves dense quadratic optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx+ dTx

s/t
x ,

bL ≤ Ax ≤ bU

(23)

where c, x ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rn+m1 .

Calling Syntax

The full input matrix A has two parts A = [A; d’]; The position of the row d’ is iObj. iObj=0 means no linear
part in A.

NOTE: There are two ways to give the linear objective: either explicit as vector c or as part of the sparse matrix
A, as d (or both ways).

[xs, hs, pi, rc, Inform, nS, nInf, sInf, Obj, iwCount] = sqopt( A, bl, bu, H, c, hElast, iObj, optPar, Warm, hs, xs,
nS, SpecsFile, PrintFile, SummFile, ObjAdd, moremem, ProbName, Prob );

Description of Inputs

The following fields are used:

A Constraint matrix, m x n (SPARSE).

bl Lower bounds on (x,Ax,d’).

bu Upper bounds on (x,Ax,d’).

H Quadratic matrix, n x n, SPARSE or DENSE, empty if LP problem. If H is a
string, H should be the name of a function routine, e.g if H = ’HxComp’ then
the function routine:

function Hx = HxComp(x, nState, Prob)

should compute H * x. The user must define this routine. nState == 1 if
calling for the first time, otherwise 0. Third argument, the Prob structure,
should only be used if calling SQOPT with the additional input parameter
Prob, see below.
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The following fields are used:, continued

Tomlab implements this callback to the predefined Matlab function HxFunc.m,
using the call if Prob.SOL.callback == 1.

c Linear objective.

hElast Defines which bounds are elastic in elastic mode. hElast(j):

0 = variable j cannot be infeasible.
1 = variable j can violate its lower bound.
2 = variable j can violate its upper bound.
3 = variable j can violate either its lower or upper bound.

iObj Says which row of A is a free row containing a linear objective vector d. If
there is no such vector, iObj = 0.

optPar Vector with optimization parameters overriding defaults and the optionally
specified SPECS file. Set empty if only using default parameters.

Warm Flag, if true: warm start. Default cold start (if empty). If ’Warm Start’ xS,
nS and hs must be supplied with correct values.

hs Basis status of variables + constraints (n+m x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

xs Initial x vector (nx1), optionally including m slacks at the end. If Warm start,
full n+m vector xs must be supplied.

nS # of superbasics. Used if a Warm Start, otherwise set to 0.

SpecsFile Name of the SPECS input parameter file.

PrintFile Name of the Print file. Name includes the path, maximal number of characters
= 500.

SummFile Name of the Summary file. Name includes the path, maximal number of char-
acters = 500.

ObjAdd Constant added to the objective for printing purposes, typically 0.

moremem Add extra memory for the sparse LU, might speed up the optimization. 1E6
is 10MB of memory. If empty, set to 0.
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The following fields are used:, continued

ProbName Name of the problem. ¡=100 characters are used in the MEX interface. In the
SQOPT solver the first 8 characters are used in the printed solution and in
some routines that output BASIS files. Blank is OK.

Prob Sending the Prob structure is optional, only of use if sending H as a function
string, see input H.

Description of Outputs

The following fields are used:

xs Solution vector (n+m by 1) with n decision variable values together with the
m slack variables.

hs Basis status of variables + constraints (n+m x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
value of the optional parameter Feasibility tolerance. Note that if scaling
is specified, the Feasibility tolerance applies to the variables of the scaled
problem. In this case, the variables of the original problem may be as much as
0.1 outside their bounds, but this is unlikely unless the problem is very badly
scaled. Check the “Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xs(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sInf if scaling was not used).

pi Lagrangian multipliers (dual solution vector) (m x 1 vector).

rc A vector of reduced costs, g − (A − I )Tπ, where g is the gradient of the
objective if xs is feasible (or the gradient of the Phase-1 objective otherwise).
The last m entries are π.

Inform Result of SQOPT run.

0 finished successfully
1 optimality conditions satisfied
2 feasible point found
4 weak QP minimizer
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The following fields are used:, continued

10 the problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equalities
14 infeasibilities minimized

20 the problem appears to be unbounded
21 unbounded objective

30 resource limit error
31 iteration limit reached
33 the superbasics limit is too small

40 terminated after numerical difficulties
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis

50 error in the user-supplied functions
53 the QP Hessian is indefinite

70 user requested termination
73 terminated during QP objective evaluation
74 terminated from monitor routine

80 insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

90 input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem
93 the QP Hessian is indefinite

140 system error
141 wrong number of basic variables
142 error in basis package

nS # of superbasics.

nInf Number of infeasibilities.

sInf Sum of infeasibilities.
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The following fields are used:, continued

Obj Objective function value at optimum.

iwCount Number of QP iterations in iwCount(1), number of Hx products.
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3.10.2 Using TOMLAB

Purpose
sqoptTL solves nonlinear optimization problems defined as

min
x

f(x) = 1
2x

TFx+ cTx

s/t
xL ≤ x ≤ xU ,

bL ≤ Ax ≤ bU

(24)

where c, x, xL, xU ∈ Rn, F ∈ Rn×n, A ∈ Rm1×n, and bL, bU ∈ Rm1 .

Calling Syntax
Using the driver routine tomRun:

Prob = �Assign( ... );
Result = tomRun(’sqopt’, Prob ... );

or

Prob = ProbCheck( ... );
Result = sqoptTL(Prob);

Call Prob = �Assign( ... ) or Prob=ProbDef; to define the Prob for the second option.

Description of Inputs

Prob, The following fields are used:

x L, x U Bounds on variables.

b L, b U Bounds on linear constraints.

A Linear constraint matrix.

QP.c Linear coefficients in objective function.

QP.F Quadratic matrix of size nnObj x nnObj. nnObj < n is OK.

PriLevOpt Print level.

WarmStart If true, use warm start, otherwise cold start.

SOL.callback If 1, use a callback to Matlab to compute QP.F * x for different x. Faster when
F is very large and almost dense, avoiding copying of F from Matlab to MEX.

SOL.xs Solution and slacks from previous run.
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Prob, The following fields are used:, continued

SOL.hs State for solution and slacks from previous run.

SOL.nS Number of superbasics from previous run.

SOL.hElastic Defines which variables are elastic in elastic mode. hElastic(j):
0 = variable j is non-elastic and cannot be infeasible.
1 = variable j can violate its lower bound.
2 = variable j can violate its upper bound.
3 = variable j can violate either its lower or upper bound.

SOL.moremem Add more memory if SQOPT stops with not enough storage message. 1E6 is
10MB of memory. Default 0.

SOL.SpecsFile Name of user defined SPECS file, read BEFORE optPar() is used.

SOL.PrintFile Name of SOL Print file. Amount and type of printing determined by SPECS
parameters or optPar parameters.

SOL.SummFile Name of SOL Summary File.

SOL.optPar Elements > -999 takes precedence over corresponding TOMLAB params. See
Table 50.

Description of Outputs

Result, The following fields are used:

Result The structure with results (see ResultDef.m).
f k Function value at optimum.
x k Solution vector.
x 0 Initial solution vector.
g k Gradient of the function.

xState State of variables. Free == 0; On lower == 1; On upper == 2; Fixed == 3;
bState State of linear constraints. Free == 0; Lower == 1; Upper == 2; Equality

== 3;

v k Lagrangian multipliers (for bounds + dual solution vector).

ExitFlag Exit status from sqopt.m (similar to TOMLAB).

Inform Result of SQOPT run.
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Result, The following fields are used:, continued

0 finished successfully
1 optimality conditions satisfied
2 feasible point found
4 weak QP minimizer

10 the problem appears to be infeasible
11 infeasible linear constraints
12 infeasible linear equalities
14 infeasibilities minimized

20 the problem appears to be unbounded
21 unbounded objective

30 resource limit error
31 iteration limit reached
33 the superbasics limit is too small

40 terminated after numerical difficulties
42 singular basis
43 cannot satisfy the general constraints
44 ill-conditioned null-space basis

50 error in the user-supplied functions
53 the QP Hessian is indefinite

70 user requested termination
73 terminated during QP objective evaluation
74 terminated from monitor routine

80 insufficient storage allocated
81 work arrays must have at least 500 elements
82 not enough character storage
83 not enough integer storage
84 not enough real storage

90 input arguments out of range
91 invalid input argument
92 basis file dimensions do not match this problem
93 the QP Hessian is indefinite

140 system error
141 wrong number of basic variables
142 error in basis package
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Result, The following fields are used:, continued

rc A vector of reduced costs, g − (A − I )Tπ, where g is the gradient of the
objective if xs is feasible (or the gradient of the Phase-1 objective otherwise).
The last m entries are π.

Iter Number of iterations.
FuncEv Number of function evaluations. Set to Iter.
GradEv Number of gradient evaluations. Set to Iter.
ConstrEv Number of constraint evaluations. Set to 0.

QP.B Basis vector in TOMLAB QP standard.

Solver Name of the solver (sqopt).
SolverAlgorithm Description of the solver.

SOL.hs Basis status of variables + constraints (n+m x 1 vector). State of variables:
0=nonbasic (on bl), 1=nonbasic (on bu), 2=superbasic (between bounds),
3=basic (between bounds).

Basic and superbasic variables may be outside their bounds by as much as the
value of the optional parameter Feasibility tolerance. Note that if scaling
is specified, the Feasibility tolerance applies to the variables of the scaled
problem. In this case, the variables of the original problem may be as much as
0.1 outside their bounds, but this is unlikely unless the problem is very badly
scaled. Check the “Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as
much as the Feasibility tolerance, and there may be some nonbasics for
which xs(j) lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds
by an arbitrary amount (bounded by sInf if scaling was not used).

SOL.hs State for variables and slacks in xs.

SOL.nS # of superbasics.

SOL.nInf # of infeasibilities.

SOL.sInf Sum of infeasibilities.
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3.10.3 optPar

Description

Use missing value (-999 or less), when no change of parameter setting is wanted. The default value will then be
used by SQOPT, unless the value is altered in the SPECS file (input SpecsFile).
See TOMLAB User’s Guide for the SPECS keywords and description.

Description of Inputs

Table 49: The following fields are used:

# SPECS keyword text Lower Default Upper Comment

LP/QP Parameters I - Printing
2. PRINT LEVEL 0 0 10 0, 1 or 10

Frequencies I
5. PRINT FREQUENCY 0 100
6. SUMMARY FREQUENCY 0 100
7. SOLUTION YES/NO 0 1 1 1 = YES; 0 = NO
8. SUPPRESS PARAMETERS 0 0 1 1 = True

LP/QP Parameters II - Convergence Tolerances
11. FEASIBILITY TOLERANCE > 0 1E-6
12. OPTIMALITY TOLERANCE > 0 1E-6

Scaling
18. SCALE OPTION 0 2 2
19. SCALE TOLERANCE > 0 0.9 < 1
20. SCALE PRINT 0 0 1 1 = True
21. CRASH TOLERANCE 0 0.1 < 1

LU I
23. LU FACTOR TOLERANCE 1 100
24. LU UPDATE TOLERANCE 1 10
25. LU SWAP TOLERANCE > 0 1.22E-4 eps1/4

26. LU SINGULARITY TOLERANCE > 0 3.25E-11 eps0.67

LP/QP Parameters III
27. PIVOT TOLERANCE > 0 3.25E-11 eps0.67

28. CRASH OPTION 0 0 3 0,1,2,3
29. ELASTIC WEIGHT 0 1
30. ITERATIONS LIMIT 0 10000
31. PARTIAL PRICE 1 10
32. MAXIMIZE 0 0 1 1=maximize
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Table 49: The following fields are used:, continued

# SPECS keyword text Lower Default Upper Comment

QP Objective
45. UNBOUNDED STEP SIZE > 0 1E20
48. SUPERBASICS LIMIT > 0 min(500,1+nnObj)

LP/QP Parameters IV
49. ELASTIC MODE 0 1 0,1,2
50. ELASTIC OBJECTIVE 0 2 0,1,2

Frequencies II
51. CHECK FREQUENCY > 0 60
52. EXPAND FREQUENCY > 0 10000
53. FACTORIZATION FREQUENCY > 0 50

LU II
63. LU COMPLETE PIVOTING or LU PAR-

TIAL PIVOTING
0 0 1 1=complete,

0=partial
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4 Using the SOL Solvers in TOMLAB

This section discusses the use of the TOMLAB solvers from Stanford Systems Optimization Laboratory (SOL).
In order to use these solvers efficiently, it is recommended to read the corresponding solver details as well. It is
important to do help on the m-files corresponding to each solver as well as the TOMLAB interface routine. The
names for MINOS solver are minos.m and minosTL.m, and similar for other solvers.

To learn all the different parameter settings for a solver it is useful to run the GUI, where all parameters are
selectable, and all default values are shown. Furthermore there are short help available for the different solver
parameters in the drag menus. Even if the user is not using the GUI to solve the particular user problem, it might
be useful to run the test problems defined in TOMLAB to learn how to use the SOL solvers in the most efficient
way.

4.1 Setting Solver Parameters

To handle the use of the SOL solvers, a special field in the Prob structure, Prob.SOL, is used to send information
to the SOL solvers. It is also used to store the information needed for warm starts of the SOL solvers.

The vector Prob.SOL.optPar of length 71 holds most of the different parameters that control the performance of
the SOL solvers. All parameters have default values. If calling the SOL solver directly, not using TOMLAB, the
user should set the values wanted in the optPar vector. The rest should have the value −999, which gives the
default value used by the solver. For information on other parameters that could effect the solution process see
the Table 50. The TOMLAB interface routine always has the name of the routine, with the additional two letters
TL, e.g. for MINOS the TOMLAB interface routine is minosTL.

Other important fields to set when using the SOL solvers are the print and summary files that the solvers create.
These files are very important to look through if any problems are occurring, to find what the causes might be,
and if any warnings or errors are reported from the SOL solvers. To create a print and summary file, one example
when running MINOS is the following statements

Prob.SOL.optPar(1) = 111111; % Maximal print level

Prob.SOL.PrintFile = ’minos.pri’ % Print file called minos.pri

Prob.SOL.SummFile = ’minos.sum’ % Summary file called minos.sum

Prob.NumDiff = 6; % Tell TOMLAB that minos is estimating

Prob.ConsDiff = 6; % all derivatives (gradient and Jacobian)

If MINOS is told that no derivatives are given, then MINOS will try to estimate them, and then TOMLAB must
not do the same, i.e. Prob.NumDiff and Prob.ConsDiff must be set to six (internal solver estimation of derivatives).
If MINOS is told that all derivatives are given, then TOMLAB might estimate them for MINOS using any of the
five methods possible, or by using automatic differentiation.

4.2 Derivatives for the Solvers

The TOMLAB solvers from Stanford Systems Optimization Laboratory (SOL), have some useful special features,
which influence the way that input is prepared to the solvers.

When defining the gradient vector and the constraint Jacobian matrix it is often the case that they are only
partially known. The SOL solvers give the possibility to mark these elements. They will then be estimated by
finite differences.
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In TOMLAB the gradient and the constraint Jacobian matrix are defined in two separate routines. If any element
is unknown, it is just marked with the standard Matlab element NaN. The TOMLAB SOL interface routines will
estimate the NaN elements if Prob.CheckNaN is set to 1.

If any gradient or constraint Jacobian element is infinite, in Matlab set as Inf or -Inf, this element is converted to
a big number, 1020, in the TOMLAB SOL interface.

The following applies to the sparse nonlinear programming solvers MINOS and SNOPT. When the constraint
Jacobian matrix is sparse, then only the nonzero elements should be given. The sparse pattern is given as a
sparse matrix Prob.ConsPattern. In this matrix nonzero elements are marking nonzero elements in the constraint
Jacobian. This pattern is static, i.e. given once before the call to the SOL solver. One problem is that a sparse
matrix in Matlab is dynamic, i.e. only the nonzero elements of the matrix are stored. As soon as an element
becomes zero, the vector of nonzeros are decreased one element. A gradient element that is normally nonzero
might become zero during the optimization. Therefore care must be taken by the interface to return the correct
values, because the SOL solvers assume the possible non-zero elements of the constraint Jacobian to be returned
in the correct order.

The TOMLAB interface assumes the following conventions for the constraint Jacobian matrix:

• If the user returns a sparse matrix, and the number of nonzeros are equal to the number of nonzeros in
Prob.ConsPattern, no checks are done.

• If the user returns a sparse matrix, and the number of nonzeros are not equal to the number of nonzeros
in Prob.ConsPattern, the interface is matching all elements in the sparse array to find which nonzeros they
represent, and returns the correct vector of static nonzeros.

• If the user returns a sparse matrix, and has given no pattern of nonzeros in Prob.ConsPattern, i.e. it is an
empty array, then the solver and the interface assumes a full, dense matrix and the interface makes a full
matrix before returning the elements, column by column, to the solver.

• If the user returns a dense matrix, the interface just feeds all elements, column by column, back to the solver.

• If too few elements are returned, the solver will estimate the rest using finite differences.

When using the dense SOL nonlinear programming solvers, the constraint Jacobian matrix is always assumed to
be dense. The interface will convert any sparse matrix returned by the user to a dense, full matrix, and return the
elements, column by column, to the solver.

If no derivatives are available, it might be better to use the Nonderivative linesearch in SNOPT. It is based on
safeguarded quadratic interpolation. The default is to use a safeguarded cubic interpolation if derivatives are
available. To select Nonderivative linesearch set the following parameter:

Prob.SOL.optPar(40) = 0; % Use Nonderivative instead of Derivative Linesearch

4.3 Solver Output to Files

The SOL solvers print different amount of information on ASCII files, one Print File with more information, and
one Summary File with less information. SNOPT is using snoptpri.txt and snoptsum.txt as default names. MINOS
is using minospri.txt and minossum.txt as default names. The following example shows how to set new names,
other than the default, for these files.
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Prob.SOL.PrintFile = ’snoptp.out’; % New name for Print File

Prob.SOL.SummFile = ’snopts.out’; % New name for Summary File

The SQOPT solver by default also defines the two log files as sqoptpri.txt and sqoptsum.txt. If the print level is 0
no output will occur, unless some errors are encountered. It is possible to make SQOPT totally silent and avoid
any opening of files by the following statements.

Prob.SOL.PrintFile = ’’;

Prob.SOL.SummFile = ’’;

Prob.SOL.optPar(2) = 0;

Prob.SOL.optPar(3) = 0;

The amount of printing is determined by a print level code, which is different for the solvers. See the help and
manual for each solver. Some solvers also have two print levels, one major print level and one minor print level.
This applies for SNOPT, NPSOL and NLSSOL. There are also different other parameters that influence how much
output is written on the files. The following example show how to get maximum output for SNOPT on files with
user defined names.

Prob.SOL.PrintFile = ’sn.p’; % New name for Print File

Prob.SOL.SummFile = ’sn.s’; % New name for Summary File

Prob.SOL.optPar(1) = 111111; % Major print level, combination of six 0/1

Prob.SOL.optPar(2) = 10; % Minor print level, 0, 1 or 10. 10 is maximum

Prob.SOL.optPar(5) = 1; % Print Frequency

Prob.SOL.optPar(6) = 1; % Summary Frequency

Prob.SOL.optPar(7) = 1; % Solution yes. 0 = Solution not printed

Prob.SOL.optPar(8) = 1; % Full options listing, not default

The other SOL solvers, NPSOL, NLSSOL, LSSOL, QPOPT and LPOPT, only define the Print File and Summary File
if the user has defined names for them. See the help for each solver on how to set the correct print level and other
parameters.

4.4 Warm Starts for the Solvers

In TOMLAB warm starts for the SOL solvers are automatically handled. The only thing needed is to call the
routine WarmDefSOL after having solved the problem the first time, as the following principal example shows
doing repeated calls to SNOPT.

... % Define first problem

Result = tomRun(’snopt’,Prob); % Solve problem at t=1

... for t=2:N

... % Changes at time t in Prob structure

Prob = WarmDefSOL(’snopt’, Prob, Result(t-1));

Result(t) = tomRun(’snopt’,Prob); % Call tomRun to solve again

... % Postprocessing

end

The WarmDefSOL routine are setting the warm start flag Prob.WarmStart, as true.
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Prob.WarmStart = 1;

It is also moving subfields on the Result.SOL structure into Prob.SOL for the next run. For SNOPT, SQOPT and
MINOS the following commands are needed.

Prob.SOL.xs = Result.SOL.xs

Prob.SOL.hs = Result.SOL.hs

Prob.SOL.nS = Result.SOL.nS

For NPSOL and the other SOL solvers the commands are

Prob.SOL.xs = Result.SOL.xs

Prob.SOL.iState = Result.SOL.iState

Prob.SOL.cLamda = Result.SOL.cLamda

Prob.SOL.H = Result.SOL.H

The fields SOL.cLamda and SOL.H are not used for QPOPT, LPOPT, and LSSOL. For NPSOL and NLSSOL the
TOMLAB interface is automatically setting the necessary parameter Hessian Yes for subsequent runs. However,
in order for the first warm start to work the user must set this parameter before the first run. The principal calls
will be

... % Define first problem

Prob.SOL.optPar(50) = 1; % Define Hessian Yes BEFORE first call

Result = tomRun(’npsol’,Prob); % Solve problem at t=1

... for t=2:N

...

Prob = WarmDefSOL(’npsol’, Prob, Result);

Result = tomRun(’npsol’,Prob);

...

end

Note that for all solvers the new initial value are taken from the field Prob.SOL.xs and any user change in the
standard initial value Prob.x 0 is neglected.

4.5 Memory for the Solvers

Some users have encountered problems where SOL solvers report insufficient memory on machines where memory
should not be an issue. The solvers estimate their internal memory requirements at startup. This estimate is not
always large enough so the user might have to specify additional memory. This can be accomplished by

Prob.SOL.moremem = 1000; % or even larger if necessary

4.6 Parameters in Prob.optParam
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Table 50: Information stored in the structure Prob.optParam. Default values in parenthesis.

Field Description

PreSolve Flag if presolve analysis is to be applied on linear constraints ( 0).

DiffInt Difference interval in derivative estimates (used for Prob.NumDiff/ConsDiff
-1 or 1).

CentralDiff Central difference interval in derivative estimates (used for
Prob.NumDiff/ConsDiff -2 or 2).

splineSmooth Smoothness parameter sent to the SPLINE Toolbox routine csaps.m when
computing numerical approximations of the derivatives (0.4) (used for
Prob.NumDiff/ConsDiff -3 or 3).

VARsplineTol Tolerance parameter sent to the SPLINE Toolbox routine spaps.m when
computing numerical approximations of the derivatives (10−3) (used for
Prob.NumDiff/ConsDiff -4 or 4).

CHECK If true, no more check is done on the structure. Set to true (=1) after first
call to solver (which then calls optParamSet).
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5 QPOPT details

5.1 Introduction

TOMLAB /QPOPT (hereafter referred to as QPOPT ) is based on an inertia-controlling method that maintains
a Cholesky factorization of the reduced Hessian (see below). The method follows Gill and Murray [13] and is
described in [34]. Here we briefly summarize the main features of the method.

5.1.1 Overview

QPOPT’s method has a feasibility phase (finding a feasible point by minimizing the sum of infeasibilities) and an
optimality phase (minimizing the quadratic objective function within the feasible region). The computations in
both phases are performed by the same subroutines, but with different objective functions. The feasibility phase
does not perform the standard simplex method; i.e., it does not necessarily find a vertex (with n constraints
active), except in the LP case if mL ≤ n. Once an iterate is feasible, all subsequent iterates remain feasible. Once
a vertex is reached, all subsequent iterates are at a vertex.

QPOPT is designed to be efficient when applied to a sequence of related problems—for example, within a sequential
quadratic programming method for nonlinearly constrained optimization (e.g., the NPOPT package [35]). In
particular, the user may specify an initial working set (the indices of the constraints believed to be satisfied
exactly at the solution); see the discussion of Warm Start.

In general, an iterative process is required to solve a quadratic program. Each new iterate x̄ is defined by

x̄ = x+ αp, (25)

where the step length α is a non-negative scalar, and p is called the search direction. (For simplicity, we shall
consider a typical iteration and avoid reference to the iteration index.)

5.1.2 The working set

At each point x, a working set of constraints is defined to be a linearly independent subset of the constraints that
are satisfied “exactly” (to within the Feasibility tolerance). The working set is the current prediction of the
constraints that hold with equality at a solution of LCQP. Let mw denote the number of constraints in the working
set (including bounds), and let W denote the associated mw × n matrix of constraint gradients.

The definition of the search direction ensures that constraints in the working set remain unaltered for any value
of the step length. Thus,

Wp = 0. (26)

In order to compute p, a TQ factorization of W is used:

WQ =
(

0 T
)
, (27)

where T is a nonsingular mw ×mw upper-triangular matrix, and Q is an n × n nonsingular matrix constructed
from a product of orthogonal transformations(see [29]). If the columns of Q are partitioned so that

Q =
(
Z Y

)
,

where Y is n×mw and Z is n× nZ (where nZ = n−mw), then the columns of Z form a basis for the null space
of W . Let nR be an integer such that 0 ≤ nR ≤ nZ , and let ZR denote a matrix whose nR columns are a subset
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of the columns of Z. (The integer nR is the quantity “Zr” in the printed output from qpopt). In many cases, ZR

will include all the columns of Z. The direction p will satisfy (26) if

p = ZRpR, (28)

where pR is any nR-vector.

5.1.3 The reduced Hessian

Let gQ and HQ denote the transformed gradient and transformed Hessian:

gQ = QTg(x) and HQ = QTHQ.

The first nR elements of the vector gQ will be denoted by gR, and the first nR rows and columns of the matrix HQ

will be denoted by HR. The quantities gR and HR are known as the reduced gradient and reduced Hessian of q(x),
respectively. Roughly speaking, gR and HR describe the first and second derivatives of an unconstrained problem
for the calculation of pR.

At each iteration, a triangular factorization of HR is available. If HR is positive definite, HR = RTR, where R is
the upper-triangular Cholesky factor of HR. If HR is not positive definite, HR = RTDR, where D = diag(1, 1, . . . ,
1, ω), with ω ≤ 0.

In QPOPT, the computation is arranged so that the reduced-gradient vector is a multiple of eR, a vector of all
zeros except in the last (nRth) position. This allows pR in (28) to be computed from a single back-substitution,

RpR = γeR, (29)

where γ is a scalar whose definition depends on whether the reduced Hessian is positive definite at x. In the
positive-definite case, x+ p is the minimizer of the objective function subject to the working-set constraints being
treated as equalities. If HR is not positive definite, pR satisfies

pTRHR pR < 0andgTRpR ≤ 0,

allowing the objective function to be reduced by any step of the form x+ αp, α > 0.

5.1.4 Optimality conditions

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined by Z. During the
feasibility phase, the reduced gradient will usually be zero only at a vertex (although it may be zero elsewhere
in the presence of constraint dependencies). During the optimality phase, a zero reduced gradient implies that
x minimizes the quadratic objective when the constraints in the working set are treated as equalities. At a
constrained stationary point, Lagrange multipliers λ are defined from the equations

WTλ = g(x). (30)

A Lagrange multiplier λj corresponding to an inequality constraint in the working set is said to be optimal if
λj ≤ σ when the associated constraint is at its upper bound , or if λj ≥ −σ when the associated constraint is at
its lower bound , where σ depends on the Optimality tolerance. If a multiplier is non-optimal, the objective
function (either the true objective or the sum of infeasibilities) can be reduced by deleting the corresponding
constraint from the working set (with index Jdel; see Section 5.6).
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If optimal multipliers occur during the feasibility phase but the sum of infeasibilities is not zero, there is no feasible
point. The user can request QPOPT to continue until the sum of infeasibilities is minimized (see the discussion of
Min sum). At such a point, the Lagrange multiplier λj corresponding to an inequality constraint in the working
set will be such that −(1 +σ) ≤ λj ≤ σ when the associated constraint is at its upper bound , and −σ ≤ λj ≤ 1 +σ

when the associated constraint is at its lower bound . Lagrange multipliers for equality constraints will satisfy
|λj | ≤ 1 + σ.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction p is given
by ZRpR (see (29)). The step length is chosen to maintain feasibility with respect to the satisfied constraints. If
HR is positive definite and x + p is feasible, α is defined to be one. In this case, the reduced gradient at x̄ will
be zero, and Lagrange multipliers are computed. Otherwise, α is set to αM , the step to the “nearest” constraint
(with index Jadd; see Section 5.6). This constraint is added to the working set at the next iteration.

If the reduced Hessian HR is not positive definite and αM does not exist (i.e., no positive step αM reaches the
boundary of a constraint not in the working set), then QPOPT terminates at x and declares the problem to be
unbounded.
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5.2 Further Details of the Method

The following sections are not essential knowledge for normal users. They give background on the active-set
strategy and the anti-cycling procedure.

5.2.1 Treatment of simple upper and lower bounds

Bound constraints ` ≤ x ≤ u are treated specially by qpopt. The presence of a bound constraint in the working
set has the effect of fixing the corresponding component of the search direction to zero. Thus, the associated
variable is fixed , and specification of the working set induces a partition of x into fixed and free variables. For
some permutation P , the working-set matrix satisfies

WP =

(
F N

IN

)
,

where
(
F N

)
is part of the matrix A, and IN corresponds to some of the bounds. The matrices F and N contain

the free and fixed columns of the general constraints in the working set. A TQ factorization FQF =
(

0 TF

)
of

the smaller matrix F provides the required T and Q as follows:

Q = P

(
QF

IN

)
, T =

(
TF N

IN

)
.

The matrix QF is implemented as a dense orthogonal matrix. Each change in the working set leads to a simple
change to F : if the status of a general constraint changes, a row of F is altered; if a bound constraint enters or
leaves the working set, a column of F changes. The matrices TF , QF and R are held explicitly; together with the
vectors QTg, and QTc. Products of plane rotations are used to update QF and TF as the working set changes. The
triangular factor R associated with the reduced Hessian is updated only during the optimality phase.

5.2.2 The initial working set

For a cold start, the initial working set includes equality constraints and others that are close to being satisfied at
the starting point. (“Close” is defined under Crash tolerance.) For a warm start, the initial working is specified
by the user (and possibly revised to improve the condition of W ).

At the start of the optimality phase, QPOPT must ensure that the initial reduced Hessian HR is positive-definite.
It does so by including a suitably large number of constraints (real or artificial) in the initial working set. (When
W contains n constraints, HR has no rows and columns. Such a matrix is positive definite by definition.)

Let HZ denote the first nZ rows and columns of HQ = QTHQ at the beginning of the optimality phase. A
partial Cholesky factorization with interchanges is used to find an upper-triangular matrix R that is the factor of
the largest positive-definite leading submatrix of HZ . The use of interchanges tends to maximize the dimension
of R. (The condition of R may be controlled by setting the Rank Tolerance.) Let ZR denote the columns of Z
corresponding to R, and let Z be partitioned as Z =

(
ZR ZA

)
. A working set for which ZR defines the null space

can be obtained by including the rows of ZTA as “artificial constraints” (with bounds equal to the current value of
ZTA x). Minimization of the objective function then proceeds within the subspace defined by ZR, as described in
Section 5.1.

The artificially augmented working set is given by

W̄ =

(
ZTA

W

)
,
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so that p will satisfy Wp = 0 and ZTA p = 0. By definition of the TQ factors of W , we have

W̄Q =

(
ZTA

W

)
Q =

(
ZTA

W

)(
ZR ZA Y

)
=
(

0 T̄
)
,

where

T̄ =

(
I 0

0 T

)
.

Hence the TQ factors of W̄ are available trivially.

The matrix ZA is not kept fixed, since its role is purely to define an appropriate null space; the TQ factorization
can therefore be updated in the normal fashion as the iterations proceed. No work is required to “delete” the
artificial constraints associated with ZA when ZTR g = 0, since this simply involves repartitioning Q. The “artificial”
multiplier vector associated with the rows of ZTA is equal to ZTA g, and the multipliers corresponding to the rows of
the “true” working set are the multipliers that would be obtained if the artificial constraints were not present. If
an artificial constraint is “deleted” from the working set, an A appears alongside the entry in the Jdel column of
the printed output (see Section 5.6). The multiplier may have either sign.

The number of columns in ZA and ZR, the Euclidean norm of ZTR g, and the condition estimator of R appear in
the printed output as Art, Zr, Norm gZ and Cond Rz (see Section 5.6).

Under some circumstances, a different type of artificial constraint is used when solving a linear program. Although
the algorithm of qpopt does not usually perform simplex steps (in the traditional sense), there is one exception:
a linear program with fewer general constraints than variables (i.e., mL ≤ n). (Use of the simplex method in
this situation leads to savings in storage.) At the starting point, the “natural” working set (the set of constraints
exactly or nearly satisfied at the starting point) is augmented with a suitable number of “temporary” bounds, each
of which has the effect of temporarily fixing a variable at its current value. In subsequent iterations, a temporary
bound is treated similarly to normal constraints until it is deleted from the working set, in which case it is never
added again. If a temporary bound is “deleted” from the working set, an F (for “Fixed”) appears alongside the
entry in the Jdel column of the printed output (see Section 5.6). Again, the multiplier may have either sign.

5.2.3 The anti-cycling procedure

The EXPAND procedure [32] is used to reduce the possibility of cycling at a point where the active constraints
are nearly linearly dependent. The main feature of EXPAND is that the feasibility tolerance is increased slightly
at the start of every iteration. This allows a positive step to be taken every iteration, perhaps at the expense of
violating the constraints slightly.

Suppose that the Feasibility tolerance is δ. Over a period of K iterations (where K is defined by the Expand

frequency), the feasibility tolerance actually used by QPOPT—the working feasibility tolerance—increases from
0.5δ to δ (in steps of 0.5δ/K).

At certain stages the following “resetting procedure” is used to remove constraint infeasibilities. First, all variables
whose upper or lower bounds are in the working set are moved exactly onto their bounds. A count is kept of the
number of nontrivial adjustments made. If the count is positive, iterative refinement is used to give variables that
satisfy the working set to (essentially) machine precision. Finally, the working feasibility tolerance is reinitialized
to 0.5δ.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of iterations is
started with K incremented by 10. (The decision to resume the feasibility phase or optimality phase is based on
comparing any constraint infeasibilities with δ.)
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The resetting procedure is also invoked when QPOPT reaches an apparently optimal, infeasible or unbounded
solution, unless this situation has already occurred twice. If any nontrivial adjustments are made, iterations are
continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a potential
choice of constraints to be added to the working set. Let αM denote the maximum step at which x + αMp does
not violate any constraint by more than its feasibility tolerance. All constraints at distance α (α ≤ αM) along p
from the current point are then viewed as acceptable candidates for inclusion in the working set. The constraint
whose normal makes the largest angle with the search direction is added to the working set. This strategy helps
keep the working-set matrix W well-conditioned.
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5.3 The Options File

Observe that options are normally set in Prob.SOL.optPar.

Several choices in QPOPT’s algorithm logic may be defined by various optional parameters (more briefly known as
options or parameters).

In order to reduce the number of subroutine parameters for qpopt, the options have default values that are
appropriate for most problems. Options need be specified only if their values should be different from the default.

5.3.1 Format of option strings

Each optional parameter is defined by an option string of up to 72 characters, containing one or more items
separated by spaces or equal signs (=). Alphabetic characters may be in upper or lower case. An example option
string is Print level = 5. In general, an option string contains the following items:

1. A keyword such as Print.

2. A phrase such as level that qualifies the keyword. (Typically 0, 1 or 2 words.)

3. A number that specifies either an integer or a real value (only for some options). Such numbers may be
up to 16 contiguous characters in Fortran 77’s F, E or D formats, terminated by a space.

Blank strings and comments may be used to improve readability. A comment begins with an asterisk (*) and all
subsequent characters are ignored. Synonyms are recognized for some of the keywords, and abbreviations may be
used if there is no ambiguity.

The following are examples of valid option strings for QPOPT:

NOLIST

COLD START

Warm start

Problem type = LP

Problem type = Quadratic Program * Same as QP or QP2

Problem Type QP4

Min sum Yes

Feasibility Phase iteration limit 100

Feasibility tolerance 1.0e-8 * for IEEE double precision

Crash tolerance 0.002

Defaults

* This string will be ignored. So will a blank line.
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5.4 Description of the optional parameters

Permissible options are defined below in alphabetical order. For each option, we give the keyword, any essential
qualifiers, the default value, and the definition. The minimum abbreviation of each keyword and qualifier is
underlined. If no characters of a qualifier are underlined, the qualifier may be omitted. The letters i and r denote
integer and real values required for certain options. The letter a denotes a character string value. The number
u represents unit roundoff for floating-point arithmetic (typically about 10−16).

Check frequency i Default = 50

Every ith

iteration, a numerical test is made to see if the current solution x satisfies the constraints in the working set.
If the largest residual of the constraints in the working set is judged to be too large, the working-set matrix is
refactorized and the variables are recomputed to satisfy the constraints more accurately.

Cold start Default = Coldstart

Warm start

This option specifies how the initial working set is chosen. With a cold start, QPOPT chooses the initial working
set based on the values of the variables and constraints at the initial point. Broadly speaking, the first working
set will include all equality constraints and also any bounds or inequality constraints that are “nearly” satisfied
(to within the Crash tolerance).

With a warm start, the user must provide a valid definition of every element of the array istate. The specification
of istate will be overridden if necessary, so that a poor choice of the working set will not cause a fatal error.
A warm start will be advantageous if a good estimate of the initial working set is available—for example, when
qpopt is called repeatedly to solve related problems.

Crash tolerance r Default = 0.01

This value is used for cold starts when QPOPT selects an initial working set. Bounds and inequality constraints
are selected if they are satisfied to within r. More precisely, a constraint of the form aTjx ≥ l will be included in
the initial working set if |aTjx− l| ≤ r(1 + |l|). If r < 0 or r > 1, the default value is used.

Defaults

This is a special option to reset all options to their default values.

Expand frequency i Default = 5

This defines the initial value of an integer K that is used in an anti-cycling procedure designed to guarantee
progress even on highly degenerate problems. See Section 5.2.3.

If i ≥ 9999999, no anti-cycling procedure is invoked.

Feasibility tolerance r Default =
√

u

This defines the maximum acceptable absolute violation in each constraint at a “feasible” point. For example, if
the variables and the coefficients in the general constraints are of order unity, and the latter are correct to about
6 decimal digits, it would be appropriate to specify r as 10−6. If r < u, the default value is used.
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Before optimizing the objective function, QPOPT must find a feasible point for the constraints. If the sum of
infeasibilities cannot be reduced to zero and Min sum = Yes is requested, QPOPT will find the minimum value of
the sum. Let sinf be the corresponding sum of infeasibilities. If sinf is quite small, it may be appropriate to
raise r by a factor of 10 or 100. Otherwise, some error in the data should be suspected.

Feasibility Phase Iteration Limit i1 Default = max(50, 5(n+mL))

Optimality Phase Iteration Limit i2 Default = max(50, 5(n+mL))

The scalars i1 and i2 specify the maximum number of iterations allowed in the feasibility and optimality phases.
Optimality Phase iteration limit is equivalent to Iteration limit. Setting i1 = 0 and PrintLevel > 0
means that the workspace needed will be computed and printed, but no iterations will be performed.

Hessian rows i Default = 0 or n

This specifies m, the number of rows in the Hessian matrix H or its trapezoidal factor G (as used by the default
subroutine qpHess).

For problem type FP or LP, the default value is m = 0.

For problems QP1 or QP2, the first m rows and columns of H are obtained from H, and the remainder are assumed
to be zero. For problems QP3 or QP4, the factor G is assumed to have m rows and n columns. They are obtained
from the associated rows of H.

If a nonstandard subroutine qpHess is provided, it may access the problem type and m via the lines

integer lqptyp, mHess

common /sol1qp/ lqptyp, mHess

For example, Problem type FP, LP or QP4 sets lqptyp = 1, 2 or 6 respectively, and Hessian rows 20 sets mHess =
20. Infinite Bound size r Default = 1020

If r > 0, r defines the “infinite” bound bigbnd in the definition of the problem constraints. Any upper bound

greater than or equal to bigbnd will be regarded as plus infinity (and similarly for a lower bound less than or equal
to −bigbnd). If r ≤ 0, the default value is used.

Infinite Step size r Default = max(bigbnd, 1020)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to an unbounded
solution. (Note that an unbounded solution can occur only when the Hessian is not positive definite.) If the
change in x during an iteration would exceed the value of Infinite Step, the objective function is considered to
be unbounded below in the feasible region. If r ≤ 0, the default value is used.

Iteration limit i Default = max(50, 5(n+mL))

Iters

Itns

This is equivalent to Optimality Phase iteration limit. See Feasibility Phase.
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List

If Nolist was previously specified, List restores output to the Print file whenever an optional parameter is reset.

Maximum degrees of freedom i Default = n

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian HR. Ideally, i should
be set slightly larger than the value of nR expected at the solution. (See Sections 5.1.2 and 5.1.3.) It need not
be larger than mN + 1, where mN is the number of variables that appear nonlinearly in the quadratic objective
function. For many problems it can be much smaller than mN .

For quadratic problems, a minimizer may lie on any number of constraints, so that nR may vary between 1 and n.
The default value of i is therefore the number of variables n. If Hessian rows m is specified, the default value of
i is the same number, m.

Min sum a Default = No

This option comes into effect if the constraints cannot be satisfied. If Min sum = No, QPOPT terminates as soon
as it is evident that no feasible point exists. The final point will generally not be the point at which the sum
of infeasibilities is minimized. If Min sum = Yes, QPOPT will continue until either the sum of infeasibilities is
minimized or the iteration limit is reached, whichever occurs first.

Nolist

This suppresses output to the Print file whenever an optional parameter is reset.

Optimality tolerance r Default =
√

u

This affects the tolerance used to determine if the Lagrange multipliers associated with the bounds and general
constraints have the right “sign” for the solution to be judged optimal. Increasing r tends to cause earlier termi-
nation. For example, if r = 1.0e− 4, the final objective value will probably agree with the true optimum to about
4 digits.

Print level i Default = 10

This controls the amount of printing produced by QPOPT as follows.

i

0 No output.

1 The final solution only, sent to the Print file.

5 One line of output for each iteration (no printout of the final solution).

≥ 10 The final solution and one line of output for each iteration (Print file only).

≥ 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Ax and the constraint
status (Print file only).
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≥ 30 At each iteration, the diagonal elements of the upper-triangular matrix T associated with the TQ factorization
(27) of the working set, and the diagonal elements of the upper-triangular matrix R (Print file only).

Problem type a Default = QP2

This option specifies the type of objective function to be minimized during the optimality phase. The following
are the six values of a and the dimensions of the arrays that must be specified to define the objective function:

FP H and cvec not accessed;
LP H not accessed, cvec(n) required;
QP1 H(ldH,*) symmetric, cvec not referenced;
QP2 H(ldH,*) symmetric, cvec(n);
QP3 H(ldH,*) upper-trapezoidal, cvec not referenced;
QP4 H(ldH,*) upper-trapezoidal, cvec(n);

Linear program is equivalent to LP. Quadratic program and QP are equivalent to the default option QP2. For
the QP options, the default subroutine qpHess requires array H(ldH,*) as shown. If a non-standard qpHess is
provided, H(*,*) may be used in any convenient way.

Rank tolerance r Default = 100u

This parameter enables the user to control the condition number of the triangular factor R (see Section 5.1). If ρi
denotes the function ρi = max{|R11|, |R22|, . . . , |Rii|}, the dimension of R is defined to be smallest index i such
that |Ri+1,i+1| ≤

√
r|ρi+1|. If r ≤ 0, the default value is used.

Summary file i Default = 6

This specifies the unit number for the Summary file (see Section 5.6).

If i > 0 and PrintLevel > 0, a brief log in 80-column format is output to unit i. On many systems, the default
value refers to the screen. Summary file = 0 suppresses output, including error messages.

Warm start

See Cold start.
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5.5 Optional parameter checklist and default values

For easy reference, the following list shows all valid options and their default values. The quantity u represents
floating-point precision (≈ 1.1× 10−16 in IEEE double-precision arithmetic).

Check frequency 50 *

Cold start *

Crash tolerance .01 *

Expand frequency 5 *

Feasibility tolerance 1.1e-8 *
√

u
Feasibility Phase iteration limit 50 * or 5(n+mL)
Optimality Phase iteration limit 50 * or 5(n+mL)
Hessian rows n *

Infinite bound size 1.0e+20 * Plus infinity
Infinite step size 1.0e+20 *

Iteration limit 50 * or 5(n+mL)
List *

Maximum degrees of freedom n *

Min sum No *

Optimality tolerance 1.1e-8 *
√

u
Print file 9 *

Print level 10 *

Problem type QP * or QP2
Rank tolerance 1.1e-14 * 100u
Summary file 6 *

Other options may be set as follows:

Defaults

Nolist

Warm start
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5.6 The Summary File

The Summary file records an iteration log and error messages. The file name is set in Prob.SOL.SummFile.

5.6.1 Constraint numbering and status

For items Jdel and Jadd in the iteration log, indices 1 through n refer to the bounds on the variables, and indices
n + 1 through n + nclin refer to the general constraints.

When the status of a constraint changes, the index of the constraint is printed, along with the designation L (lower
bound), U (upper bound), E (equality), F (temporarily fixed variable) or A (artificial constraint).

5.6.2 The iteration log

The following items are printed after each iteration.

Itn is the iteration count (including those from the feasibility phase).

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no constraint was
deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no constraint was added.

Step is the step taken along the computed search direction. If a constraint is added during the
current iteration (i.e., Jadd is positive), Step will be the step to the nearest constraint. During
the optimality phase, the step can be greater than one only if the reduced Hessian is not positive
definite.

Ninf is the number of violated constraints (infeasibilities). This number will be zero during the
optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf gives a weighted sum of
the magnitudes of constraint violations. If x is feasible, Objective is the value of the objective
function. The output line for the final iteration of the feasibility phase (i.e., the first iteration
for which Ninf is zero) will give the value of the true objective at the first feasible point.

During the feasibility phase, the number of constraint infeasibilities will not increase until either
a feasible point is found, or the optimality of the multipliers implies that no feasible point exists.
Note that the sum of the infeasibilities may increase or decrease during this part of the feasibility
phase. However, once optimal phase-one multipliers are obtained, the number of infeasibilities
can increase, but the sum of infeasibilities must either remain constant or be reduced until the
minimum sum of infeasibilities is found.

In the optimality phase, the value of the objective is non-increasing.

Norm gZ is ‖ZTR g‖, the Euclidean norm of the reduced gradient with respect to ZR. During the optimality
phase, this norm will be approximately zero after a unit step.

Zr is the number of columns of ZR (see Section 5.1). Zr is the dimension of the subspace in which
the objective is currently being minimized. The value of Zr is the number of variables minus
the number of constraints in the working set.

Art is the number of artificial constraints in the working set, i.e., the number of columns of ZA (see
Section 5.2). At the start of the optimality phase, Art provides an estimate of the number of
nonpositive eigenvalues in the reduced Hessian.
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5.6.3 Summary file from the example problem

Following is a Summary file example.

QPOPT --- Version 1.0-10 Sep 1995

========================================

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art

0 0 0 0.0E+00 0 0.00000000E+00 0.0E+00 0 6

Itn 0 -- Feasible point found.

0 0 0 0.0E+00 0 1.51638000E+03 9.8E+01 1 5

1 0 8U 2.8E-01 0 1.72380000E+02 0.0E+00 0 5

2 1L 10L 3.1E-03 0 1.68083225E+02 0.0E+00 0 5

3 5A 11L 1.2E-02 0 1.57176475E+02 0.0E+00 0 4

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art

4 4A 12L 3.2E-02 0 1.38528925E+02 0.0E+00 0 3

5 3A 13L 6.9E-02 0 1.11295925E+02 0.0E+00 0 2

6 2A 14L 1.3E-01 0 7.41228000E+01 0.0E+00 0 1

7 1A 1U 8.4E-01 0 -5.85162625E+01 0.0E+00 0 0

8 13L 0 1.0E+00 0 -8.72144740E+01 1.3E-15 1 0

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art

9 1U 6U 2.5E+00 0 -3.12744888E+02 1.4E+02 1 0

10 0 1L 1.4E-01 0 -5.62265012E+02 0.0E+00 0 0

11 14L 7U 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0

Exit from QP problem after 11 iterations. Inform = 0

QPOPT --- Version 1.0-10 Sep 1995

========================================

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art

0 0 0 0.0E+00 3 2.35500000E+01 1.7E+00 0 3

1 2U 10L 4.0E+00 2 1.96000000E+01 1.4E+00 0 3

2 4U 12L 7.8E+00 1 1.17500000E+01 1.0E+00 0 3

3 6U 14L 1.2E+01 0 0.00000000E+00 0.0E+00 0 3

Itn 3 -- Feasible point found.

3 0 0 0.0E+00 0 8.66526437E+02 1.5E+02 1 2

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art

4 0 9L 1.0E-01 0 4.98244375E+01 0.0E+00 0 2

5 2A 11L 4.5E-01 0 -5.62265013E+02 0.0E+00 0 1

6 1A 6U 5.7E-13 0 -5.62265013E+02 0.0E+00 0 0

7 14L 7U 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0

Exit from QP problem after 7 iterations. Inform = 0
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5.7 The Print File

The Print file records specified options, error messages, a detailed iteration log, and the final solution. The print
file is specified in Prob.SOL.PrintFile.

5.7.1 Constraint numbering and status

Items Jdel and Jadd in the iteration log are the same as in the Summary file. Please see Section 5.6.1.

5.7.2 The iteration log

When PrintLevel ≥ 5, a line of output is produced at every iteration. The quantities printed are those in effect
on completion of the iteration. Several items are the same as in the Summary file. Please see Section 5.6.2.

Itn Same as Summary file.

Jdel Same as Summary file.

Jadd Same as Summary file.

Step Same as Summary file.

Ninf Same as Summary file.

Sinf/Objective Same as Summary file.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

Art Same as Summary file.

Zr Same as Summary file. Zr = n− (Bnd + Lin + Art).

The number of columns of Z (see Section 5.1) can be calculated as Nz = n−(Bnd+Lin) = Zr+Art.
If Nz is zero, x lies at a vertex of the feasible region.

Norm gZ Same as Summary file.

NOpt is the number of nonoptimal Lagrange multipliers at the current point. NOpt is not printed if
the current x is infeasible or no multipliers have been calculated. At a minimizer, NOpt will be
zero.

Min LM is the value of the Lagrange multiplier associated with the deleted constraint. If the Min LM

is negative, a lower bound constraint has been deleted, if Min LM is positive, an upper bound
constraint has been deleted. If no multipliers are calculated during a given iteration, Min LM

will be zero.

Cond T is a lower bound on the condition number of the working-set matrix W .

Cond Rz is a lower bound on the condition number of the triangular factor R (the Cholesky factor of the
current reduced Hessian HR, whose dimension is Zr). If the problem type is LP, Cond Rz is not
printed.
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Rzz is the last diagonal element ω of the matrix D associated with the RTDR factorization of the
reduced Hessian HR (see Section 5.1). Rzz is only printed if HR is not positive definite (in which
case ω 6= 1). If the printed value of Rzz is small in absolute value, then HR is approximately
singular. A negative value of Rzz implies that the objective function has negative curvature on
the current working set.

5.7.3 Printing the solution

When PrintLevel = 1 or PrintLevel ≥ 10, the final output from qpopt includes a listing of the status of every
variable and constraint. Numerical values that are zero are printed as “.”. In the “Variables” section, the following
output is given for each variable xj (j = 1 to n).

Variable gives j, the number of the variable.

State gives the state of the variable. The possible states are as follows, where δ is the Feasibility

tolerance.

FR The variable lies between its upper and lower bound.

EQ The variable is a fixed variable, with xj equal to its upper and lower bound.

LL The variable is active at its lower bound (to within δ).

UL The variable is active at its upper bound (to within δ).

TF The variable is temporarily fixed at its current value.

-- The lower bound is violated by more than δ.

++ The upper bound is violated by more than δ.

A key is sometimes printed before the State to give some additional information about the
state of a variable.

A Alternative optimum possible. The variable is active at one of its bounds, but its Lagrange
multiplier is essentially zero. This means that if the variable were allowed to start moving
away from its bound, there would be no change to the objective function. The values of
the other free variables might change, giving a genuine alternative solution. However, if
there are any degenerate variables (labeled D), the actual change might prove to be zero,
since one of them could encounter a bound immediately. In either case, the values of the
Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close to) one of its bounds.

I Infeasible. The variable is currently violating one of its bounds by more than δ.

Value is the final value of the variable xj .

Lower bound is the lower bound specified for xj . “None” indicates that bl(j) ≤ −bigbnd.

Upper bound is the upper bound specified for xj . “None” indicates that bu(j) ≥ bigbnd.

Lagr multiplier is the Lagrange multiplier for the associated bound. This will be zero if State is FR. If x is
optimal, the multiplier should be non-negative if State is LL, and non-positive if State is UL.

Slack is the difference between the variable “Value” and the nearer of its (finite) bounds bl(j) and
bu(j). A blank entry indicates that the associated variable is not bounded (i.e., bl(j) ≤
−bigbnd and bu(j) ≥ bigbnd).
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In the “Constraints” section, similar output is given for each constraint aTi x, i = 1 to nclin. The word “variable”
must be replaced by “constraint”, and xj should be changed to aTi x, and (j) should be changed to (nclin + i).
“Movement off a constraint” means allowing the entry in the slack column to become positive.

5.7.4 Interpreting the printout

The input data for qpopt should always be checked (even if it terminates with inform = 0!). Two common sources
of error are uninitialized variables and incorrectly dimensioned array arguments. The user should check that all
components of A, bl, bu and x are defined on entry to qpopt, and that qpHess computes all relevant components
of Hx.

In the following, we list the different ways in which qpopt terminates abnormally and discuss what further action
may be necessary.

Underflow A single underflow will always occur if machine constants are computed automatically (as in the dis-
tributed version of QPOPT). Other floating-point underflows may occur occasionally, but can usually
be ignored.

Overflow If the printed output before the overflow error contains a warning about serious ill-conditioning in the
working set when adding the jth constraint, it may be possible to avoid the difficulty by increasing
the Feasibility tolerance. If the message recurs, the offending linearly dependent constraint (with
index “j”) must be removed from the problem. If a warning message did not precede the fatal overflow,
contact the authors.

inform = 3 The problem appears to have no feasible point. Check that there are no conflicting constraints, such
as x1 ≥ 1, x2 ≥ 2 and x1+x2 = 0. If the data for the constraints are accurate to the absolute precision
σ, make sure that the Feasibility tolerance is greater than σ. For example, if all elements of A

are of order unity and are accurate to only three decimal places, the Feasibility tolerance should
be at least 10−3.

inform = 4 One of the iteration limits may be too small. (See Feasibility Phase and Optimality Phase.)
Increase the appropriate limit and rerun qpopt.

inform = 5 The Maximum Degrees of Freedom is too small. Rerun qpopt with a larger value (possibly using the
warm start facility to specify the initial working set).

inform = 6 An input parameter is invalid. The printed output will indicate which parameter(s) must be redefined.
Rerun with corrected values.

inform = 7 The specified problem type was not FP, LP, QP1, QP2, QP3, or QP4. Rerun qpopt with Problem type

set to one of these values.
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6 MINOS details

6.1 Introduction

TOMLAB /MINOS (hereafter referred to as MINOS) is a linear and nonlinear programming system, designed to
solve large-scale constrained optimization problems of the following form:

minimize
x, y

F (x) + cTx+ dTy (31)

subject to b1 ≤ f(x) +A1y ≤ b2, (32)

b3 ≤ A2x+A3y ≤ b4, (33)

l ≤ (x, y) ≤ u, (34)

where the vectors bi, c, d, l, u and the matrices Ai are constant, F (x) is a nonlinear function of some of the
variables, and f(x) is a vector of nonlinear functions. The nonlinearities (if present) may be of a general nature
but must be smooth and preferably “almost linear”, in the sense that they should not change radically with small
changes in the variables. We make the following definitions:

x the nonlinear variables
y the linear variables

(x, y) the vector
(
x
y

)
(1.1) the objective function
(1.2) the nonlinear constraints
(1.3) the linear constraints
(1.4) the bounds on the variables
m the total number of general constraints in (2) and (3)
n the total number of variables in x and y

m1 the number of nonlinear constraints (the dimension of f(x))
n1 the number of nonlinear variables (the dimension of x)
n′1 the number of nonlinear objective variables (in F (x))
n′′1 the number of nonlinear Jacobian variables (in f(x))

A large-scale problem is one in which m and n are several hundred or several thousand. MINOS takes advantage of
the fact that the constraint matrices Ai and the partial derivatives ∂fi(x)/∂xj are typically sparse (contain many
zeros).

The dimensions n′1 and n′′1 allow for the fact that F (x) and f(x) may involve different sets of nonlinear variables
“x”. The two sets of variables always overlap, in the sense that the shorter “x” is always the same as the beginning
of the other. If x is the same in both cases, we have n1 = n′1 = n′′1 . Otherwise, we define the number of nonlinear
variables to be n1 = max(n′1, n

′′
1).

In the following sections we introduce more terminology and give an overview of the MINOS optimization algorithms
and the main system features.

6.1.1 Linear Programming

When F (x) and f(x) are absent, the problem becomes a linear program. Since there is no need to distinguish
between linear and nonlinear variables, we use x rather than y. We also convert all general constraints into
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equalities with the aid of slack variables s, so that the only inequalities are simple bounds on the variables. Thus,
we write linear programs in the form

minimize
x, s

cTxsubject toAx+ s = b, l ≤ (x, s) ≤ u. (35)

When the constraints are linear, the bounds on the slacks are defined so that b = 0. When there are nonlinear
constraints, some elements of b are nonzero.

In the mathematical programming world, x and s are sometimes called structural variables and logical variables.
Their upper and lower bounds are fundamental to problem formulations and solution algorithms. Some of the
components of l may be −∞ and those of u may be +∞. If lj = uj , a variable is said to be fixed, and if its bounds
are −∞ and +∞, the variable is called free.

Within MINOS, a point (x, s) is said to be feasible if the following are true:

• The constraints Ax+ s = b are satisfied to within machine precision ≈ 10−15.

• The bounds l ≤ (x, s) ≤ u are satisfied to within a feasibility tolerance δfea ≈ 10−6.

• The nonlinear constraints (32) are satisfied to within a row tolerance δrow ≈ 10−6.

Tolerances such as δfea and δrow may be specified by setting Feasibility tolerance and Row tolerance.

MINOS solves linear programs using a reliable implementation of the primal simplex method [8], in which the
constraints Ax+ s = b are partitioned into the form

BxB +NxN = b, (36)

where the basis matrix B is a square and nonsingular submatrix of (A I ). The elements of xB and xN are called
the basic and nonbasic variables respectively. Together, they are a permutation of the vector (x, s). Certain dual
variables π and reduced costs dN are defined by the equations

BTπ = cB, dN = cN −NTπ, (37)

where (cB, cN) is a permutation of the objective vector (c, 0).

At a feasible point, nonbasic variables are typically equal to one of their bounds, and basic variables are somewhere
between their bounds. To reach an optimal solution, the simplex method performs a sequence of iterations of the
following general nature. With guidance from dN , a nonbasic variable is chosen to move from its current value,
and the basic variables are adjusted to satisfy the constraints in (35). Usually one of the basic variables reaches a
bound. The basis partition is then redefined with a column of B being replaced by a column of N . When no such
interchange can be found to reduce the value of cTx, the current solution is optimal.

The simplex method

For convenience, let x denote the variables (x, s). The main steps in a simplex iteration are as follows:

Compute dual variables: Solve BTπ = cB.

Price: Compute some or all of the reduced costs dN = cN −NTπ to determine if a favorable nonbasic
column aq exists.
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Compute search direction: Solve BpB = ±aq to determine the basic components of a search direc-
tion p along which the objective is improved. (The nonbasic elements of p are pN = 0, except for
±1 for the element corresponding to aq.)

Find maximum steplength: Find the largest steplength αmax such that x + αmaxp continues to
satisfy the bounds on the variables. The steplength may be determined by the new nonbasic
variable reaching its opposite bound, but normally some basic variable will reach a bound first.

Update: Take the step αmax. If this was determined by a basic variable, interchange the corresponding
column of B with column aq from N .

When a starting basis is chosen and the basic variables xB are first computed, if any components of xB lie
significantly outside their bounds, we say that the current point is infeasible. In this case, the simplex method uses
a “Phase 1” procedure to reduce the sum of infeasibilities. This is similar to the subsequent “Phase 2” procedure
just described.

The feasibility tolerance δfea is used to determine which Phase is in effect. A similar optimality tolerance δopt is
used during pricing to judge whether any reduced costs are significantly large. (This tolerance is scaled by ‖π‖, a
measure of the size of the current π.)

If the solution procedures are interrupted, some of the nonbasic variables may lie strictly between their bounds:
lj < xj < uj . In addition, at a “feasible” or “optimal” solution, some of the basic variables may lie slightly outside
their bounds: lj − δfea ≤ xj ≤ uj + δfea. In rare cases, even a few nonbasic variables might lie outside their bounds
by as much as δfea.

MINOS maintains a sparse LU factorization of the basis matrix B, using a Markowitz ordering scheme and Bartels-
Golub updates, as implemented in the Fortran package LUSOL [31]; see [6, 5, 41, 42]. The basis factorization is
central to the efficient handling of sparse linear and nonlinear constraints.

6.1.2 Problems with a Nonlinear Objective

When nonlinearities are confined to the term F (x) in the objective function, the problem is a linearly constrained
nonlinear program. MINOS solves such problems using a reduced-gradient method [44] combined with a quasi-
Newton method [9, 23] that generally leads to superlinear convergence. The implementation follows that described
in Murtagh and Saunders [24].

As a slight generalization of (36), the constraints Ax+ s = b are partitioned into the form

BxB + SxS +NxN = b, (38)

where xS is a set of superbasic variables. As before, the nonbasic variables are normally equal to one of their
bounds, while the basic and superbasic variables lie somewhere between their bounds (to within δfea). Let the
number of superbasic variables be nS, the number of columns in S. At a solution, nS will be no more than n1, the
number of nonlinear variables, and it is often much smaller than this. In many real-life cases we have found that
nS remains reasonably small, say 200 or less, regardless of the size of the problem. This is one reason why MINOS

has proved to be a practical tool.

In the reduced-gradient method, xS is regarded as a set of “independent variables” that are allowed to move in
any desirable direction to reduce the objective function (or the sum of infeasibilities). The basic variables are then
adjusted in order to continue satisfying the linear constraints. If it appears that no improvement can be made
with the current definition of B, S and N , one of the nonbasic variables is selected to be added to S, and the
process is repeated with an increased value of nS. At all stages, if a basic or superbasic variable encounters one of
its bounds, that variable is made nonbasic and the value of nS is reduced by one.
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For linear programs, we may interpret the simplex method as being the same as the reduced-gradient method,
with the number of superbasic variables oscillating between 0 and 1. (In general, a step of the simplex method or
the reduced-gradient method is called a minor iteration.)

A certain matrix Z is needed for descriptive purposes. It takes the form

Z =


−B−1S

I

0

 , (39)

though it is never computed explicitly. Given LU factors of the basis matrix B, it is possible to compute products
of the form Zq and ZTg by solving linear equations involving B or BT. This in turn allows optimization to
be performed on the superbasic variables, while the basic variables are adjusted to satisfy the general linear
constraints. (In the description below, the reduced-gradient vector satisfies dS = ZTg, and the search direction
satisfies p = ZpS.)

An important part of MINOS is the quasi-Newton method used to optimize the superbasic variables. This can
achieve superlinear convergence during any sequence of iterations for which the B, S, N partition remains constant.
It requires a dense upper-triangular matrix R of dimension nS, which is updated in various ways to approximate
the reduced Hessian:

RTR ≈ ZTHZ, (40)

where H is the Hessian of the objective function, i.e. the matrix of second derivatives of F (x). As for unconstrained
optimization, the storage required for R is sometimes a limiting factor.

The reduced-gradient method

Let g be the gradient of the nonlinear objective (31). The main steps in a reduced-gradient iteration are as follows:

Compute dual variables and reduced gradient: SolveBTπ = gB and compute the reduced-gradient
vector dS = gS − STπ.

Price: If ‖dS‖ is sufficiently small, compute some or all of the reduced costs dN = gN − NTπ to
determine if a favorable nonbasic column aq exists. If so, move that column from N into S,
expanding R accordingly.

Compute search direction: Solve RTRpS = −dS and BpB = −SpS to determine the superbasic and
basic components of a search direction p along which the objective is improved. (The nonbasic
elements of p are pN = 0.)

Find maximum steplength: Find the largest steplength αmax such that x + αmaxp continues to
satisfy the bounds on the variables.

Perform linesearch: Find an approximate solution to the one-dimensional problem

minimize
α

F (x+ αp)subject to0 ≤ α ≤ αmax.

Update (quasi-Newton): Take the step α. Apply a quasi-Newton update to R to account for this
step.

Update (basis change): If a superbasic variable reached a bound, move it from S into N . If a basic
variable reached a bound, find a suitable superbasic variable to move from S into B, and move
the basic variable into N . Update R if necessary.
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At an optimum, the reduced gradient dS should be zero. MINOS terminates when ‖dS‖ ≤ δopt‖π‖ and the reduced
costs (component of dN) are all sufficiently positive or negative, as judged by the same quantity δopt‖π‖.

In the linesearch, F (x + αp) really means the objective function (31) evaluated at the point (x, y, s) + αp.
This steplength procedure is another important part of MINOS. Two different procedures are used, depending on
whether or not all gradients are known analytically; see [28, 37]. The number of nonlinear function evaluations
required may be influenced by setting the Linesearch tolerance in the SPECS file.

Normally, the objective function F (x) will never be evaluated at a point x unless that point satisfies the linear
constraints and the bounds on the variables. An exception is during a finite-difference check on the calculation of
gradient elements. This check is performed at the starting point x0, which takes default values or may be specified.
MINOS ensures that the bounds l ≤ x0 ≤ u are satisfied, but in general the starting point will not satisfy the
general linear constraints. If F (x0) is undefined, the gradient check should be suppressed (Verify level -1), or
the starting point should be redefined.

6.1.3 Problems with Nonlinear Constraints

If any of the constraints are nonlinear, MINOS employs a projected Lagrangian algorithm, based on a method due
to Robinson [43]; see Murtagh and Saunders [26]. This involves a sequence of major iterations, each of which
requires the solution of a linearly constrained subproblem. Each subproblem contains linearized versions of the
nonlinear constraints, as well as the original linear constraints and bounds.

At the start of the k-th major iteration, let (xk, yk) be an estimate of the variables, and let λk be an estimate of
the Lagrange multipliers (dual variables) associated with the nonlinear constraints. The constraints are linearized
by changing f(x) in Equation (2) to its linear approximation:

f̄(x, xk) = f(xk) + J(xk)(x− xk),

or more briefly f̄ = fk + Jk(x − xk), where J(xk) is the Jacobian matrix evaluated at xk. (The i-th row of the
Jacobian is the gradient vector for the i-th nonlinear constraint function.) The subproblem to be solved during
the k-th major iteration is then

minimize
x, y

F (x) + cTx+ dTy − λTk fd + 1
2ρk‖fd‖

2 (41)

subject to b1 ≤ f̄ +A1y ≤ b2, (42)

b3 ≤ A2x+A3y ≤ b4, (43)

l ≤ (x, y) ≤ u, (44)

where fd = f − f̄ is the difference between f(x) and its linearization. The objective function (41) is called an
augmented Lagrangian. The scalar ρk is a penalty parameter, and the term involving ρk is a modified quadratic
penalty function. MINOS uses the reduced-gradient method to solve each subproblem. As before, slack variables
are introduced and the vectors bi are incorporated into the bounds on the slacks. The linearized constraints take
the form (

Jk A1

A2 A3

)(
x

y

)
+

(
s1

s2

)
=

(
Jkxk − fk

0

)
.

We refer to this system as Ax + s = b as in the linear case. The Jacobian Jk is treated as a sparse matrix, the
same as the matrices A1, A2 and A3. The quantities Jk, b, λk and ρk change each major iteration.
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The projected Lagrangian method

For convenience, suppose that all variables and constraints are nonlinear. The main steps in a major iteration are
as follows:

Solve subproblem: Find an approximate solution (x̄, λ̄) to the kth subproblem (41)–(44).

Compute search direction: Adjust the elements of λ̄ if necessary (if they have the wrong sign).
Define a search direction (∆x, ∆λ) = (x̄− xk, λ̄− λk).

Find steplength: Choose a steplength σ such that some merit function M(x, λ) has a suitable value
at the point (xk + σ∆x, λk + σ∆λ).

Update: Take the step σ to obtain (xk+1, λk+1). In some cases, adjust ρk.

For the first major iteration, the nonlinear constraints are ignored and minor iterations are performed until the
original linear constraints are satisfied.

The initial Lagrange multiplier estimate is typically λk = 0 (though it can be provided by the user). If a subproblem
terminates early, some elements of the new estimate λ̄ may be changed to zero.

The penalty parameter initially takes a certain default value ρk = 100.0/m1, where m1 is the number of nonlinear
constraints. (A value r times as big is obtained by specifying Penalty parameter r.) For later major iterations,
ρk is reduced in stages when it appears that the sequence {xk, λk} is converging. In many cases it is safe to specify
Penalty parameter 0.0 at the beginning, particularly if a problem is only mildly nonlinear. This may improve
the overall efficiency.

In the output from MINOS, the term Feasible subproblem indicates that the linearized constraints (42)–(44)
have been satisfied. In general, the nonlinear constraints are satisfied only in the limit, so that feasibility and
optimality occur at essentially the same time. The nonlinear constraint violation is printed every major iteration.
Even if it is zero early on (say at the initial point), it may increase and perhaps fluctuate before tending to zero.
On “well behaved” problems, the constraint violation will decrease quadratically (i.e., very quickly) during the
final few major iterations.

For certain rare classes of problem it is safe to request the values λk = 0 and ρk = 0 for all subproblems by
specifying Lagrangian = No (in which case the nonlinear constraint functions are evaluated only once per major
iteration). However for general problems, convergence is much more likely with the default setting, Lagrangian
= Yes.

The merit function

Unfortunately, it is not known how to define a merit function M(x, λ) that can be reduced at every major iteration.
As a result, there is no guarantee that the projected Lagrangian method described above will converge from an
arbitrary starting point. This has been the principal theoretical gap in MINOS, finally resolved by the PhD research
of Michael Friedlander [12]. The main features needed to stabilize MINOS are:

• To relax the linearized constraints via an `1 penalty function.

• To repeat a major iteration with increased ρk (and more relaxed linearized constraints) if the nonlinear
constraint violation would increase too much.

In practice, the method of MINOS 5.51 often does converge and a good rate of convergence is often achieved in
the final major iterations, particularly if the constraint functions are “nearly linear”. As a precaution, MINOS
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prevents radical changes from one major iteration to the next. Where possible, the steplength is chosen to be
σ = 1, so that each new estimate of the solution is (xk+1, λk+1) = (x̄, λ̄), the solution of the subproblem. If this
point is “too different”, a shorter steplength σ < 1 is chosen.

If the major iterations for a particular model do not appear to be converging, some of the following actions may
help:

1. Specify initial activity levels for the nonlinear variables as carefully as possible.

2. Include sensible upper and lower bounds on all variables.

3. Specify a Major damping parameter that is lower than the default value. This tends to make σ smaller.

4. Specify a Penalty parameter that is higher than the default value. This tends to prevent excessive depar-
tures from the constraint linearization.

6.1.4 Problem Formulation

In general, it is worthwhile expending considerable prior analysis to make the constraints completely linear if at
all possible. Sometimes a simple transformation will suffice. For example, a pipeline optimization problem has
pressure drop constraints of the form

K1

d4.814
1

+
K2

d4.814
2

+ · · · ≤ P 2
T − P 2

0 ,

where di are the design variables (pipe diameters) and the other terms are constant. These constraints are highly
nonlinear, but by redefining the decision variables to be xi = 1/d4.814

i we can make the constraints linear. Even if
the objective function becomes more nonlinear by such a transformation (and this usually happens), the advantages
of having linear constraints greatly outweigh this.

Similarly, it is usually best not to move nonlinearities from the objective function into the constraints. For example,
we should not replace “minimize F (x)” by

minimize z subject to F (x)− z = 0.

Scaling is a very important matter during problem formulation. A general rule is to scale both the data and the
variables to be as close to 1.0 as possible. In general we suggest the range 1.0 to 10.0. When conflicts arise, one
should sacrifice the objective function in favor of the constraints. Real-world problems tend to have a natural
scaling within each constraint, as long as the variables are expressed in consistent physical units. Hence it is often
sufficient to apply a scale factor to each row. MINOS has options to scale the rows and columns of the constraint
matrix automatically. By default, only the linear rows and columns are scaled, and the procedure is reliable. If you
request that the nonlinear constraints and variables be scaled, bear in mind that the scale factors are determined
by the initial Jacobian J(x0), which may differ considerably from J(x) at a solution.

Finally, upper and lower bounds on the variables (and on the constraints) are extremely useful for confining the
region over which optimization has to be performed. If sensible values are known, they should always be used.
They are also important for avoiding singularities in the nonlinear functions. Note that bounds may be violated
slightly by as much as the feasibility tolerance δfea. Hence, if

√
x2 or log x2 appear (for example) and if δfea = 10−6,

the lower bound on x2 would normally have to be at least 10−5. If it is known that x2 will be at least 0.5 (say) at
a solution, then its lower bound should be 0.5.

For a detailed discussion of many aspects of numerical optimization, see Gill, Murray and Wright [37]; in particular,
see Chapter 8 for much invaluable advice on problem formulation and assessment of results.
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6.1.5 Restrictions

MINOS is designed to find solutions that are locally optimal. The nonlinear functions in a problem must be smooth
(i.e., their first derivatives must exist), especially near the desired solution. The functions need not be separable.

A certain “feasible” region is defined by the general constraints and the bounds on the variables. If the objective
is convex within this region and if the feasible region itself is convex, any optimal solution obtained will be a global
optimum. Otherwise there may be several local optima, and some of these may not be global. In such cases the
chances of finding a global optimum are usually increased by choosing a starting point that is “sufficiently close”,
but there is no general procedure for determining what “close” means, or for verifying that a given local optimum
is indeed global.

Integer restrictions cannot be imposed directly. If a variable xj is required to be 0 or 1, a common ploy is to
include a quadratic term xj(1− xj) in the objective function. MINOS will indeed terminate with xj = 0 or 1, but
inevitably the final solution will just be a local optimum. (Note that the quadratic is negative definite. MINOS

will find a global minimum for quadratic functions that are positive definite or positive semidefinite, assuming the
constraints are linear.)
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6.2 Solver Options

The following sections describes some of the solver options depending on problem type.

6.2.1 Options for Linear Programming

The following options apply specifically to linear programs.

Crash option i Default = 3
Crash tolerance t Default = 0.1

Except on restarts, a Crash procedure is used to select an initial basis from certain rows and columns of the
constraint matrix (A I ). The Crash option i determines which rows and columns of A are eligible initially, and
how many times Crash is called. Columns of I are used to pad the basis where necessary.

i = 0 The initial basis contains only slack variables: B = I.

1 Crash is called once, looking for a triangular basis in all rows and columns of A.

2 Crash is called twice (if there are nonlinear constraints). The first call looks for a triangular basis in linear
rows, and the first major iteration proceeds with simplex iterations until the linear constraints are satisfied.
The Jacobian is then evaluated for the second major iteration and Crash is called again to find a triangular
basis in the nonlinear rows (retaining the current basis for linear rows).

3 Crash is called up to three times (if there are nonlinear constraints). The first two calls treat linear equalities
and linear inequalities separately. As before, the last call treats nonlinear rows at the start of the second
major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical values are used to
exclude slacks that are close to a bound.) Crash then makes several passes through the columns of A, searching
for a basis matrix that is essentially triangular. A column is assigned to “pivot” on a particular row if the column
contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form
the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to complete the
basis.

The Crash tolerance allows Crash to ignore certain “small” nonzeros in each column of A. If amax is the largest
element in column j, other nonzeros aij in the column are ignored if |aij | ≤ amax × t. (To be meaningful, t should
be in the range 0 ≤ t < 1.)

When t > 0.0, the bases obtained by Crash may not be strictly triangular, but are likely to be nonsingular and
almost triangular. The intention is to choose a basis containing more columns of A and fewer (arbitrary) slacks.
A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor tolerance; i.e., a tridi-
agonal matrix with entries −1, 4, −1. To help Crash choose all m columns for the initial basis, we would specify
Crash tolerance t for some value of t > 1/4.

6.2.2 Options for All Problems

The following options have the same purpose for all problems, whether they linear or nonlinear.
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Check frequency k Default = 60

Every k-th minor iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x satisfies the general linear constraints (including linearized nonlinear constraints, if any). The constraints
are of the form Ax+ s = b, where s is the set of slack variables. To perform the numerical test, the residual vector
r = b−Ax−s is computed. If the largest component of r is judged to be too large, the current basis is refactorized
and the basic variables are recomputed to satisfy the general constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Cycle limit l Default = 1
Cycle print p Default = 1
Cycle tolerance t Default = 0.0
Phantom columns c Default = 0
Phantom elements e Default = 0

Debug level l Default = 0

This causes various amounts of information to be output to the Print file. Most debug levels are not helpful to
normal users, but they are listed here for completeness.

l = 0 No debug output.

l = 2 (or more) Output from m5setx showing the maximum residual after a row check.

l = 40 Output from lu8rpc (which updates the LU factors of the basis matrix), showing the position of
the last nonzero in the transformed incoming column.

l = 50 Output from lu1mar (which computes the LU factors each refactorization), showing each pivot row
and column and the dimensions of the dense matrix involved in the associated elimination.

l = 100 Output from m2bfac and m5log listing the basic and superbasic variables and their values at every
iteration.

Expand frequency k Default = 10000

This option is part of an anti-cycling procedure designed to guarantee progress even on highly degenerate problems.
See [33].

“Cycling” can occur only if zero steplengths are allowed. Here, the strategy is to force a positive step at every
iteration, at the expense of violating the bounds on the variables by a small amount. Suppose that the Feasibility
tolerance is δ. Over a period of k iterations, the tolerance actually used by MINOS increases from 0.5δ to δ (in
steps of 0.5δ/k).

Every k iterations, or when feasibility and optimality are first detected, a resetting procedure eliminates any
infeasible nonbasic variables. Some additional iterations may be needed to restore feasibility and optimality.
Increasing k reduces that likelihood, but it gives less freedom to choose large pivot elements during basis changes.
(See Pivot tolerance.)
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Factorization frequency k Default = 100 (LP) or 50 (NLP)

With linear programs, most iterations cause a basis change, in which one column of the basis matrix B is replaced
by another. The LU factors of B must be updated accordingly. At most k updates are performed before the
current B is factorized directly.

Each update tends to add nonzeros to the LU factors. Since the updating method is stable, k mainly affects the
efficiency of minor iterations, rather than stability.

High values of k (such as 100 or 200) may be more efficient on “dense” problems, when the factors of B tend to
have two or three times as many nonzeros as B itself. Lower values of k may be more efficient on problems that
are very sparse.

Feasibility tolerance t Default = 1.0e-6

This sets the feasibility tolerance δfea = t (see §6.2.1). A variable or constraint is considered feasible if it does not
lie outside its bounds by more than δfea.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible. Let sinf be the corresponding sum of infeasibilities. If sinf is quite
small, it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the data should be
suspected. If sinf is not small, there may be other points that have a significantly smaller sum of infeasibilities.
MINOS does not attempt to find a solution that minimizes the sum.

For Scale option 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful). The final unscaled solution can therefore be infeasible by an unpredictable amount, depending on
the size of the scale factors. Precautions are taken so that in a “feasible solution” the original variables will never
be infeasible by more than 0.1. Values that large are very unlikely.

Iterations limit k Default = 3m

MINOS stops after k iterations even if the simplex method has not yet reached a solution. If k = 0, no iterations
are performed, but the starting point is tested for both feasibility and optimality.

LU factor tolerance t1 Default = 100.0 (LP) or 5.0 (NLP)
LU update tolerance t2 Default = 10.0 (LP) or 5.0 (NLP)

These tolerances affect the stability and sparsity of the basis factorization B = LU during refactorization and
updating, respectively. They must satisfy t1, t2 ≥ 1.0. The matrix L is a product of matrices of the form(

1

µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ti. Values near 1.0 favor stability, while larger values favor sparsity. The
default values usually strike a good compromise. For large and relatively dense problems, t1 = 10.0 or 5.0 (say)
may give a useful improvement in stability without impairing sparsity to a serious degree.

For certain very regular structures (e.g., band matrices) it may be necessary to reduce t1 and/or t2 in order to
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achieve stability. For example, if the columns of A include a submatrix of the form

4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1

−1 4


,

one should set both t1 and t2 to values in the range 1.0 ≤ ti < 4.0.

LU density tolerance t3 Default = 0.5
LU singularity tolerance t4 Default = ε0.67 ≈ 3.25e− 11

The density tolerance t3 is used during LU factorization of the basis matrix. Columns of L and rows of U are
formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At any stage, if
the density of the remaining matrix exceeds t3, the Markowitz strategy for choosing pivots is altered to reduce the
time spent searching for each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance t4 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Ujj | ≤ t4 or |Ujj | < t4 maxi |Uij |, the j-th column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a
whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could
become very ill-conditioned and the optimization could progress very slowly (if at all). Setting t4 = 1.0e-5, say,
may help cause a judicious change of basis.

Maximize

Minimize Default

This specifies the required direction of optimization.

Multiple price k Default = 1

It is not normal to set k > 1 for linear programs, as it causes MINOS to use the reduced-gradient method rather
than the simplex method. The number of iterations, and the total work, are likely to increase.

The reduced-gradient iterations do not correspond to the very efficient multiple pricing “minor iterations” carried
out by certain commercial linear programming systems. Such systems require storage for k dense vectors of
dimension m, so that k is usually limited to 5 or 6. In MINOS, the total storage requirements increase only slightly
with k. (The Superbasics limit must be at least k.)

Optimality tolerance t Default = 1.0e-6

This is used to judge the size of the reduced gradients dj = gj − πTaj , where gj is the gradient of the objective
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function corresponding to the j-th variable, aj is the associated column of the constraint matrix (or Jacobian),
and π is the set of dual variables.

By construction, the reduced gradients for basic variables are always zero. Optimality is declared if the reduced
gradients for nonbasic variables at their lower or upper bounds satisfy dj/‖π‖ ≥ −t or dj/‖π‖ ≤ t respectively,
and if |dj |/‖π‖ ≤ t for superbasic variables.

In those tests, ‖π‖ is a measure of the size of the dual variables. It is included to make the tests independent
of a large scale factor on the objective function. The quantity actually used is defined by σ =

∑m
i=1 |πi|, ‖π‖ =

max{σ/
√
m, 1.0}, so that only scale factors larger than 1.0 are allowed for. If the objective is scaled down to be

very small, the optimality test reduces to comparing dj against t.

Partial price p Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables than constraints. It
reduces the work required for each “pricing” operation (when a nonbasic variable is selected to become basic or
superbasic).

When p = 1, all columns of the constraint matrix (A I ) are searched. Otherwise, A and I are partitioned to give
p roughly equal segments Aj , Ij (j = 1 to p). If the previous pricing search was successful on Aj , Ij , the next
search begins on the segments Aj+1, Ij+1. (Subscripts are modulo p.)

If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest such reduced
gradient (of appropriate sign) is selected to become superbasic. (Several may be selected if multiple pricing has
been specified.) If nothing is found, the search continues on the next segments Aj+2, Ij+2, and so on.

Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time periods.

Pivot tolerance t Default = ε2/3 ≈ 10−11

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the basis to
become almost singular. When x changes to x+αp for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element.

For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than
the pivot tolerance t. For nonlinear problems, elements smaller than t‖p‖ are ignored.

It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Feasibility tolerance provides some freedom to maximize the pivot element and thereby improve numerical
stability. Excessively small Feasibility tolerances should therefore not be specified.

To a lesser extent, the Expand frequency also provides some freedom to maximize the pivot element. Excessively
large Expand frequencies should therefore not be specified.
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Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance t Default = 0.9
Scale, Print

Scale, Print, Tolerance t

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m+ n words of workspace.

l = 1 Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1.0 (see Fourer, 1982). This sometimes improves the performance
of the solution procedures.

l = 2 All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (A I ) that are fixed or have positive lower bounds or negative upper bounds.

Scale Yes sets the default scaling. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing,
because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

If nonlinear constraints are present, Scale option 1 or 0 should generally be tried at first. Scale option 2

gives scales that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is
provided, and (b) the problem is not highly nonlinear.

Scale, Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix coefficients
are āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks are l̄j = lj/c(j), ūj = uj/c(j), where
c(j) ≡ r(j − n) if j > n.

All forms except Scale option may specify a tolerance t, where 0 < t < 1 (for example: Scale, Print,

Tolerance = 0.99). This affects how many passes might be needed through the constraint matrix. On each
pass, the scaling procedure computes the ratio of the largest and smallest nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than t times its previous value, another scaling pass is performed to adjust the row and column
scales. Raising t from 0.9 to 0.99 (say) usually increases the number of scaling passes through A. At most 10
passes are made.

If a Scale option has not already been specified, Scale, Print or Scale tolerance both set the default scaling.

Weight on linear objective w Default = 0.0

This keyword invokes the so-called composite objective technique, if the first solution obtained is infeasible, and
if the objective function contains linear terms. While trying to reduce the sum of infeasibilities, the method also
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attempts to optimize the linear objective. At each infeasible iteration, the objective function is defined to be

minimize
x

σw(cTx) + (sum of infeasibilities),

where σ = 1 for minimization, σ = −1 for maximization, and c is the linear objective. If an “optimal” solution is
reached while still infeasible, w is reduced by a factor of 10. This helps to allow for the possibility that the initial
w is too large. It also provides dynamic allowance for the fact that the sum of infeasibilities is tending towards
zero.

The effect of w is disabled after 5 such reductions, or if a feasible solution is obtained.

The Weight option is intended mainly for linear programs. It is unlikely to be helpful on nonlinear problems.

6.2.3 Options for Nonlinear Objectives

The following options apply to nonlinear programs whose constraints are linear.

Crash option l Default = 3
Crash tolerance t Default = 0.1

These options are the same as for linear programs.

6.2.4 Options for All Nonlinear problems

Expand frequency k Default = 10000

This option is used the same as for linear programs, but takes effect only when there is just one superbasic variable.
(Cycling can occur only when the current solution is at a vertex of the feasible region. Thus, zero steps are allowed if
there is more than one superbasic variable, but otherwise positive steps are enforced.) Increasing k helps reduce the
number of slightly infeasible nonbasic basic variables (most of which are eliminated during a resetting procedure).
However, it also diminishes the freedom to choose a large pivot element (see Pivot tolerance).

Feasibility tolerance t Default = 1.0e-6

When the constraints are linear, a feasible solution is one in which all variables, including slacks, satisfy their
upper and lower bounds to within the absolute tolerance t. (Since slacks are included, this means that the general
linear constraints are also satisfied to within t.)

When nonlinear constraints are present, a feasible subproblem is one in which the linear constraints and bounds,
as well as the current linearization of the nonlinear constraints, are satisfied to within the tolerance t.

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible.

Normally, the nonlinear functions F (x) and f(x) are evaluated only at points x that satisfy the linear constraints
and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these
regions from the problem. For example, for a function F (x) =

√
x1 + log x2, it would be essential to place lower

bounds on both variables. If Feasibility tolerance = 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might
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be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as
possible.)

An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place.
The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If
this causes difficulty, gradient checking should be suppressed by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the
subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes
allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and
it may be necessary to increase the Penalty parameter or alter the starting point.

Note: Feasibility with respect to the nonlinear constraints is measured against the Row tolerance, not the
Feasibility tolerance.

Hessian dimension r Default = 50

This specifies that an r × r triangular matrix R is to be available for use by the quasi-Newton algorithm (to
approximate the reduced Hessian matrix according to ZTHZ ≈ RTR). Suppose there are s superbasic variables
at a particular iteration. Whenever possible, r should be greater than s.

If r ≥ s, the first s columns of R are used to approximate the reduced Hessian in the normal manner. If there
are no further changes to the set of superbasic variables, the rate of convergence is usually superlinear. If r < s, a
matrix of the form

R =

(
Rr 0

D

)
is used to approximate the reduced Hessian, where Rr is an r × r upper triangular matrix and D is a diagonal
matrix of order s− r. The rate of convergence is no longer superlinear (and may be arbitrarily slow).

The storage required is of order 1
2r

2, which is substantial if r is as large as 1000 (say). In general, r should be a
slight over-estimate of the final number of superbasic variables, whenever storage permits. It need not be larger
than n1 + 1, where n1 is the number of nonlinear variables. For many problems it can be much smaller than n1.

Iterations limit k Default = 3m+ 10n1

If the constraints are linear, this is the maximum number of iterations allowed for the simplex method or the
reduced-gradient method. Otherwise, it is the maximum number of minor iterations, summed over all major
iterations.

If k = 0, no minor iterations are performed, but the starting point is tested for both feasibility and optimality.

Linesearch tolerance t Default = 0.1

For nonlinear problems, this controls the accuracy with which a steplength α is located during one-dimensional
searches of the form

minimize
α

F (x+ αp)subject to0 < α ≤ β.

A linesearch occurs on most minor iterations for which x is feasible. (If the constraints are nonlinear, the function
being minimized is the augmented Lagrangian in equation (5).)
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The value of t must satisfy 0.0 ≤ t < 1.0. The default value t = 0.1 requests a moderately accurate search, and
should be satisfactory in most cases. If the nonlinear functions are cheap to evaluate, a more accurate search may
be appropriate; try t = 0.01 or t = 0.001. The number of iterations should decrease, and this will reduce total
run time if there are many linear or nonlinear constraints. If the nonlinear functions are expensive to evaluate, a
less accurate search may be appropriate; try t = 0.5 or perhaps t = 0.9. (The number of iterations will probably
increase, but the total number of function evaluations may decrease enough to compensate.)

LU singularity tolerance t3 Default = ε0.67 ≈ 3.25e− 11
LU swap tolerance t4 Default = ε1/4 ≈ 10−4

The singularity tolerance t3 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Ujj | ≤ t3 or |Ujj | < t3 maxi |Uij |, the j-th column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a
whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could
become very ill-conditioned and the optimization could progress very slowly (if at all). Setting t3 = 1.0e-5, say,
may help cause a judicious change of basis.

The LU swap tolerance is somewhat similar but can take effect more easily. It is again used only after a basis
factorization, and normally just at the start of a major iteration. If a diagonal of U seems to be rather small (as
measured by t4) relative to the biggest diagonal of U , a basis change is made in which the basic variable associated
with the small diagonal of U is swapped with a carefully chosen superbasic variable (if there are any). The number
of superbasic variables stays the same. A message is printed to advise that a swap has occurred.

In practice this tends to help problems whose basis is becoming ill-conditioned. If the number of swaps becomes
excessive, set LU swap tolerance 1.0e-6, say, or perhaps smaller.

Minor damping parameter d Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear problems, once a “feasible
solution” or “feasible subproblem” has been found.

A linesearch of the form minimizeα F (x + αp) is performed over the range 0 < α ≤ β, where β is the step to the
nearest upper or lower bound on x. Normally, the first steplength tried is α1 = min(1, β), but in some cases, such
as F (x) = aebx or F (x) = axb, even a moderate change in the components of x can lead to floating-point overflow.

The parameter d is therefore used to define a limit β̄ = d(1 + ‖x‖)/‖p‖, and the first evaluation of F (x) is at the
potentially smaller steplength α1 = min(1, β̄, β).

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions at
meaningless points. The Minor damping parameter provides an additional safeguard. The default value d = 2.0
should not affect progress on well behaved problems, but setting d = 0.1 or 0.01 may be helpful when rapidly
varying functions are present. A “good” starting point may be required. An important application is to the class
of nonlinear least-squares problems.

In cases where several local optima exist, specifying a small value for d may help locate an optimum near the
starting point.
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Multiple price k Default = 1

“Pricing” refers to a scan of the current nonbasic variables to determine if any should be changed from their current
value (by allowing them to become superbasic or basic).

If multiple pricing is in effect, the k best nonbasic variables are selected for admission to the superbasic set. (“Best”
means the variables with largest reduced gradients of appropriate sign.) If partial pricing is also in effect, the k
best variables are selected from the current partition of A and I.

On large nonlinear problems it may help to set k > 1 if there are not many superbasic variables at the starting
point but many at the optimal solution.

Optimality tolerance t Default = 1.0e-6

Partial price p Default = 10 (LP) or 1 (NLP)

This parameter may be useful for large problems that have significantly more variables than constraints. Larger
values reduce the work required for each “pricing” operation (when a nonbasic variable is selected to become basic
or superbasic).

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance t Default = 0.9
Scale, Print

Scale, Print, Tolerance t

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m+ n words of workspace.

l = 1 If some of the variables are linear, the constraints and linear variables are scaled by an iterative
procedure that attempts to make the matrix coefficients as close as possible to 1.0.

l = 2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (A I ) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)

Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing, because
there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

The Scale tolerance and Scale, Print options are the same as for linear programs.
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Subspace tolerance t Default = 0.5

This controls the extent to which optimization is confined to the current set of basic and superbasic variables
(Phase 4 iterations), before one or more nonbasic variables are added to the superbasic set (Phase 3). The value
specified must satisfy 0 < t ≤ 1.

When a nonbasic variable xj is made superbasic, the norm of the reduced-gradient vector (for all superbasics) is
recorded. Let this be ‖ZTg0‖. (In fact, the norm is |dj |, the size of the reduced gradient for the new superbasic
variable xj .)

Subsequent Phase 4 iterations continue at least until the norm of the reduced-gradient vector satisfies ‖ZTg‖ ≤
t× ‖ZTg0‖. (‖ZTg‖ is the size of the largest reduced-gradient among the superbasic variables.)

A smaller value of t is likely to increase the total number of iterations, but may reduce the number of basis
changes. A larger value such as t = 0.9 may sometimes lead to improved overall efficiency, if the number of
superbasic variables is substantially larger at the optimal solution than at the starting point.

Other convergence tests on the change in the function being minimized and the change in the variables may prolong
Phase 4 iterations. This helps to make the overall performance insensitive to larger values of t.

Superbasics limit s Default = 50

This places a limit on the storage allocated for superbasic variables. Ideally, s should be set slightly larger than
the “number of degrees of freedom” expected at an optimal solution.

For nonlinear problems, the number of degrees of freedom is often called the “number of independent variables”.
Normally, s need not be greater than n1 + 1, where n1 is the number of nonlinear variables. For many problems,
s may be considerably smaller than n1. This saves storage if n1 is very large.

If Hessian dimension r is specified, the default value of s is the same number (and conversely). This is a safeguard
to ensure superlinear convergence wherever possible. Otherwise, the default for both r and s is 50.

Unbounded objective value r1 Default = 1.0e+20

Unbounded step size r2 Default = 1.0e+10

These parameters are intended to detect unboundedness in nonlinear problems. During a linesearch of the form
minα F (x+ αp), if |F | exceeds r1 or if α exceeds r2, iterations are terminated with the exit message Problem is

unbounded (or badly scaled).

If singularities are present, unboundedness in F (x) may be manifested by a floating-point overflow (during the
evaluation of F (x+ αp)), before the test against r1 can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables. See also the Minor

damping parameter.
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Verify level l Default = 0

Verify objective gradients Same as Verify level 1

Verify constraint gradients Same as Verify level 2

Verify Same as Verify level 3

Verify gradients Same as Verify level 3

Verify Yes Same as Verify level 3

Verify No Same as Verify level 0

These options refer to a check on the gradients computed by your nonlinear function routines funobj and funcon

at the starting point (the initial value of the nonlinear variables x(*)). Values output in the gradient array g(*)

are compared with estimates obtained by finite differences.

l = 0 Only a “cheap” test is performed, requiring three evaluations of the nonlinear objective (if any) and
two evaluations of the nonlinear constraints.

l = 1 A more reliable check is made on each component of the objective gradient.

l = 2 A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.

l = 3 A detailed check is made on both the objective and the Jacobian.

l = −1 No checking is performed. This may be necessary if the functions are undefined at the starting point.

Verify level 3 is recommended for a new function routine, particularly if the “cheap” test indicates error.
Missing gradients are not checked (so there is no overhead). If there are many nonlinear variables, the Start and
Stop keywords may be used to limit the check to a subset.

As noted, gradient verification occurs at the starting point, before a problem is scaled, and before the first basis is
factorized. The bounds on x will be satisfied, but the general linear constraints may not. If the nonlinear objective
or constraint functions are undefined, you could initially specify

Objective = NONE

Nonlinear objective variables 0

Major iterations 1

Verify level -1

to obtain a point that satisfies the linear constraints, and then restart with the correct linear and nonlinear
objective, along with

Verify level 3

6.2.5 Options for Nonlinear Constraints

The following options apply to problems with nonlinear constraints.

Completion Partial Default
Completion Full

When there are nonlinear constraints, this determines whether subproblems should be solved to moderate accuracy
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(partial completion), or to full accuracy (full completion). MINOS implements the option by using two sets of
convergence tolerances for the subproblems.

Use of partial completion may reduce the work during early major iterations, unless the Minor iterations limit
is active. The optimal set of basic and superbasic variables will probably be determined for any given subproblem,
but the reduced gradient may be larger than it would have been with full completion.

An automatic switch to full completion occurs when it appears that the sequence of major iterations is converging.
The switch is made when the nonlinear constraint error is reduced below 100*(Row tolerance), the relative change
in λk is 0.1 or less, and the previous subproblem was solved to optimality.

Full completion tends to give better Lagrange-multiplier estimates. It may lead to fewer major iterations, but may
result in more minor iterations.

Crash option l Default = 3
Crash tolerance t Default = 0.1

Let A refer to the linearized constraint matrix.

l = 0 The initial basis contains only slack variables: B = I.

l = 1 A is evaluated at the starting point. Crash is called once, looking for a triangular basis in all rows
and columns of A.

l = 2 A is evaluated only after the linear constraints are satisfied. Crash is called twice. The first call looks
for a triangular basis in linear rows. The first major iteration proceeds with simplex-type iterations
until the linear constraints are satisfied. A is then evaluated for the second major iteration and Crash
is called again to find a triangular basis in the nonlinear rows (retaining the current basis for linear
rows).

l = 3 Crash is called three times, treating linear equalities and linear inequalities separately, with simplex-
type iterations in between. As before, the last call treats nonlinear rows at the start of the second
major iteration.

Feasibility tolerance t Default = 1.0e-6

A “feasible subproblem” is one in which the linear constraints and bounds, as well as the current linearization of
the nonlinear constraints, are satisfied to within t.

Note that feasibility with respect to the nonlinear constraints is determined by the Row tolerance (not the
Feasibility tolerance).

MINOS first attempts to satisfy the linear constraints and bounds. If the sum of infeasibilities cannot be reduced
to zero, the problem is declared infeasible.

If Scale option = 1 or 2, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

Normally, the nonlinear functions F (x) and f(x) are evaluated only at points x that satisfy the linear constraints
and bounds. If the functions are undefined in certain regions, every attempt should be made to eliminate these
regions from the problem. For example, for a function F (x) =

√
x1 + log x2, it would be essential to place lower

bounds on both variables. If Feasibility tolerance = 10−6, the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might
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be appropriate. (The log singularity is more serious; in general, keep variables as far away from singularities as
possible.)

An exception is during optional gradient checking (see Verify), which occurs before any optimization takes place.
The points at which the functions are evaluated satisfy the bounds but not necessarily the general constraints. If
this causes difficulty, gradient checking should be suppressed by setting Verify level -1.

If a subproblem is infeasible, the bounds on the linearized constraints are relaxed in several stages until the
subproblem appears feasible. (The true bounds are restored for the next subproblem.) This approach sometimes
allows the optimization to proceed successfully. In general, infeasible subproblems are a symptom of difficulty and
it may be necessary to increase the Penalty parameter or alter the starting point.

Lagrangian Yes Default
Lagrangian No

This determines the form of the objective function used for the linearized subproblems. The default value Yes is
highly recommended. The Penalty parameter value is then also relevant.

If No is specified, the nonlinear constraint functions are evaluated only twice per major iteration. Hence this option
may be useful if the nonlinear constraints are very expensive to evaluate. However, in general there is a great risk
that convergence may not be achieved.

Major damping parameter d Default = 2.0

This parameter may assist convergence on problems that have highly nonlinear constraints. It is intended to
prevent large relative changes between subproblem solutions (xk, λk) and (xk+1, λk+1). For example, the default
value 2.0 prevents the relative change in either xk or λk from exceeding 200 per cent. It will not be active on well
behaved problems. (If all components of xk or λk are small, the norms of those vectors will not be allowed to
increase beyond about 2.0.)

The parameter is used to interpolate between the solutions at the beginning and end of each major iteration. Thus,
xk+1 and λk+1 are changed to

xk + σ(xk+1 − xk)andλk + σ(λk+1 − λk)

for some steplength σ < 1. In the case of nonlinear equations (where the number of constraints is the same as the
number of variables) this gives a damped Newton method.

This is a very crude control. If the sequence of major iterations does not appear to be converging, one should first
re-run the problem with a higher Penalty parameter (say 2, 4 or 10). (Skip this re-run in the case of a square
system of nonlinear equations: there are no degrees of freedom and the Penalty parameter value has essentially
no effect.)

If the subproblem solutions continue to change violently, try reducing d to 0.2 or 0.1 (say).

Major iterations k Default = 50

This is the maximum number of major iterations allowed. It is intended to guard against an excessive number of
linearizations of the nonlinear constraints, since in some cases the sequence of major iterations may not converge.

The progress of the major iterations can be best monitored using Print level 0 (the default).
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Minor iterations k Default = 40

This is the maximum number of minor iterations allowed during a major iteration, after the linearized constraints
for that subproblem have been satisfied. (An arbitrary number of minor iterations may be needed to find a feasible
point for each subproblem.) The Iterations limit provides an independent limit on the total minor iterations
(across all subproblems).

A moderate value (e.g., 30 ≤ k ≤ 200) prevents excessive effort being expended on early major iterations, but
allows later subproblems to be solved to completion.

The first major iteration is special: it terminates as soon as the linear constraints and bounds are satisfied (if
possible), ignoring the nonlinear constraints.

In general it is unsafe to specify a value as small as k = 1 or 2. (Even when an optimal solution has been reached,
a few minor iterations may be needed for the corresponding subproblem to be recognized as optimal.)

Optimality tolerance t Default = 1.0e-6

Penalty parameter r Default = 1.0

This specifies that the initial value of ρk in the augmented Lagrangian (5) should be r times a certain default
value 100/m1, where m1 is the number of nonlinear constraints. It is used when Lagrangian = Yes (the default
setting).

For early runs on a problem with unknown characteristics, the default value should be acceptable. If the problem
is highly nonlinear and the major iterations do not converge, a larger value such as 2 or 5 may help. In general, a
positive r may be necessary to ensure convergence, even for convex programs.

On the other hand, if r is too large, the rate of convergence may be unnecessarily slow. If the functions are not
highly nonlinear or a good starting point is known, it is often safe to specify Penalty parameter 0.0.

If several related problems are to be solved, the following strategy for setting the Penalty parameter may be
useful:

1. Initially, use a moderate value for r (such as the default) and a reasonably low Iterations and/or Major

iterations limit.

2. If successive major iterations appear to be terminate with radically different solutions, try increasing the
penalty parameter. (See also the Major damping parameter.)

3. If there appears to be little progress between major iterations, it may help to reduce the penalty parameter.

Radius of convergence r Default = 0.01

This determines when the penalty parameter ρk is reduced (if initialized to a positive value). Both the nonlinear
constraint violation (see rowerr below) and the relative change in consecutive Lagrange multiplier estimates must
be less than r at the start of a major iteration before ρk is reduced or set to zero.

A few major iterations later, full completion is requested if not already set, and the remaining sequence of major
iterations should converge quadratically to an optimum.
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Row tolerance t Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied at a solution. The default value is
usually small enough, since model data is often specified to about that accuracy.

Let viol be the maximum violation of the nonlinear constraints (2), and let rowerr = viol/(1 + xnorm), where
xnorm is a measure of the size of the current solution (x, y). The solution is regarded as acceptably feasible if
rowerr ≤ t.

If the problem functions involve data that is known to be of low accuracy, a larger Row tolerance may be
appropriate. On the other hand, nonlinear constraints are often satisfied with rapidly increasing accuracy during
the last few major iterations. It is common for the final solution to satisfy rowerr = O(ε).

Scale option l Default = 2 (LP) or 1 (NLP)
Scale Yes

Scale No

Scale linear variables Same as Scale option 1

Scale nonlinear variables Same as Scale option 2

Scale all variables Same as Scale option 2

Scale tolerance r Default = 0.9
Scale, Print

Scale, Print, Tolerance r

Three scale options are available as follows:

l = 0 No scaling. If storage is at a premium, this option saves m+ n words of workspace.

l = 1 Linear constraints and variables are scaled by an iterative procedure that attempts to make the
matrix coefficients as close as possible to 1.0.

l = 2 All constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling
is performed that may be helpful if the right-hand side b or the solution x is large. This takes into
account columns of (A I ) that are fixed or have positive lower bounds or negative upper bounds.

Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)

Scale Yes sets the default scaling. Caution: If all variables are nonlinear, Scale Yes unexpectedly does nothing,
because there are no linear variables to scale.) Scale No suppresses scaling (equivalent to Scale option 0).

With nonlinear constraints, Scale option 1 or 0 should generally be tried first. Scale option 2 gives scales
that depend on the initial Jacobian, and should therefore be used only if (a) a good starting point is provided,
and (b) the problem is not highly nonlinear.
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Verify level l Default = 0

Verify objective gradients Same as Verify level 1

Verify constraint gradients Same as Verify level 2

Verify Same as Verify level 3

Verify gradients Same as Verify level 3

Verify Yes Same as Verify level 3

Verify No Same as Verify level 0

This option refers to a finite-difference check on the gradients (first derivatives) of each nonlinear function. It
occurs before a problem is scaled, and before the first basis is factorized. (Hence, the variables may not yet satisfy
the general linear constraints.)

l = 0 Only a “cheap” test is performed, requiring three evaluations of the nonlinear objective (if any) and
two evaluations of the nonlinear constraints.

l = 1 A more reliable check is made on each component of the objective gradient.

l = 2 A check is made on each column of the Jacobian matrix associated with the nonlinear constraints.

l = 3 A detailed check is made on both the objective and the Jacobian.

l = −1 No checking is performed. This may be necessary if the functions are undefined at the starting point.

6.2.6 Options for Input and Output

The following options specify various files to be used, and the amount of printed output required.

Print level l Default = 0
Print frequency k Default = 100

The PRINT file provides more complete information than the SUMMARY file. It includes a listing of the main
options, statistics about the problem, scaling information, the iteration log, the exit condition, and (optionally)
the final solution. It also includes error messages.

The files are specified in Prob.SOL.PrintFile and Prob.SOL.SummFile.

For problems with linear constraints, Print level 0 gives most of the normal output. Print level 1 produces
statistics for the basis matrix B and its LU factors each time the basis is factorized. Print frequency k produces
one line of the iteration log every k minor iterations. Print frequency 1 causes every minor iteration to be logged.
Print frequency 0 is shorthand for k = 99999.

For problems with nonlinear constraints, Print level 0 produces just one line of output per major iteration.
This provides a short summary of the progress of the optimization. The Print frequency is ignored. If Print
level > 0, certain quantities are printed at the start of each major iteration, and minor iterations are logged
according to the Print frequency.

In the latter case, the value of l is best thought of as a binary number of the form

Print level JFLXB
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where each letter stands for a digit that is either 0 or 1. The quantities referred to are:

B Basis statistics, as mentioned above.

X xk, the nonlinear variables involved in the objective function or the constraints.

L λk, the Lagrange-multiplier estimates for the nonlinear constraints. (Suppressed if Lagrangian = No, since
then λk = 0.)

F f(xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any item, set the corresponding digit to 1, otherwise to 0. For example, Print level 10 sets
X = 1 and the other digits equal to zero. The nonlinear variables will be printed each major iteration.

If J = 1, the Jacobian is output column-wise. Column j is preceded by the value of the corresponding variable xj
and a key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J = 1, there is no reason to
specify X = 1 unless the objective contains more nonlinear variables than the Jacobian.) A typical line of output
is

3 1.250000D+01 BS 1 1.00000D+00 4 2.00000D+00

which means that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0 and 2.0 in
rows 1 and 4.

Solution Yes Default
Solution No

The Yes and No options control whether the final solution is output to the PRINT file. Numerical values are printed
in f16.5 format where possible.

The special values 0, 1 and −1 are printed as ., 1.0 and -1.0. Bounds outside the range (−1020, 1020) appear as
the word None.

Summary file f Default = 6 (typically)
Summary level l Default = 0
Summary frequency k Default = 100

The SUMMARY file provides a brief form of the iteration log and the exit condition. It also includes error messages.
In an interactive environment, the output normally appears at the screen and allows a run to be monitored.

For problems with linear constraints, Summary level 0 produces brief output. Summary level 1 gives a few ad-
ditional messages. Summary frequency k produces one line of the iteration log every k minor iterations. Summary
frequency 1 causes every minor iteration to be logged. Summary frequency 0 is shorthand for k = 99999.

For problems with nonlinear constraints, Summary level 0 produces one line of output per major iteration. This
provides a short summary of the progress of the optimization. The Summary frequency is ignored. If Summary
level > 0, certain quantities are printed at the start of each major iteration, and minor iterations are logged
according to the Summary frequency.
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Major minor total ninf step objective Feasible Optimal nsb ncon LU penalty BSwap

1 1T 1 0 0.0E+00 0.00000000E+00 0.0E+00 1.2E+01 8 4 31 1.0E-01 0

2 13 14 0 1.0E+00 2.67011596E+00 4.4E-06 2.8E-03 7 23 56 1.0E-01 8

Completion Full now requested

3 3 17 0 1.0E+00 2.67009870E+00 3.1E-08 1.4E-06 7 29 41 1.0E-01 0

4 0 17 0 1.0E+00 2.67009863E+00 5.6E-17 1.4E-06 7 30 41 1.0E-02 0

Figure 1: The Major Iteration log

6.3 File Output

6.3.1 The PRINT file

The following information is output to the PRINT file during the solution process. The longest line of output is
124 characters.

• A listing of the SPECS file, if any.

• The selected options.

• An estimate of the storage needed and the amount available.

• Some statistics about the problem data.

• The storage available for the LU factors of the basis matrix.

• A log from the scaling procedure, if Scaleoption > 0.

• Notes about the initial basis obtained from CRASH or a BASIS file.

• The major iteration log.

• The minor iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections.

6.3.2 The major iteration log

Problems with nonlinear constraints require several major iterations to reach a solution, each involving the so-
lution of an LC subproblem (a linearly constrained subproblem that generates search directions for x and λ). If
Printlevel = 0, one line of information is output to the PRINT file each major iteration. An example log is
shown in Figure 1.

Label Description

Major The current major iteration number.

minor is the number of iterations required by both the feasibility and optimality phases of the QP sub-
problem. Generally, Mnr will be 1 in the later iterations, since theoretical analysis predicts that the
correct active set will be identified near the solution.

total The total number of minor iterations.
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ninf The number of infeasibilities in the LC subproblem. Normally 0, because the bounds on the linearized
constraints are relaxed in several stages until the constraints are “feasible”.

step The step length α taken along the current search direction p. The variables x have just been changed
to x+αp. On reasonably well-behaved problems, step = 1.0 as the solution is approached, meaning
the new estimate of (x, λ) is the solution of the LC subproblem.

objective The value of true objective function.

Feasible The value of rowerr, the maximum component of the scaled nonlinear constraint residual. The
solution is regarded as acceptably feasible if Feasbl is less than the Row tolerance.

Optimal The value of maxgap, the maximum complementarity gap. It is an estimate of the degree of nonop-
timality of the reduced costs. Both Feasible and Optimal are small in the neighborhood of a
solution.

nsb The current number of superbasic variables.

ncon The number of times subroutine funcon has been called to evaluate the nonlinear constraint functions.
The Jacobian has been evaluated or approximated essentially the same number of times. (Function
evaluations needed to estimate the Jacobian by finite differences are not included.)

LU The number of nonzeros in the sparse LU factors of the basis matrix on completion of the LC
subproblem. (The factors are computed at the start of each major iteration, and updated during
minor iterations whenever a basis change occurs.)

As the solution is approached and the minor iterations decrease towards zero, LU reflects the number
of nonzeros in the LU factors at the start of the LC subproblem.

penalty The penalty parameter ρk used in the modified augmented Lagrangian that defines the objective
function for the LC subproblem.

BSwap The number of columns of the basis matrix B that were swapped with columns of S to improve
the condition of B. The swaps are determined by an LU factorization of the rectangular matrix
BS = (B S )T with stability being favored more than sparsity.
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Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv

1 1 1 -1.0E+00 2 2 1 3.0E+01 1.0E+00 1 1.35000000E+02 0 19 0

2 1 1 -1.0E+00 27 27 102 7.0E+01 1.0E+00 1 1.05000000E+02 0 19 0

3 1 1 -1.0E+00 3 3 27 3.0E+01 -1.0E+00 1 3.50000000E+01 1 19 0

4 1 1 -1.0E+00 28 28 26 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0

5 1 1 -1.0E+00 47 47 2 4.9E-11 1.0E+00 1 5.00000000E+00 1 20 0

6 1 1 1.0E+00 27 27 101 5.0E+00 -1.0E+00 1 5.00000000E+00 2 20 0

Itn 6 -- feasible solution. Objective = -1.818044887E+02

7 3 1 -1.7E+01 87 0 0 1.0E+00 0.0E+00 0 -2.77020571E+02 4 21 0 6 0 1 1 0 1.0E+00 FFTT

8 3 1 -1.7E+01 72 0 0 1.9E-01 0.0E+00 0 -3.05336895E+02 4 21 0 8 0 2 1 0 5.5E+00 FFTT

9 3 1 -2.3E+01 41 0 0 1.0E+00 0.0E+00 0 -4.43743832E+02 4 21 0 9 0 3 1 0 6.5E+00 FFFF

10 4 1 6.6E-01 0 0 0 6.0E+00 0.0E+00 0 -5.64075338E+02 4 21 0 11 0 3 1 0 3.5E+00 FFTT

...

Itn ph pp rg +sbs -sbs -bs step pivot ninf sinf,objective L U ncp nobj ncon nsb Hmod cond(H) conv

161 4 1 8.8E-03 0 73 71 4.2E+00 1.0E+00 0 -1.73532497E+03 4 20 0 340 0 17 1 1 9.6E+00 TTTF

162 3 1 -3.5E-02 6 0 0 1.5E+00 0.0E+00 0 -1.73533264E+03 4 20 0 342 0 18 1 0 1.3E+02 TTFF

163 4 1 2.9E-02 0 0 0 4.5E+00 0.0E+00 0 -1.73533617E+03 4 20 0 344 0 18 1 0 2.0E+01 TTFF

164 4 1 2.1E-02 0 0 0 2.3E+01 0.0E+00 0 -1.73538331E+03 4 20 0 347 0 18 1 0 9.8E+00 TTFF

165 4 1 3.0E-02 0 0 0 5.0E+00 0.0E+00 0 -1.73552261E+03 4 20 0 349 0 18 1 0 2.1E+01 TTFF

166 4 1 1.2E-02 0 0 0 1.0E+00 0.0E+00 0 -1.73556089E+03 4 20 0 350 0 18 1 0 2.2E+01 TTTF

tolrg reduced to 1.162E-03 lvltol = 1

167 4 1 2.3E-03 0 0 0 1.0E+00 0.0E+00 0 -1.73556922E+03 4 20 0 351 0 18 1 0 2.2E+01 TTFF

168 4 1 1.2E-03 0 0 0 7.9E-01 0.0E+00 0 -1.73556953E+03 4 20 0 353 0 18 1 0 2.1E+01 TTFF

169 4 1 1.0E-04 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 354 0 18 1 0 2.0E+01 TTTT

tolrg reduced to 1.013E-05 lvltol = 1

170 4 1 2.9E-05 0 0 0 1.1E+00 0.0E+00 0 -1.73556958E+03 4 20 0 356 0 18 1 0 1.7E+01 TTFF

171 4 1 1.0E-05 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 357 0 18 1 0 1.7E+01 TTFF

172 4 1 1.5E-06 0 0 0 1.2E+00 0.0E+00 0 -1.73556958E+03 4 20 0 359 0 18 1 0 1.7E+01 TTTF

tolrg reduced to 1.000E-06 lvltol = 2

173 4 1 2.4E-07 0 0 0 1.0E+00 0.0E+00 0 -1.73556958E+03 4 20 0 360 0 18 1 0 1.7E+01 TTTF

Biggest dj = 3.583E-03 (variable 25) norm rg = 2.402E-07 norm pi = 1.000E+00

Figure 2: The Minor Iteration log

6.3.3 The minor iteration log

If Printlevel ≥ 1, one line of information is output to the PRINT file every kth minor iteration, where k is the
specified Print frequency (default k = 100). A heading is printed periodically. Problem t5weapon gives the log
shown in Figure 2.

Label Description

Itn The current minor iteration number.

ph The current phase of the solution procedure:

1 Phase 1 simplex method, trying to satisfy the linear constraints. The current solution is an
infeasible vertex.

2 Phase 2 simplex method, solving a linear program.

3 Reduced-gradient method. A nonbasic variable has just become superbasic.

4 Reduced-gradient method, optimizing the current set of superbasic variables.

pp The Partial Price indicator. The variable selected by the last PRICE operation came from the ppth
partition of A and I. pp is set to zero when the basis is refactored.

A PRICE operation is defined to be the process by which a nonbasic variable is selected to become a
new superbasic. The selected variable is denoted by jq. Variable jq often becomes basic immediately.
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Otherwise it remains superbasic, unless it reaches its opposite bound and becomes nonbasic again. If
Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint
matrix (A I ).

rg In Phase 1, 2 or 3, this is dj , the reduced cost (reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, dj = gj −πTaj for j = jq, where gj is the
gradient of the current objective function, π is the vector of dual variables for the problem (or LC
subproblem), and aj is the jth column of the current (A I ).

In Phase 4, rg is the largest reduced gradient among the superbasic variables.

+sbs The variable jq selected by PRICE to be added to the superbasic set.

-sbs The variable chosen to leave the set of superbasics. It has become basic if the entry under -bs is
nonzero; otherwise it has become nonbasic.

-bs The variable removed from the basis (if any) to become nonbasic.

step The step length α taken along the current search direction p. The variables x have just been changed
to x+ αp.

pivot If column aq replaces the rth column of the basis B, pivot is the rth element of a vector y satisfying
By = aq. Wherever possible, step is chosen to avoid extremely small values of pivot (because
they cause the basis to be nearly singular). In rare cases, it may be necessary to increase the Pivot

tolerance to exclude very small elements of y from consideration during the computation of step.

ninf The number of infeasibilities before the present iteration. This number decreases monotonically.

sinf,objective If ninf > 0, this is sinf, the sum of infeasibilities before the present iteration. It usually
decreases at each nonzero step, but if ninf decreases by 2 or more, sinf may occasionally increase.

Otherwise it is the value of the current objective function after the present iteration. For linear
programs, it means the true linear objective function. For problems with linear constraints, it means
the sum of the linear objective and the value returned by subroutine funobj. For problems with
nonlinear constraints, it is the quantity just described if Lagrangian = No; otherwise it is the value
of the augmented Lagrangian for the current major iterations (which tends to the true objective as
convergence is approached).

L The number of nonzeros representing the basis factor L. Immediately after a basis factorization
B = LU , this is lenL, the number of subdiagonal elements in the columns of a lower triangular
matrix. Further nonzeros are added to L when various columns of B are later replaced. (Thus, L
increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factorization, this is lenU,
the number of diagonal and superdiagonal elements in the rows of an upper-triangular matrix. As
columns of B are replaced, the matrix U is maintained explicitly (in sparse form). The value of U

may fluctuate up or down; in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for U . This includes
the number of compressions needed during the previous basis factorization. Normally ncp should
increase very slowly. If not, the amount of workspace available to MINOS should be increased by a
significant amount. As a suggestion, the work array z(*) should be extended by 2(L + U) elements.
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The following items are printed if the problem is nonlinear or if the superbasic set is non-empty (i.e., if the current
solution is not a vertex).

Label Description

nobj The number of times subroutine funobj has been called.

ncon The number of times subroutine funcon has been called.

nsb The current number of superbasic variables.

Hmod An indication of the type of modifications made to the triangular matrixR that is used to approximate
the reduced Hessian matrix. Two integers i1 and i2 are shown. They will remain zero for linear
problems. If i1 = 1, a BFGS quasi-Newton update has been made to R, to account for a move
within the current subspace. (This will not occur if the solution is infeasible.) If i2 = 1, R has been
modified to account for a change in basis. This will sometimes occur even if the solution is infeasible
(if a feasible point was obtained at some earlier stage).

Both updates are implemented by triangularizing the matrix R + vwT for some vectors v and w. If
an update fails for numerical reasons, i1 or i2 will be set to 2, and the resulting R will be nearly
singular. (However, this is highly unlikely.)

cond(H) An estimate of the condition number of the reduced Hessian. It is the square of the ratio of the
largest and smallest diagonals of the upper triangular matrix R—a lower bound on the condition
number of the matrix RTR that approximates the reduced Hessian. cond(H) gives a rough indication
of whether or not the optimization procedure is having difficulty. The reduced-gradient algorithm
will make slow progress if cond(H) becomes as large as 108, and will probably fail to find a better
solution if cond(H) reaches 1012 or more.

To guard against high values of cond(H), attention should be given to the scaling of the variables
and the constraints. In some cases it may be necessary to add upper or lower bounds to certain
variables to keep them a reasonable distance from singularities in the nonlinear functions or their
derivatives.

conv A set of four logical variables C1, C2, C3, C4 that are used to determine when to discontinue
optimization in the current subspace (Phase 4) and consider releasing a nonbasic variable from its
bound (the PRICE operation of Phase 3). Let rg be the norm of the reduced gradient, as described
above. The meaning of the variables Cj is as follows:

C1 is true if the change in x was sufficiently small;
C2 is true if the change in the objective was sufficiently small;
C3 is true if rg is smaller than some loose tolerance TOLRG;
C4 is true if rg is smaller than some tighter tolerance.

The test used is of the form

if (C1 and C2 and C3) or C4 then go to Phase 3.

At present, tolrg = t|dj|, where t is the Subspace tolerance (nominally 0.5) and dj is the reduced-
gradient norm at the most recent Phase 3 iteration. The “tighter tolerance” is the maximum of
0.1 tolrg and 10−7‖π‖. Only the tolerance t can be altered at run-time.
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6.3.4 Crash statistics

The following items are output to the PRINT file when no warm start is used. They refer to the number of columns
that the CRASH procedure selects during several passes through A while searching for a triangular basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather far apart.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j ≤ n). It will be a subset
of the columns for which hs(j) = 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis with 3 or more nonzeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

6.3.5 Basis factorization statistics

If Printlevel ≥ 1, the following items are output to the PRINT file whenever the basis B or the rectangular
matrix BS = (B S )T is factorized. Note that BS may be factorized at the start of just some of the major
iterations. It is immediately followed by a factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS , where PLPT and PUQ are lower
and upper triangular matrices for some permutation matrices P and Q.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Itn The current iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

m The number of rows in the matrix being factorized (B or BS).

n The number of columns in the matrix being factorized. Preceded by “=” if the matrix is B; by “>”
if it is BS.

Elems The number of nonzero elements in B or BS.

Amax The largest nonzero in B or BS.

Density The density of the matrix (percentage of nonzeros).
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Merit The average Markowitz merit count for the elements chosen to be the diagonals of PUQ. Each merit
count is defined to be (c − 1)(r − 1) where c and r are the number of nonzeros in the column and
row containing the element at the time it is selected to be the next diagonal. Merit is the average of
m such quantities. It gives an indication of how much work was required to preserve sparsity during
the factorization.

lenL The number of nonzeros in the factor L.

L+U The number of nonzeros in both L and U .

Cmprssns The number of times the data structure holding the partially factored matrix needed to be compressed
to recover unused storage. Ideally this number should be zero. If it is more than 3 or 4, the amount
of workspace available to MINOS should be increased for efficiency.

Incres The percentage increase in the number of nonzeros in L and U relative to the number of nonzeros
in B or BS.

Utri The size of the “backward triangle” in B or BS. These top rows of U come directly from the matrix.

lenU The number of nonzeros in the factor U .

Ltol The maximum allowed size of nonzeros in L. Usually equal to the LU factor tolerance.

Umax The maximum nonzero in U .

Ugrwth The ratio Umax / Amax.

Ltri The size of the “forward triangle” in B or BS. These initial columns of L come directly from the
matrix.

dense1 is the number of columns remaining when the density of the basis matrix being factorized reached
0.3.

Lmax The maximum nonzero in L (no larger than Ltol).

Akmax The maximum nonzero arising during the factorization. (Printed only if Threshold Complete Pivoting
is in effect.)

Agrwth The ratio Akmax / Amax. (Printed only if Threshold Complete Pivoting is in effect.)

bump The number of columns of B or BS excluding Utri and Ltri.

dense2 The number of columns remaining when the density of the basis matrix being factorized reached 0.6.

DUmax The largest diagonal of U (really PUQ).

DUmin The smallest diagonal of U .

condU The ratio DUmax/DUmin. As long as Ltol is not large (say 10.0 or less), condU is an estimate of
the condition number of B. If this number is extremely large, the basis is nearly singular and some
numerical difficulties might occur. (However, an effort is made to avoid near-singularity by using
slacks to replace columns of B that would have made Umin extremely small. Messages are issued to
this effect, and the modified basis is refactored.)
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6.3.6 EXIT conditions

When the solution procedure terminates, an EXIT -- message is printed to summarize the final result. Here we
describe each message and suggest possible courses of action.

The number associated with each EXIT is the output value of the integer variable inform.

The following messages arise when the SPECS file is found to contain no further
problems.

-2 EXIT -- input error. MINOS encountered end-of-file or an

endrun card before finding a SPECS file.

Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or Endrun may imply that all
problems should be ignored.

-1 ENDRUN

This message is printed at the end of a run if MINOS terminates of its own accord. Otherwise, the operating
system will have intervened for one of many possible reasons (excess time, missing file, arithmetic error in user
routines, etc.).

The following messages arise when a solution exists (though it may not be optimal).

0 EXIT -- optimal solution found

This is the message we all hope to see! It is certainly preferable to every other message, and we naturally want to
believe what it says, because this is surely one situation where the computer knows best. There may be cause for
celebration if the objective function has reached an astonishing new high (or low).

In all cases, a distinct level of caution is in order, even if it can wait until next morning. For example, if the
objective value is much better than expected, we may have obtained an optimal solution to the wrong problem!
Almost any item of data could have that effect if it has the wrong value. Verifying that the problem has been
defined correctly is one of the more difficult tasks for a model builder. It is good practice in the function subroutines
to print any data that is input during the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one local optimum? When the
constraints are linear and the objective is known to be convex (e.g., a sum of squares) then all will be well if we
are minimizing the objective: a local minimum is a global minimum in the sense that no other point has a lower
function value. (However, many points could have the same objective value, particularly if the objective is largely
linear.) Conversely, if we are maximizing a convex function, a local maximum cannot be expected to be global,
unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave regions. However, the
functions of a problem are more likely to be neither convex nor concave. Always specify a good starting point
if possible, especially for nonlinear variables, and include reasonable upper and lower bounds on the variables to
confine the solution to the specific region of interest. We expect modelers to know something about their problem,
and to make use of that knowledge as well as they can.

One other caution about “Optimal solution”s. Some of the variables or slacks may lie outside their bounds more
than desired, especially if scaling was requested. Max Primal infeas refers to the largest bound infeasibility and
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which variable (or slack) is involved. If it is too large, consider restarting with a smaller Feasibility tolerance

(say 10 times smaller) and perhaps Scale option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value. Broadly speaking,
if

MaxDualinfeas/Normofpi = 10−d,

then the objective function would probably change in the dth significant digit if optimization could be continued.
If d seems too large, consider restarting with smaller Optimality tolerances.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it seems too large,
consider restarting with a smaller Row tolerance.

1 EXIT -- the problem is infeasible

When the constraints are linear, this message can probably be trusted. Feasibility is measured with respect to
the upper and lower bounds on the variables and slacks. Among all the points satisfying the general constraints
Ax+s = 0, there is apparently no point that satisfies the bounds on x and s. Violations as small as the Feasibility
tolerance are ignored, but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a feasible
solution exists, the current linearization of the constraints may not contain a feasible point. In an attempt to
deal with this situation, when solving each linearly constrained (LC) subproblem, MINOS is prepared to relax the
bounds on the slacks associated with nonlinear rows.

If an LC subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for the nonlinear
constraints become large), MINOS enters so-called “nonlinear elastic” mode. The subproblem includes the original
QP objective and the sum of the infeasibilities—suitably weighted using the Elastic weight parameter. In elastic
mode, some of the bounds on the nonlinear rows “elastic”—i.e., they are allowed to violate their specified bounds.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one or
both of its original upper or lower bounds. If the original problem has a feasible solution and the elastic weight is
sufficiently large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can
continue on the subproblem. If the nonlinear problem has no feasible solution, MINOS will tend to determine a
“good” infeasible point if the elastic weight is sufficiently large. (If the elastic weight were infinite, MINOS would
locally minimize the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though MINOS locally minimizes the nonlinear constraint violations, there may still exist other
regions in which the nonlinear constraints are satisfied. Wherever possible, nonlinear constraints should be defined
in such a way that feasible points are known to exist when the constraints are linearized.

2 EXIT -- the problem is unbounded (or badly scaled)

EXIT -- violation limit exceeded -- the problem may be unbounded

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can apparently
be increased or decreased by an arbitrary amount without causing a basic variable to violate a bound. A message
prior to the EXIT message will give the index of the nonbasic variable. Consider adding an upper or lower bound
to the variable. Also, examine the constraints that have nonzeros in the associated column, to see if they have
been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication of
unboundedness. Consider using the Scale option.

For nonlinear problems, MINOS monitors both the size of the current objective function and the size of the change
in the variables at each step. If either of these is very large (as judged by the Unbounded parameters, the problem
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is terminated and declared UNBOUNDED. To avoid large function values, it may be necessary to impose bounds
on some of the variables in order to keep them away from singularities in the nonlinear functions.

The second message indicates an abnormal termination while enforcing the limit on the constraint violations. This
exit implies that the objective is not bounded below in the feasible region defined by expanding the bounds by the
value of the Violation limit.

3 EXIT -- major iteration limit exceeded

EXIT -- minor iteration limit exceeded

EXIT -- too many iterations

Either the Iterations limit or the Major iterations limit was exceeded before the required solution could be
found. Check the iteration log to be sure that progress was being made. If so, restart the run using WarmDefSOL
at the end of the run.

4 EXIT -- requested accuracy could not be achieved

A feasible solution has been found, but the requested accuracy in the dual infeasibilities could not be achieved. An
abnormal termination has occurred, but MINOS is within 10−2 of satisfying the Major optimality tolerance.
Check that the Major optimality tolerance is not too small.

5 EXIT -- the superbasics limit is too small: nnn

The problem appears to be more nonlinear than anticipated. The current set of basic and superbasic variables
have been optimized as much as possible and a PRICE operation is necessary to continue, but there are already
nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the storage needed for the
reduced Hessian (about 1

2s
2 double words).

6 EXIT -- constraint and objective values could not be calculated

This exit occurs if a value mode ≤ −1 is set during some call to funobj or funcon. MINOS assumes that you want
the problem to be abandoned forthwith.

In some environments, this exit means that your subroutines were not successfully linked to MINOS. If the default
versions of funobj and funcon are ever called, they issue a warning message and then set mode to terminate the
run.

7 EXIT -- subroutine funobj seems to be giving incorrect gradients

A check has been made on some individual elements of the objective gradient array at the first point that satisfies
the linear constraints. At least one component gObj(j) is being set to a value that disagrees markedly with a
forward-difference estimate of ∂f/∂xj . (The relative difference between the computed and estimated values is 1.0
or more.) This exit is a safeguard, since MINOS will usually fail to make progress when the computed gradients
are seriously inaccurate. In the process it may expend considerable effort before terminating with EXIT 9 below.

Check the function and gradient computation very carefully in funobj. A simple omission (such as forgetting to
divide fObj by 2) could explain everything. If fObj or gObj(j) is very large, then give serious thought to scaling
the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference estimate is therefore
wrong), you can specify Verify level 0 to prevent individual elements from being checked. However, the opti-
mization procedure may have difficulty.
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8 EXIT -- subroutine funcon seems to be giving incorrect gradients

This is analogous to the preceding exit. At least one of the computed Jacobian elements is significantly different
from an estimate obtained by forward-differencing the constraint vector F (x). Follow the advice given above,
trying to ensure that the arrays fCon and gCon are being set correctly in funcon.

9 EXIT -- the current point cannot be improved upon

Several circumstances could lead to this exit.

1. Subroutines funobj or funcon could be returning accurate function values but inaccurate gradients (or vice
versa). This is the most likely cause. Study the comments given for EXIT 7 and 8, and do your best to
ensure that the coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low. For example,
accidental use of a real data type when double precision was intended would lead to a relative function
precision of about 10−6 instead of something like 10−15. The default Optimality tolerance of 10−6 would
need to be raised to about 10−3 for optimality to be declared (at a rather suboptimal point). Of course, it
is better to revise the function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to rather few
significant figures, and gradients will probably not be available. One should specify

Function precision t

Major optimality tolerance
√
t

but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same exit condition may
occur. At present the only remedy is to increase the accuracy of the function calculation.

10 EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic variables xB, given the
present values of the superbasic and nonbasic variables. A step of “iterative refinement” has also been applied to
increase the accuracy of xB. However, a row check has revealed that the resulting solution does not satisfy the
current constraints Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Try Scale option 1 if scaling has not yet
been used and there are some linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic growth may occur
in the factor U . Consult the description of Umax, Umin and Growth in §6.3.5, and set the LU factor tolerance

to 2.0 (or possibly even smaller, but not less than 1.0).

12 EXIT -- terminated from subroutine s1User

The user has set the value iAbort = 1 in subroutine s1User. MINOS assumes that you want the problem to be
abandoned forthwith.

If the following exits occur during the first basis factorization, the primal and dual
variables x and pi will have their original input values. BASIS files will be saved if
requested, but certain values in the printed solution will not be meaningful.
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20 EXIT -- not enough integer/real storage for the basis factors

The main integer or real storage array iw(*) or rw(*) is apparently not large enough for this problem. The routine
declaring iw and rw should be recompiled with a larger dimensions for those arrays. The new values should also
be assigned to leniw and lenrw.

An estimate of the additional storage required is given in messages preceding the exit.

21 EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the current basis has more
than one element in row i and column j. This could be caused by a corresponding error in the input parameters
a(*), ha(*), and ka(*).

22 EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the basis to be structurally or
numerically singular. (Some diagonals of the triangular matrix U were respectively zero or smaller than a certain
tolerance.) The associated variables are replaced by slacks and the modified basis is refactorized, but singularity
persists. This must mean that the problem is badly scaled, or the LU factor tolerance is too much larger than
1.0.

If the following messages arise, either an OLD BASIS file could not be loaded properly,
or some fatal system error has occurred. New BASIS files cannot be saved, and there
is no solution to print. The problem is abandoned.

30 EXIT -- the basis file dimensions do not match this problem

On the first line of the OLD BASIS file, the dimensions labeled m and n are different from those associated with
the problem that has just been defined. You have probably loaded a file that belongs to another problem.

Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have to alter m and n and the
map beginning on the third line (a hazardous operation). It may be easier to restart with a PUNCH or DUMP file
from an earlier version of the problem.

31 EXIT -- the basis file state vector does not match this problem

For some reason, the OLD BASIS file is incompatible with the present problem, or is not consistent within itself.
The number of basic entries in the state vector (i.e., the number of 3’s in the map) is not the same as m on the
first line, or some of the 2’s in the map did not have a corresponding “j xj” entry following the map.

32 EXIT -- system error. Wrong no. of basic variables: nnn

This exit should never happen. It may indicate that the wrong MINOS source files have been compiled, or incorrect
parameters have been used in the call to subroutine minoss.

Check that all integer variables and arrays are declared integer in your calling program (including those beginning
with h!), and that all “real” variables and arrays are declared consistently. (They should be double precision

on most machines.)

The following messages arise if additional storage is needed to allow optimization to
begin. The problem is abandoned.
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42 EXIT -- not enough 8-character storage to start solving the problem

The main character storage array cw(*) is not large enough.

43 EXIT -- not enough integer storage to start solving the problem

The main integer storage array iw(*) is not large enough to provide workspace for the optimization procedure.
See the advice given for Exit 20.

44 EXIT -- not enough real storage to start solving the problem

The main storage array rw(*) is not large enough to provide workspace for the optimization procedure. Be sure
that the Superbasics limit is not unreasonably large. Otherwise, see the advice for EXIT 20.

6.3.7 Solution output

At the end of a run, the final solution is output to the PRINT file in accordance with the Solution keyword.
Some header information appears first to identify the problem and the final state of the optimization procedure.
A ROWS section and a COLUMNS section then follow, giving one line of information for each row and column.
The format used is similar to certain commercial systems, though there is no industry standard.

An example of the printed solution is given in §6.3. In general, numerical values are output with format f16.5.
The maximum record length is 111 characters, including the first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The values ±1 are also printed
specially as 1.0 and -1.0. Infinite bounds (±1020 or larger) are printed as None.

Note: If two problems are the same except that one minimizes an objective f(x) and the other maximizes −f(x),
their solutions will be the same but the signs of the dual variables πi and the reduced gradients dj will be reversed.

The ROWS section

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the form

α ≤ aTx ≤ β,

and the value of aTx is called the row activity. Internally, the linear constraints take the form Ax− s = 0, where
the slack variables s should satisfy the bounds l ≤ s ≤ u. For the ith “row”, it is the slack variable si that is
directly available, and it is sometimes convenient to refer to its state. Slacks may be basic or nonbasic (but not
superbasic).

Nonlinear constraints α ≤ Fi(x) + aTx ≤ β are treated similarly, except that the row activity and degree of
infeasibility are computed directly from Fi(x) + aTx rather than from si.

Label Description

Number The value n+ i. This is the internal number used to refer to the ith slack in the iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.
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EQ The limits are the same (α = β).

BS The constraint is not binding. si is basic.

A key is sometimes printed before the State to give some additional information about the state of
the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essen-
tially zero. This means that if the slack were allowed to start moving from its current
value, there would be no change in the objective function. The values of the basic and
superbasic variables might change, giving a genuine alternative solution. The values of
the dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. The slack is basic and is currently violating one of its bounds by more than
the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger than the
Optimality tolerance .
Note: If Scaleoption > 0, the tests for assigning A, D, I, N are made on the scaled
problem, since the keys are then more likely to be meaningful.

Activity The row value aTx (or Fi(x) + aTx for nonlinear rows).

Slack activity The amount by which the row differs from its nearest bound. (For free rows, it is taken to be
minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex multiplier) for the
ith constraint. The full vector π always satisfies BTπ = gB , where B is the current basis matrix and
gB contains the associated gradients for the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” xj , j = 1 : n. We assume that a typical variable has bounds α ≤ xj ≤ β.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.
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FR xj is nonbasic at some value strictly between its bounds: α < xj < β.

BS xj is basic. Usually α < xj < β.

SBS xj is superbasic. Usually α < xj < β.

A key is sometimes printed before the State to give some additional information about the state of
xj .

A Alternative optimum possible. The variable is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving from its current
value, there would be no change in the objective function. The values of the basic and
superbasic variables might change, giving a genuine alternative solution. The values of
the dual variables might also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by more than the
Feasibility tolerance.

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the Optimality
tolerance .
Note: If Scaleoption > 0, the tests for assigning A, D, I, N are made on the scaled
problem, since the keys are then more likely to be meaningful.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the gradient of the (linear or nonlinear) objective function. (If any xj
is infeasible, gj is the gradient of the sum of infeasibilities.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

Reduced gradnt The reduced gradient dj = gj − πTaj , where aj is the jth column of the constraint matrix (or
the jth column of the Jacobian at the start of the final major iteration).

M+J The value m+ j.

6.3.8 The SUMMARY file

If Summaryfile > 0, the following information is output to the SUMMARY file. (It is a brief form of the PRINT

file.) All output lines are less than 72 characters.

• The Begin line from the SPECS file, if any.

• The basis file loaded, if any.

• A brief Major iteration log.

• A brief Minor iteration log.

• The EXIT condition and a summary of the final solution.

The following SUMMARY file is from example problem t6wood using Print level 0 and Major damping parameter

0.5.
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==============================

M I N O S 5.51 (Nov 2002)

==============================

Begin t6wood (WOPLANT test problem; optimal obj = -15.55716)

Name WOPLANT

===> Note: row OBJ selected as linear part of objective.

Rows 9

Columns 12

Elements 73

Scale option 2, Partial price 1

Itn 0 -- linear constraints satisfied.

This is problem t6wood. Derivative level = 3

funcon sets 36 out of 50 constraint gradients.

Major minor step objective Feasible Optimal nsb ncon penalty BSwap

1 0T 0.0E+00 0.00000E+00 5.9E-01 1.1E+01 0 4 1.0E+00 0

2 22 5.0E-01 -1.56839E+01 2.7E-01 1.6E+01 3 47 1.0E+00 0

3 10 6.0E-01 -1.51527E+01 1.5E-01 9.9E+00 2 68 1.0E+00 2

4 21 5.7E-01 -1.53638E+01 6.4E-02 3.6E+00 3 113 1.0E+00 1

5 15 1.0E+00 -1.55604E+01 2.7E-02 1.4E-01 3 144 1.0E+00 0

6 5 1.0E+00 -1.55531E+01 6.4E-03 2.2E-01 3 154 1.0E+00 0

7 4 1.0E+00 -1.55569E+01 3.1E-04 7.0E-04 3 160 1.0E-01 0

8 2 1.0E+00 -1.55572E+01 1.6E-08 1.1E-04 3 163 1.0E-02 0

9 1 1.0E+00 -1.55572E+01 5.1E-14 2.2E-06 3 165 1.0E-03 0

EXIT -- optimal solution found

Problem name WOPLANT

No. of iterations 80 Objective value -1.5557160112E+01

No. of major iterations 9 Linear objective -1.5557160112E+01

Penalty parameter 0.000100 Nonlinear objective 0.0000000000E+00

No. of calls to funobj 0 No. of calls to funcon 165

No. of superbasics 3 No. of basic nonlinears 6

No. of degenerate steps 0 Percentage 0.00

Norm of x (scaled) 9.8E-01 Norm of pi (scaled) 1.8E+02

Norm of x 3.2E+01 Norm of pi 1.6E+01

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 1 2.2E-06

Max Primal infeas 0 0.0E+00 Max Dual infeas 1 5.8E-08

Nonlinear constraint violn 5.1E-14

Solution printed on file 9

funcon called with nstate = 2

Time for MPS input 0.00 seconds

Time for solving problem 0.04 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.00 seconds

Time for objective function 0.00 seconds

Endrun
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7 SQOPT details

7.1 Introduction

TOMVIEW /SQOPT (hereafter referred to as SQOPT ) is a program for solving the large-scale linear or quadratic
programming problem, which is assumed to be stated in following form:

LCQP minimize
x

q(x)

subject to l ≤

(
x

Ax

)
≤ u,

where l and u are constant lower and upper bounds, and A is a sparse matrix and q(x) is a linear or quadratic
function objective function that may be specified in a variety of ways, depending upon the particular problem
being solved. The optional parameter maximize may be used to specify a problem in which q is maximized instead
of minimized.

Upper and lower bounds are specified for all variables and constraints. This form allows full generality in specifying
various types of constraint. In particular, the jth constraint may be defined as an equality by setting lj = uj . If
certain bounds are not present, the associated elements of l or u may be set to special values that are treated as
−∞ or +∞.

The possible forms for the function q(x) are summarized in Table 51. The most general form for q(x) is

q(x) = f +
n∑
j=1

cjxj + 1
2

n∑
i=1

n∑
j=1

xiHijxj = f + cTx+ 1
2x

THx,

where f is a constant, c is a constant n vector and H is a constant symmetric n× n matrix with elements {Hij}.
In this form, q is a quadratic function of x and Problem LCQP is known as a quadratic program (QP). SQOPT

is suitable for all convex quadratic programs. The defining feature of a convex QP is that the matrix H must be
positive semidefinite—i.e., it must satisfy xTHx ≥ 0 for all x. If not, q(x) is nonconvex and SQOPT will terminate
with the error indicator inform = 4.

Table 51: Choices for the objective function q(x).

Problem type Objective function q Hessian matrix

Quadratic Programming (QP) f + cTx+ 1
2x

THx Symmetric positive semidefinite

Linear Programming (LP) f + cTx H = 0

Feasible Point (FP) Not Applicable f = 0, c = 0, H = 0

If H = 0, then q(x) = f + cTx and the problem is known as a linear program (LP).

If H = 0, f = 0, and c = 0, there is no objective function and the problem is a feasible point problem (FP),
which is equivalent to finding a point that satisfies the constraints on x. In the situation where no feasible point
exists, several options are available for finding a point that minimizes the constraint violations (see the optional
parameter Elastic option).

SQOPT is suitable for large LPs and QPs in which the matrix A is sparse—i.e., when there are sufficiently many
zero elements in A to justify storing them implicitly.
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SQOPT exploits structure or sparsity in H by requiring H to be defined implicitly in a subroutine that computes
the product Hx for any given vector x. In many cases, the product Hx can be computed very efficiently for any
given x—e.g., H may be a sparse matrix, or a sum of matrices of rank-one.
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7.2 Brief description of the method

Here we briefly describe some features of the algorithm used in SQOPT and introduce some terminology used in
the description of the subroutine and its arguments. For further details, see §7.6.

7.2.1 Formulation of the problem

The upper and lower bounds on the m components of Ax are said to define the general constraints of the problem.
Internally SQOPT converts the general constraints to equalities by introducing a set of slack variables s, where
s = (s1, s2, . . . , sm)T . For example, the linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0
together with the bounded slack 5 ≤ s1 ≤ +∞. Problem LCQP can therefore be rewritten in the following
equivalent form

minimize
x,s

q(x) subject to Ax− s = 0, l ≤

(
x

s

)
≤ u.

Since the slack variables s are subject to the same upper and lower bounds as the components of Ax, they allow
us to think of the bounds on Ax and x as simply bounds on the combined vector (x, s). (In order to indicate their
special role in problem QP, the original variables x are sometimes known as “column variables”, and the slack
variables s are known as “row variables”)

Each LP or QP is solved using an active-set method. This is an iterative procedure with two phases: a phase 1
(sometimes called the feasibility phase), in which the sum of infeasibilities is minimized to find a feasible point;
and a phase 2 (or optimality phase), in which q is minimized by constructing a sequence of iterations that lies
within the feasible region.

Phase 1 involves solving a linear program of the form

Phase 1 minimize
x,v,w

n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤

(
x

s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

which is equivalent to minimizing the sum of the constraint violations. If the constraints are feasible (i.e., at least
one feasible point exists), eventually a point will be found at which both v and w are zero. The associated value
of (x, s) satisfies the original constraints and is used as the starting point for the phase 2 iterations for minimizing
q.

If the constraints are infeasible (i.e., v 6= 0 or w 6= 0 at the end of phase 1), no solution exists for Problem LCQP
and the user has the option of either terminating or continuing in so-called elastic mode (see the discussion of the
optional parameter Elastic option). In elastic mode, a “relaxed” or “perturbed” problem is solved in which q(x)
is minimized while allowing some of the bounds to become “elastic”—i.e., to change from their specified values.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one or both
of its original upper or lower bounds.

To make the relaxed problem meaningful, SQOPT minimizes q while (in some sense) finding the “smallest” violation
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of the elastic variables. In the situation where all the variables are elastic, the relaxed problem has the form

Phase2(γ) minimize
x,v,w

q(x) + γ

n+m∑
j=1

(vj + wj)

subject to Ax− s = 0, l ≤

(
x

s

)
− v + w ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter known as the elastic weight, and q(x) + γ
∑
j(vj +wj) is called the composite

objective. In the more general situation where only a subset of the bounds are elastic, the v’s and w’s for the
non-elastic bounds are fixed at zero.

The elastic weight can be chosen to make the composite objective behave like either the original objective q(x)
or the sum of infeasibilities. If γ = 0, SQOPT will attempt to minimize q subject to the (true) upper and lower
bounds on the nonelastic variables (and declare the problem infeasible if the nonelastic variables cannot be made
feasible). At the other extreme, choosing γ sufficiently large, will have the effect of minimizing the sum of the
violations of the elastic variables subject to the original constraints on the non-elastic variables. Choosing a large
value of the elastic weight is useful for defining a “least-infeasible” point for an infeasible problem.

In phase 1 and elastic mode, all calculations involving v and w are done implicitly in the sense that an elastic
variable xj is allowed to violate its lower bound (say) and an explicit value of v can be recovered as vj = lj − xj .

7.2.2 The main iteration

A constraint is said to be active or binding at x if the associated component of either x or Ax is equal to one of its
upper or lower bounds. Since an active constraint in Ax has its associated slack variable at a bound, we can neatly
describe the status of both simple and general upper and lower bounds in terms of the status of the variables (x, s).
A variable is said to be nonbasic if it is temporarily fixed at its upper or lower bound. It follows that regarding a
general constraint as being active is equivalent to thinking of its associated slack as being nonbasic.

At each iteration of an active-set method, the constraints Ax− s = 0 are (conceptually) partitioned into the form
BxB + SxS + NxN = 0, where xN comprises the nonbasic components of (x, s) and the basis matrix B is square
and nonsingular. The elements of xB and xS are called the basic and superbasic variables respectively; with xN

they are a permutation of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their bounds, while the nonbasic variables will be equal to one of their upper or lower bounds.
At each iteration, xS is regarded as a set of independent variables that are free to move in any desired direction,
namely one that will improve the value of the QP objective (or sum of infeasibilities). The basis variables are then
adjusted in order to ensure that (x, s) continues to satisfy Ax − s = 0. The number of superbasic variables (nS

say) therefore indicates the number of degrees of freedom remaining after the constraints have been satisfied. In
broad terms, nS is a measure of how nonlinear the problem is. In particular, nS will always be zero for FP and
LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic variable is
selected to be added to S, and the process is repeated with the value of nS increased by one. At all stages, if a
basic or superbasic variables encounters one of its bounds, the variable is made nonbasic and the value of nS is
decreased by one.

Associated with each of the m equality constraints Ax − s = 0 is a dual variable πi. Similarly, each variable in
(x, s) has an associated reduced gradient dj (also known as a reduced cost). The reduced gradients for the variables
x are the quantities g−ATπ, where g is the gradient of the QP objective; and the reduced gradients for the slacks
s are the dual variables π. The QP subproblem is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds,
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dj ≤ 0 for all nonbasic variables at their upper bounds, and dj = 0 for all superbasic variables. In practice,
an approximate QP solution is found by slightly relaxing these conditions on dj (see the Optimality tolerance

described in §7.3.2).

The process of computing and comparing reduced gradients is known as pricing (a term first introduced in the
context of the simplex method for linear programming). To “price” a nonbasic variable xj means that the reduced
gradient dj associated with the relevant active upper or lower bound on xj is computed via the formula dj =
gj −aTj π, where aj is the jth column of (A − I ). (The variable selected by the price, and its corresponding value
of dj (i.e., its reduced gradient) are printed in the columns marked +SBS and dj in the Print file output.) If A
has significantly more columns than rows (i.e., n� m), pricing can be computationally expensive. In this case, a
strategy known as partial pricing can be used to compute and compare only a subset of the dj ’s.
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7.3 The SPECS file

The performance of SQOPT is controlled by a number of parameters or “options”. These are normally set in
Prob.SOL.optPar. Each option has a default value that should be appropriate for most problems. (The defaults
are given in the next section.) For special situations it is possible to specify non-standard values for some or all of
the options, using data in the following general form:

Begin SQOPT options

Iterations limit 500

Feasibility tolerance 1.0e-7

Scale all variables

End SQOPT options

We shall call such data a SPECS file, since it specifies various options. The file starts with the keyword Begin and
ends with End. The file is in free format. Each line specifies a single option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers may be up to 16
contiguous characters in Fortran 77’s I, F, E or D formats, terminated by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords have synonyms,
and certain abbreviations are allowed, as long as there is no ambiguity. Blank lines and comments may be used to
improve readability. A comment begins with an asterisk (*), which may appear anywhere on a line. All subsequent
characters on the line are ignored.

It may be useful to include a comment on the first (Begin) line of the file. This line is echoed to the SUMMARY

file.

Most of the options described in the next section should be left at their default values for any given model. If
experimentation is necessary, we recommend changing just one option at a time.

7.3.1 SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default values. The keywords are grouped
according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used. The values given here
correspond to double-precision arithmetic on most current machines (ε ≈ 2.22 × 10−16). Similar values would
apply to any machine having about 15 decimal digits of precision.
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BEGIN checklist of SPECS file parameters and their default values

* Printing

Print level 1 * 1-line iteration log

Print file 15 *

Summary file 6 * typically the screen

Print frequency 1 * iterations log on PRINT file

Summary frequency 1 * iterations log on SUMMARY file

Solution Yes * on the PRINT file

* Suppress options listing * default: options are listed

* Convergence Tolerances

Feasibility tolerance 1.0e-6 * for satisfying the simple bounds

Optimality tolerance 1.0e-6 * target value for reduced gradients

* Scaling

Scale option 2 * All constraints and variables

Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

LU factor tolerance 10.0 * limits size of multipliers in L

LU update tolerance 10.0 * the same during updates

LU singularity tolerance 2.0e-6 *

Pivot tolerance 3.7e-11 * ε
2
3

* LP/QP problems

Crash option 0 * all slack initial basis

Elastic weight 1.0 * used only during elastic mode

Iterations limit 10000 * or m if that is more

Minimize * (opposite of Maximize)

Partial price 1 * 10 for large LPs

Superbasics limit 500 * or n1 + 1 if that is less

Reduced Hessian dimension 500 * or Superbasics limit

Unbounded step size 1.0e+18 *

* Infeasible problems

Elastic weight 100 * used only during elastic mode

Elastic mode 1 * use elastic mode when infeasible

Elastic objective 2 * infinite weight on the elastics

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure

Factorization frequency 100 *

Save frequency 100 * save basis map
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7.3.2 Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and a description of their
effect.

Check frequency k Default = 60

Every kth iteration after the most recent basis factorization, a numerical test is made to see if the current solution
x satisfies the general constraints. The constraints are of the form Ax− s = 0, where s is the set of slack variables.
To perform the numerical test, the residual vector r = s−Ax is computed. If the largest component of r is judged
to be too large, the current basis is refactorized and the basic variables are recomputed to satisfy the general
constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Crash option i Default = 0

Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows and columns of the
constraint matrix (A − I ). The Crash option i determines which rows and columns of A are eligible initially,
and how many times CRASH is called. Columns of −I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the matrix A.

2 CRASH is called once, looking for a triangular basis in linear rows.

3 CRASH is called twice. The two calls treat linear equalities and linear inequalities separately.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical values are used to
exclude slacks that are close to a bound.) CRASH then makes several passes through the columns of A, searching
for a basis matrix that is essentially triangular. A column is assigned to “pivot” on a particular row if the column
contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form
the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to complete the
basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small” nonzeros in each column
of A. If amax is the largest element in column j, other nonzeros aij in the column are ignored if |aij | ≤ amax × r.
(To be meaningful, r should be in the range 0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is likely to be nonsingular and
almost triangular. The intention is to obtain a starting basis containing more columns of A and fewer (arbitrary)
slacks. A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A form the matrix shown under LU factor tolerance; i.e., a
tridiagonal matrix with entries −1, 4, −1. To help CRASH choose all m columns for the initial basis, we would
specify Crash tolerance r for some value of r > 1/4.
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Elastic mode i Default = 1

This parameter determines if (and when) elastic mode is to be started. Three elastic modes are available as follows:

i Meaning

0 Elastic mode is never invoked. SQOPT will terminate as soon as infeasibility is detected. There may be other
points with significantly smaller sums of infeasibilities.

1 Elastic mode is invoked only if the constraints are found to be infeasible (the default). If the constraints
are infeasible, continue in elastic mode with the composite objective determined by the values of Elastic

objective and Elastic weight.

2 The iterations start and remain in elastic mode. This option allows you to minimize the composite objective
function directly without first performing phase-1 iterations.

The success of this option will depend critically on your choice of Elastic weight. If Elastic weight is
sufficiently large and the constraints are feasible, the minimizer of the composite objective and the solution
of the original problem are identical. However, if the Elastic weight is not sufficiently large, the minimizer
of the composite function may be infeasible, even though a feasible point for the constraints may exist.

Elastic objective i Default = 2

This option determines the form of the composite objective. Three types of composite objectives are available.

i Meaning

0 Include only the true objective q(x) in the composite objective. This option sets γ = 0 in the composite
objective and will allow SQOPT to ignore the elastic bounds and find a solution that minimizes q subject to
the nonelastic constraints. This option is useful if there are some “soft” constraints that you would like to
ignore if the constraints are infeasible.

1 Use a composite objective defined with γ determined by the value of Elastic weight. This value is intended
to be used in conjunction with Elasticmode = 2.

2 Include only the elastic variables in the composite objective. The elastics are weighted by γ = 1. This
choice minimizes the violations of the elastic variable at the expense of possibly increasing the true objective.
This option can be used to find a point that minimizes the sum of the violations of a subset of constraints
determined by the parameter helast.

Elastic weight r Default = 1.0

This keyword defines the value of γ in the composite objective.

• At each iteration of elastic mode, the composite objective is defined to be

minimize σq(x) + r(sum of infeasibilities),

where σ = 1 for Minimize, σ = −1 for Maximize, and q is the current objective value.

• Note that the effect of r is not disabled once a feasible iterate is obtained.
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Expand frequency i Default = 10000

This option is part of the EXPAND anti-cycling procedure [3] designed to make progress even on highly degenerate
problems.

The strategy is to force a positive step at every iteration, at the expense of violating the bounds on the variables
by a small amount. Suppose that the Feasibility tolerance is δ. Over a period of i iterations, the tolerance
actually used by SQOPT increases from 0.5δ to δ (in steps of 0.5δ/i).

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most of which are eliminated
during a resetting procedure). However, it also diminishes the freedom to choose a large pivot element (see Pivot

tolerance).

Factorization Frequency k Default = 100 (LP) or 50 (QP)

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The default k is reasonable for
typical problems. Higher values up to k = 100 (say) may be more efficient on problems that are extremely
sparse and well scaled.

• When the objective function is quadratic, fewer basis updates will occur as an optimum is approached. The
number of iterations between basis factorizations will therefore increase. During these iterations a test is
made regularly (according to the Check frequency) to ensure that the general constraints are satisfied. If
necessary the basis will be refactorized before the limit of k updates is reached.

Feasibility tolerance t Default = 1.0E− 6

A feasible problem is one in which all variables satisfy their upper and lower bounds to within the absolute tolerance
t. (This includes slack variables. Hence, the general constraints are also satisfied to within t.)

• SQOPT attempts to find a feasible point for the non-elastic constraints before optimizing the objective. If the
sum of the infeasibilities of these constraints cannot be reduced to zero, the problem is declared INFEASIBLE.
If sInf is quite small, it may be appropriate to raise t by a factor of 10 or 100. Otherwise, some error in the
data should be suspected.

• Note: if sInf is not small and you have not asked SQOPT to minimize the violations of the elastic variables
(i.e., you have not specified Elasticobjective = 2, there may be other points that have a significantly
smaller sum of infeasibilities. SQOPT will not attempt to find the solution that minimizes the sum unless
Elasticobjective = 2.

• If scale is used, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

Infinite Bound Size r Default = 1.0E + 20

If r > 0, r defines the “infinite” bound BigBnd in the definition of the problem constraints. Any upper bound
greater than or equal to BigBnd will be regarded as plus infinity (and similarly for a lower bound less than or equal
to −BigBnd). If r ≤ 0, the default value is used.
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Iterations Limit k Default = 3 ∗ m

This is the maximum number of iterations of the simplex method or the QP reduced-gradient algorithm allowed.

• Itns is an alternative keyword.

• k = 0 is valid. Both feasibility and optimality are checked.

Log Frequency k Default = 1

see Print Frequency

LU factor tolerance r1 Default = 100.0

LU update tolerance r2 Default = 10.0

These tolerances affect the stability and sparsity of the basis factorization B = LU during refactorization and
updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is a product of matrices of the form(

1

µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger values favor sparsity. The
default values usually strike a good compromise.

• For large and relatively dense problems, r1 = 10.0 or 5.0 (say) may give a useful improvement in stability
without impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and/or r2 in order
to achieve stability. For example, if the columns of A include a submatrix of the form

4 −1

−1 4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1

−1 4


,

one should set both r1 and r2 to values in the range 1.0 ≤ ri < 4.0.

LU singularity tolerance r3 Default = ε2/3

This tolerance should satisfy r3 ≤ ε1/4 ≈ 10−4. It helps guard against ill-conditioned basis matrices. When the LU
factors of B are computed directly (not updated), the diagonal elements of U are tested as follows: if |Ujj | ≤ r3 or
|Ujj | < r3 maxi |Uij |, the j-th column of the basis is replaced by the corresponding slack variable. (Replacements
are rare because the LU updating method is stable. They are most likely to occur during the first factorization.)
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LU density tolerance r1 Default = 0.6

LU singularity tolerance r2 Default = ε2/3 ≈ 10−11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L and rows of U are
formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At any stage, if
the density of the remaining matrix exceeds r1, the Markowitz strategy for choosing pivots is altered to reduce the
time spent searching for each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or |Ujj | < r2 maxi |Uij |, the jth column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

Minimize Default

Maximize

This specifies the required direction of optimization. It applies to both linear and quadratic terms in the objective.

Optimality tolerance t Default = 1.0e− 6

This is used to judge the size of the reduced gradients dj = gj − πTaj , where gj is the jth component of the
gradient, aj is the associated column of the constraint matrix tmatA−I, and π is the set of dual variables.

• By construction, the reduced gradients for basic variables are always zero. The problem will be declared
optimal if the reduced gradients for nonbasic variables at their lower or upper bounds satisfy

dj/‖π‖ ≥ −tordj/‖π‖ ≤ t

respectively, and if |dj |/‖π‖ ≤ t for superbasic variables.

• In the above tests, ‖π‖ is a measure of the size of the dual variables. It is included to make the tests
independent of a scale factor on the objective function.

• The quantity ‖π‖ actually used is defined by

‖π‖ = max{σ/
√
m, 1},whereσ =

m∑
i=1

|πi|,

so that only large scale factors are allowed for.

• If the objective is scaled down to be very small, the optimality test reduces to comparing dj against 0.01t.

Partial Price i Default = 10 (LP) or 1 (QP)

This parameter is recommended for large problems that have significantly more variables than constraints. It
reduces the work required for each “pricing” operation (when a nonbasic variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix (A − I ) are searched.
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• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to i). If the previous
pricing search was successful on Aj , Ij , the next search begins on the segments Aj+1, Ij+1. (All subscripts
here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest
such reduced gradient (of appropriate sign) is selected to become superbasic. If nothing is found, the search
continues on the next segments Aj+2, Ij+2, and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time periods.

Pivot Tolerance r Default = ε2/3

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they would cause the basis
to become almost singular.

• When x changes to x+ αp for some search direction p, a “ratio test” is used to determine which component
of x reaches an upper or lower bound first. The corresponding element of p is called the pivot element.

• For linear problems, elements of p are ignored (and therefore cannot be pivot elements) if they are smaller
than the pivot tolerance r.

• It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Feasibility tolerance (say t) provides some freedom to maximize the pivot element and thereby improve
numerical stability. Excessively small values of t should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some freedom to maximize the pivot element.
Excessively large values of f should therefore not be specified.

Print frequency k Default = 1

One line of the iteration log will be printed every kth iteration. A value such as k = 10 is suggested for those
interested only in the final solution.

Print level k Default = 1

This controls the amount of printing produced by SQOPT as follows.

0 No output except error messages. If you want to suppress all output, set Printfile = 0.

≥ 1 The set of selected options (including workspace limits), problem statistics, summary of the scaling procedure,
information about the initial basis resulting from a CRASH or a BASIS file. A single line of output each
iteration (controlled by Print frequency), and the exit condition with a summary of the final solution.

≥ 10 Basis factorization statistics.

Save frequency k Default = 100

If a NEW BASIS file has been specified, a basis map describing the current solution will be saved on the appropriate
file every kth iteration. A BACKUP BASIS file will also be saved if specified.
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Scale option i Default = 2 (LP) or 1 (QP)

Scale tolerance r Default = 0.9

Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix never have very large
elements (say, larger than 1000).

1 The constraints and variables are scaled by an iterative procedure that attempts to make the matrix coef-
ficients as close as possible to 1.0 (see Fourer [11]). This will sometimes improve the performance of the
solution procedures.

2 The constraints and variables are scaled by the iterative procedure. Also, a certain additional scaling is
performed that may be helpful if the right-hand side b or the solution x is large. This takes into account
columns of (A − I ) that are fixed or have positive lower bounds or negative upper bounds.

Scale tolerance affects how many passes might be needed through the constraint matrix. On each pass, the
scaling procedure computes the ratio of the largest and smallest nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust the row and column
scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A. At most 10
passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix coefficients are
āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks are l̄j = lj/c(j), ūj = uj/c(j), where
c(j) ≡ r(j − n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Summary file f Default = 6

Summary frequency k Default = 100

If f > 0, a brief log will be output to file f , including one line of information every kth iteration. In an interactive
environment, it is useful to direct this output to the terminal, to allow a run to be monitored on-line. (If something
looks wrong, the run can be manually terminated.) Further details are given in §7.5.1.

Superbasics limit i Default = min{500, n1 + 1}

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger than
the “number of degrees of freedom” expected at an optimal solution.
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For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of variables
lying strictly between their bounds is no more than m, the number of general constraints.) The default value of i
is therefore 1.

For quadratic problems, the number of degrees of freedom is often called the “number of independent variables”.

• Normally, i need not be greater than ncolH + 1, where ncolH is the number of leading nonzero columns of
H.

• For many problems, i may be considerably smaller than ncolH. This will save storage if ncolH is very large.

• This parameter also sets the Reduced Hessian dimension, unless the latter is specified explicitly (and
conversely).

Unbounded Step Size αmax Default = 1.0E + 18

This parameter is intended to detect unboundedness in a quadratic problem. (It may or may not achieve that
purpose!) During a line search, q is evaluated at points of the form x+ αp, where x and p are fixed and α varies.
if α exceeds αmax, iterations are terminated with the exit message problem is unbounded.

Note that unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.
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7.4 File Output

The following information is output to the PRINT file during the solution of each problem referred to in the SPECS

file.

• A listing of the relevant part of the SPECS file.

• A listing of the parameters that were or could have been set in the SPECS file.

• An estimate of the amount of working storage needed, compared to how much is available.

• Some statistics about the problem.

• The amount of storage available for the LU factorization of the basis matrix.

• A summary of the scaling procedure, if Scale was specified.

• Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

• The iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last four items are described in the following sections. Further brief output may be directed to the SUMMARY

file, as discussed in §7.5.1.

7.4.1 The iteration Log

If Printlevel > 0, one line of information is output to the PRINT file every kth iteration, where k is the specified
Print frequency (default k = 1). A heading is printed before the first such line following a basis factorization.
The heading contains the items described below. In this description, a PRICE operation is defined to be the
process by which one or more nonbasic variables are selected to become superbasic (in addition to those already
in the superbasic set). The variable selected will be denoted by jq. If the problem is purely linear, variable jq will
usually become basic immediately (unless it should happen to reach its opposite bound and return to the nonbasic
set).

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint matrix
(A − I ).

Label Description

Itn The current iteration number.

pp The Partial Price indicator. The variable selected by the last PRICE operation came from the ppth
partition of A and −I. pp is set to zero when the basis is refactored.

dj This is dj, the reduced cost (or reduced gradient) of the variable jq selected by PRICE at the start of the
present iteration. Algebraically, dj is dj = gj − πTaj for j = jq, where gj is the gradient of the current
objective function, π is the vector of dual variables, and aj is the jth column of the constraint matrix
(A − I ).
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Note that dj is the norm of the reduced-gradient vector at the start of the iteration, just after the PRICE

operation.

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The variable chosen to leave the set of superbasics. It has become basic if the entry under -B is nonzero;
otherwise it has become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

-B The variable removed from the basis (if any) to swap with a slack variable made superbasic by the latest
PRICE. The swap is done to ensure that there are no superbasic slacks.

Step The step length α taken along the current search direction p. The variables x have just been changed
to x+ αp. If a variable is made superbasic during the current iteration (i.e., +SBS is positive), Step will
be the step to the nearest bound. During phase 2, the step can be greater than one only if the reduced
Hessian is not positive definite.

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a vector y satisfying
By = aq. Wherever possible, Step is chosen to avoid extremely small values of Pivot (since they cause
the basis to be nearly singular). In rare cases, it may be necessary to increase the Pivot tolerance to
exclude very small elements of y from consideration during the computation of Step.

L The number of nonzeros representing the basis factor L. Immediately after a basis factorization B = LU ,
this is lenL, the number of subdiagonal elements in the columns of a lower triangular matrix. Further
nonzeros are added to L when various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factorization, this is lenU, the
number of diagonal and superdiagonal elements in the rows of an upper-triangular matrix. As columns
of B are replaced, the matrix U is maintained explicitly (in sparse form). The value of U may fluctuate
up or down; in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for U . This includes the
number of compressions needed during the previous basis factorization. Normally ncp should increase
very slowly. If not, the amount of integer and real workspace available to SQOPT should be increased by
a significant amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended by L + U

elements.

nInf The number of infeasibilities before the present iteration. This number will not increase unless the
iterations are in elastic mode.

Sinf,Objective If nInf > 0, this is sInf, the sum of infeasibilities before the present iteration. (It will usually
decrease at each nonzero Step, but if nInf decreases by 2 or more, sInf may occasionally increase.
However, in elastic mode, it will decrease monotonically.)

Otherwise, it is the value of the current objective function after the present iteration.

Note: If Elasticmode = 2, the heading is Composite Obj.

The following items are printed if the problem is a QP or if the superbasic set is non-empty (i.e., if the current
solution is nonbasic).

Label Description

Norm rg This quantity is rg, the norm of the reduced-gradient vector at the start of the iteration. (It is the
Euclidean norm of the vector with elements dj for variables j in the superbasic set. During phase 2 this
norm will be approximately zero after a unit step.
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nS The current number of superbasic variables.

Cond Hz An estimate of the condition number of the reduced Hessian. It is the square of the ratio of the largest
and smallest diagonals of the upper triangular matrix R. This constitutes a lower bound on the condition
number of the reduced Hessian RTR.

To guard against high values of cond Hz, attention should be given to the scaling of the variables and
the constraints.

7.4.2 Basis Factorization Statistics

When PrintLevel ≥ 20 and Printfile > 0, the following lines of intermediate printout (< 120 characters) are
produced on the unit number specified by Print file whenever the matrix B or BS = (B S )T is factorized.
Gaussian elimination is used to compute an LU factorization of B or BS , where PLPT is a lower triangular matrix
and PUQ is an upper triangular matrix for some permutation matrices P and Q. This factorization is stabilized
in the manner described under LU factor tolerance in §7.3.2.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter Factorization Frequency.

2 Excessive non-zeros in updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Iteration The current iteration number.

Infeas The number of infeasibilities at the start of the previous iteration.

Objective If Infeas > 0, this is the sum of infeasibilities at the start of the previous iteration.

If Infeas = 0, this is the value of the objective function after the previous iteration.

Nonlinear The number of nonlinear variables in the current basis B. (not printed if BS is factorized).

Linear The number of linear variables in B. (not printed if BS is factorized).

Slacks The number of slack variables in B. (not printed if BS is factorized).

Elems The number of nonzero matrix elements in B. (not printed if BS is factorized).

Density The percentage nonzero density of B, 100×Elems/(m×m), where m is the number of rows in the problem
(m = Linear + Slacks).

Comprssns The number of times the data structure holding the partially factored matrix needed to be compressed,
to recover unused storage. Ideally this number should be zero. If it is more than 3 or 4, the amount of
workspace available to SQOPT should be increased for efficiency.
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Merit The average Markowitz merit count for the elements chosen to be the diagonals of PUQ. Each merit
count is defined to be (c − 1)(r − 1) where c and r are the number of nonzeros in the column and row
containing the element at the time it is selected to be the next diagonal. Merit is the average of m

such quantities. It gives an indication of how much work was required to preserve sparsity during the
factorization.

lenL The number of nonzeros in L. On most machines, each nonzero is represented by one eight-byte REAL

and two two-byte integer data types.

lenU The number of nonzeros in U . The storage required for each nonzero is the same as for the nonzeros of
L.

Increase The percentage increase in the number of nonzeros in L and U relative to the number of nonzeros in
B; i.e., 100× (lenL + lenU− Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being factorized reached 0.3.

Lmax The maximum subdiagonal element in the columns of L. This will be no larger than the LU factor

tolerance.

Bmax The maximum nonzero element in B.

Umax The maximum nonzero element in U , excluding elements of B that remain in U unaltered. (For example,
if a slack variable is in the basis, the corresponding row of B will become a row of U without alteration.
Elements in such rows will not contribute to Umax. If the basis is strictly triangular, none of the elements
of B will contribute, and Umax will be zero.)

Ideally, Umax should not be substantially larger than Bmax. If it is several orders of magnitude larger, it
may be advisable to reduce the LU factor tolerance to some value nearer 1.0. (The default value is
10.0.)

Umax is not printed if BS is factorized.

Umin The smallest diagonal element of PUQ in absolute magnitude.

Growth The ratio Umax/Bmax, which should not be too large (see above).

As long as Lmax is not large (say 10.0 or less), the ratio
max{Bmax, Umax} / Umin gives an estimate of the condition number of B. If this number is extremely
large, the basis is nearly singular and some numerical difficulties could conceivably occur. (However, an
effort is made to avoid near-singularity by using slacks to replace columns of B that would have made
Umin extremely small. Messages are issued to this effect, and the modified basis is refactored.)

Lt is the number of triangular columns of B at the beginning of L.

bp is the size of the “bump” or block to be factorized nontrivially after the triangular rows and columns
have been removed.

d2 is the number of columns remaining when the density of the basis matrix being factorized reached 0.6.
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7.4.3 Crash statistics

When PrintLevel ≥ 20 and Printfile > 0, the following CRASH statistics (< 120 characters) are produced
on the unit number specified by Print file whenever Start = ’Cold’ (see §7.3.2). They refer to the number of
columns selected by the CRASH procedure during each of several passes through A, whilst searching for a triangular
basis matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j ≤ n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

7.4.4 EXIT conditions

For each problem in the SPECS file, a message of the form EXIT -- message is printed to summarize the final
result. Here we describe each message and suggest possible courses of action.

A number is associated with each message below. It is the final value assigned to the integer variable inform.

The following messages arise when the SPECS file is found to contain

no further problems.

-2. EXIT -- input error.

Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or Endrun may imply that all
problems should be ignored (see §7.3).

-1. ENDRUN

This message is printed at the end of a run if SQOPT terminates of its own accord. Otherwise, the operating
system will have intervened for one of many possible reasons (excess time, missing file, arithmetic error in the user
routine, etc.).

The following messages arise when optimization terminates gracefully.

0. EXIT -- optimal solution found

The final point seems to be a unique solution of LCQP. This means that x is feasible (it satisfies the constraints
to the accuracy requested by the Feasibility tolerance), the reduced gradient is negligible, the reduced costs
are optimal, and R is nonsingular.
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1. EXIT -- the problem is infeasible

Feasibility is measured with respect to the upper and lower bounds on the variables. The message tells us that
among all the points satisfying the general constraints Ax− s = 0, there is apparently no point that satisfies the
bounds on x and s. Violations as small as the Feasibility tolerance are ignored, but at least one component
of x or s violates a bound by more than the tolerance.

Note: Although the objective function is the sum of infeasibilities (when nInf > 0), this sum will usually not
have been minimized when SQOPT recognizes the situation and exits. There may exist other points that have a
significantly lower sum of infeasibilities.

2. EXIT -- the problem is unbounded (or badly scaled)

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can apparently
be increased or decreased by an arbitrary amount without causing a basic variable to violate a bound. A message
prior to the EXIT message will give the index of the nonbasic variable. Consider adding an upper or lower bound
to the variable. Also, examine the constraints that have nonzeros in the associated column, to see if they have
been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication of
unboundedness. Consider using the Scale option.

3. EXIT -- iteration limit exceeded

The Iterations limit was exceeded before the required solution could be found. Check the iteration log to be
sure that progress was being made. If so, restart the run using a basis file that was saved (or should have been
saved!) at the end of the run.

4. EXIT -- QP Hessian appears to be indefinite

The problem appears to be nonconvex and cannot be solved using this version of SQOPT. The matrix H cannot
be positive semidefinite, i.e., there must exist a vector y such that yTHy < 0.

5. EXIT -- the superbasics limit is too small: nnn

The problem appears to be more nonlinear than anticipated. The current set of basic and superbasic variables
have been optimized as much as possible and a PRICE operation is necessary to continue, but there are already
nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the storage needed for the
reduced Hessian. (The Hessian dimension h will also increase to s unless specified otherwise, and the associated
storage will be about 1

2s
2 words.) In extreme cases you may have to set h < s to conserve storage, but beware

that the rate of convergence will probably fall off severely.

6. EXIT -- weak solution found

The final point is a weak minimizer. (The objective value is a global optimum, but it may be achieved by an
infinite set of points x.)

This exit will occur when (i) the problem is feasible, (ii) the reduced gradient is negligible, (iii) the Lagrange
multipliers are optimal, and (iv) the reduced Hessian is singular or there are some very small multipliers. This
exit cannot occur if H is positive definite (i.e., q(x) is strictly convex).

10. EXIT -- cannot satisfy the general constraints

An LU factorization of the basis has just been obtained and used to recompute the basic variables xB, given
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the present values of the superbasic and nonbasic variables. A single step of “iterative refinement” has also been
applied to increase the accuracy of xB. However, a row check has revealed that the resulting solution does not
satisfy the current constraints Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. Request the Scale option if there are any linear
constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a systematic growth may occur
in the factor U . Consult the description of Umax, Umin and Growth in §7.4.2, and set the LU factor tolerance

to 2.0 (or possibly even smaller, but not less than 1.0).

If the following exits occur during the first basis factorization, the
basic variables xB will have certain default values that may not be
particularly meaningful, and the dual vector π will be zero.

20. EXIT -- not enough integer/real storage for the basis factors

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- error in basis package

A preceding message will describe the error in more detail. One such message says that the current basis has
more than one element in row i and column j.

22. EXIT -- singular basis after nnn factorization attempts

This exit is highly unlikely to occur. The first factorization attempt will have found the basis to be structurally
or numerically singular. (Some diagonals of the triangular matrix PUQ were respectively zero or smaller than
a certain tolerance.) The associated variables are replaced by slacks and the modified basis is refactorized. The
ensuing singularity must mean that the problem is badly scaled, or the LU factor tolerance is too high.

32. EXIT -- system error. Wrong no. of basic variables: nnn

This exit should never happen. If it does, something is seriously awry in the SQOPT source code.

The following messages arise if additional storage is needed to allow

optimization to begin. The problem is abandoned.

42. EXIT -- not enough 8-character storage to start solving the problem

43. EXIT -- not enough integer storage to start solving the problem

44. EXIT -- not enough real storage to start solving the problem
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7.5 Solution Output

At the end of a run, the final solution will be output to the PRINT file. Some header information appears first to
identify the problem and the final state of the optimization procedure. A ROWS section and a COLUMNS section
then follow, giving one line of information for each row and column. The format used is similar to that seen in
commercial systems, though there is no rigid industry standard.

The ROWS section

The general constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the form

α ≤ aTx ≤ β.

Internally, the constraints take the form Ax− s = 0, where s is the set of slack variables (which happen to satisfy
the bounds l ≤ s ≤ u). For the ith constraint it is the slack variable si that is directly available, and it is sometimes
convenient to refer to its state. To reduce clutter, a “·” is printed for any numerical value that is exactly zero.

Label Description

Number The value n+ i. This is the internal number used to refer to the ith slack in the iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The lower and upper limit are the same, α = β.

BS The constraint is not binding. si is basic.

SBS The constraint is not binding. si is superbasic.

A key is sometimes printed before the State to give some additional information about the state of the
slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essentially zero. This
means that if the slack were allowed to start moving away from its bound, there would be no change
in the value of the objective function. The values of the basic and superbasic variables might change,
giving a genuine alternative solution. However, if there are any degenerate variables (labelled D), the
actual change might prove to be zero, since one of them could encounter a bound immediately. In
either case, the values of dual variables might also change.

D Degenerate. The slack is basic or superbasic, but it is equal to (or very close to) one of its bounds.

I Infeasible. The slack is basic or superbasic and it is currently violating one of its bounds by more
than the Feasibility tolerance.

N Not precisely optimal. The slack is nonbasic or superbasic. If the Optimality tolerance were
tightened by a factor of 10 (e.g., if it were reduced from 10−5 to 10−6), the solution would not be
declared optimal because the reduced gradient for the slack would not be considered negligible. (If
a loose tolerance has been used, or if the run was terminated before optimality, this key might be
helpful in deciding whether or not to restart the run.)
Note: If Scale is specified, the tests for assigning the A, D, I, N keys are made on the scaled problem,
since the keys are then more likely to be correct.
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Activity The row value; i.e., the value of aTx.

Slack activity The amount by which the row differs from its nearest bound. (For free rows, it is taken to be
minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex multiplier) for the
ith constraint. The full vector π always satisfies BTπ = gB , where B is the current basis matrix and gB
contains the associated gradients for the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” x. For convenience we let the jth component of x be the variable xj
and assume that it satisfies the bounds α ≤ xj ≤ β. A “·” is printed for any numerical value that is exactly zero.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic and currently zero, even though it is free to take any value. (Its bounds are α =
−∞, β = +∞. Such variables are normally basic.)

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before the State to give some additional information about the state of xj .
The possible keys are A, D, I and N. They have the same meaning as described above (for the ROWS
section of the solution), but the words “the slack” should be replaced by “xj”.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the linear and quadratic objective function q(x) + cTx. (We define gj = 0
if the current solution is infeasible.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

Reduced gradnt The reduced gradient dj = gj − πTaj , where aj is the jth column of the constraint matrix (or
the jth column of the Jacobian at the start of the final major iteration).

M+J The value m+ j.
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An example of the printed solution is given in §7.4. Infinite Upper and Lower limits are output as the word
None. Other real values are output with format f16.5. The maximum record length is 111 characters, including
the first (carriage-control) character.

Note: If two problems are the same except that one minimizes q(x) and the other maximizes −q(x), their solutions
will be the same but the signs of the dual variables πi and the reduced gradients dj will be reversed.

7.5.1 The SUMMARY file

If Summary file f is specified certain brief information will be output to file f . For batch jobs a disk file should
be used, to retain a concise log of each run if desired. (A SUMMARY file is more easily perused than the associated
PRINT file).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed. It can therefore
accumulate a log for every problem in the SPECS file, if each specifies the same file. The maximum record length
is 72 characters, including a carriage-control character in column 1.

The following information is included:

1. The Begin card from the SPECS file.

2. The status of the solution after each basis factorization (whether feasible; the objective value; the number
of function calls so far).

3. The same information every kth iteration, where k is the specified Summary frequency (default k = 100).

4. Warnings and error messages.

5. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not.

All items are illustrated below, where we give the SUMMARY file for the first problem in the example program
(Summary frequency = 1).
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==============================

S Q O P T 5.3 (Oct 97)

==============================

Begin sqmain (Example program for sqopt)

Scale option 2, Partial price 1

----------------------------------------------------------------

Itn 0: Phase 1A -- making the linear equality rows feasible

Itn dj Step nInf SumInf Objective

0 0.0E+00 0.0E+00 1 8.868E+01 0.00000000E+00

1 0.0E+00 3.3E+01 0 0.000E+00 0.00000000E+00

Itn 1: Feasible linear equality rows

Itn 1: Phase 1B -- making all linear rows feasible

Itn dj Step nInf SumInf Objective Norm rg nS

1 0.0E+00 0.0E+00 2 5.317E+01 0.00000000E+00 3.4E+00 3

2 0.0E+00 0.0E+00 2 5.317E+01 0.00000000E+00 4.6E-01 2

3 0.0E+00 4.7E+02 1 2.896E+01 0.00000000E+00 4.8E-02 1

4 0.0E+00 9.2E+02 1 2.681E+01 0.00000000E+00 0.0E+00 0

This is problem sqmain. ncolH = 5

5 6.4E-02 6.5E+03 0 0.000E+00 -1.46750000E+06 0.0E+00 0

Itn 5: Feasible linear rows

6 -4.1E+03 2.1E-01 0 0.000E+00 -1.78368567E+06 0.0E+00 0

7 1.4E+03 1.0E+00 0 0.000E+00 -1.98453602E+06 1.4E-12 1

8 -6.3E+02 9.8E-01 0 0.000E+00 -2.04366386E+06 1.3E+01 1

9 0.0E+00 1.0E+00 0 0.000E+00 -2.04366504E+06 1.1E-12 1

EXIT -- optimal solution found

Problem name sqdat1..

No. of iterations 9 Objective value -2.0436650381E+06

No. of Hessian products 8 Linear objective 0.0000000000E+00

Quadratic objective -2.0436650381E+06

No. of superbasics 1 No. of basic nonlinears 2

No. of degenerate steps 1 Percentage 11.11

Norm of xs (scaled) 3.5E+03 Norm of pi (scaled) 8.9E+03

Norm of xs 1.6E+03 Norm of pi 1.1E+04

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 6 2.0E-12

Max Primal infeas 0 0.0E+00 Max Dual infeas 3 9.6E-13

Solution printed on file 9
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7.6 Algorithmic Details

SQOPT is based on an inertia-controlling method that maintains a Cholesky factorization of the reduced Hessian
(see below). The method follows Gill and Murray [14] and is described in [21]. Here we briefly summarize the
main features of the method. Where possible, explicit reference is made to items listed in the printed output, and
to the names of the relevant optional parameters.

7.6.1 Overview

SQOPT’s method has a feasibility phase (also known as phase 1 ), in which a feasible point is found by minimizing
the sum of infeasibilities, and an optimality phase (or phase 2 ), in which the quadratic objective is minimized
within the feasible region. The computations in both phases are performed by the same subroutines, with the
change of phase being characterized by the objective changing from the sum of infeasibilities (the printed quantity
sInf) to the quadratic objective (the printed quantity Objective).

In general, an iterative process is required to solve a quadratic program. Given an iterate (x, s) in both the original
variables x and the slack variables s, a new iterate (x̄, s̄) is defined by(

x̄

s̄

)
=

(
x

s

)
+ αp, (45)

where the step length α is a non-negative scalar, and p is called the search direction. (For simplicity, we shall
consider a typical iteration and avoid reference to the index of the iteration.) Once an iterate is feasible (i.e.,
satisfies the constraints), all subsequent iterates remain feasible.

7.6.2 Definition of the working set

At each iterate (x, s), a working set of constraints is defined to be a linearly independent subset of the constraints
that are satisfied “exactly” (to within the value of the Feasibility tolerance). The working set is the current
prediction of the constraints that hold with equality at a solution of the LP or QP. Let mw denote the number
of constraints in the working set (including bounds), and let W denote the associated mw × (n+m) working-set
matrix consisting of the mw gradients of the working-set constraints.

The search direction is defined so that constraints in the working set remain unaltered for any value of the step
length. It follows that p must satisfy the identity Wp = 0. This characterization allows p to be computed using
any n×nZ full-rank matrix Z that spans the null space of W . (Thus, nZ = n−mw and WZ = 0.) The null-space
matrix Z is defined from a sparse LU factorization of part of W ; see (46)–(47) below). The direction p will satisfy
Wp = 0 if p = ZpZ for any nZ-vector pZ .

The working set contains the constraints Ax− s = 0 and a subset of the upper and lower bounds on the variables
(x, s). Since the gradient of a bound constraint xj ≥ lj or xj ≤ uj is a vector of all zeros except for ±1 in position
j, it follows that the working-set matrix contains the rows of

(
A − I

)
and the unit rows associated with the

upper and lower bounds in the working set.

The working-set matrix W can be represented in terms of a certain column partition of the matrix
(
A − I

)
.

As in §7.2 we partition the constraints Ax− s = 0 so that

BxB + SxS +NxN = 0,

where B is a square non-singular basis and xB , xS and xN are the basic, superbasic and nonbasic variables
respectively. The nonbasic variables are equal to their upper or lower bounds at (x, s), and the superbasic variables
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are independent variables that are chosen to improve the value of the current objective. The number of superbasic
variables is nS, which is printed as the quantity nS. Given values of xN and xS, the basic variables xB are adjusted
so that (x, s) satisfies BxB + SxS +NxN = 0.

If P is a permutation such that
(
A − I

)
P =

(
B S N

)
, then the working-set matrix W satisfies

WP =

(
B S N

0 0 IN

)
, (46)

where IN is the identity matrix with the same number of columns as N .

The null-space matrix Z is defined from a sparse LU factorization of part of W . In particular, Z is maintained in
“reduced-gradient” form, using the package LUSOL [2] to maintain sparse LU factors of the basis matrix B that
alters as the working set W changes. Given the permutation P , the null-space basis is given by

Z = P


−B−1S

I

0

 . (47)

This matrix is used only as an operator, i.e., it is never computed explicitly. Products of the form Zv and ZTg are
obtained by solving with B or BT. This choice of Z implies that nZ , the number of “degrees of freedom” at (x, s),
is the same as nS, the number of superbasic variables.

Let gZ and HZ denote the reduced gradient and reduced Hessian:

gZ = ZTg and HZ = ZTHZ, (48)

where g is the objective gradient at (x, s). Roughly speaking, gZ and HZ describe the first and second derivatives
of an nS-dimensional unconstrained problem for the calculation of pZ . (The quantity Cond Hz printed in the
summary-file output is a condition estimator of HZ .)

At each iteration, an upper-triangular factor R is available such that HZ = RTR. Normally, R is computed from
RTR = ZTHZ at the start of phase 2 and is then updated as the QP working set changes. For efficiency the
dimension of R should not be excessive (say, nS ≤ 1000). This is guaranteed if the number of nonlinear variables
is “moderate”.

If the QP contains linear variables, H is positive semi-definite and R may be singular with at least one zero
diagonal. However, an inertia-controlling active-set strategy is used to ensure that only the last diagonal of R can
be zero. (See [21] for discussion of a similar strategy for indefinite quadratic programming.)

If the initial R is singular, enough variables are fixed at their current value to give a nonsingular R. This is
equivalent to including temporary bound constraints in the working set. Thereafter, R can become singular only
when a constraint is deleted from the working set (in which case no further constraints are deleted until R becomes
nonsingular).

7.6.3 The main iteration

If the reduced gradient is zero, (x, s) is a constrained stationary point on the working set. During phase 1,
the reduced gradient will usually be zero only at a vertex (although it may be zero elsewhere in the presence of
constraint dependencies). During phase 2, a zero reduced gradient implies that x minimizes the quadratic objective
when the constraints in the working set are treated as equalities. At a constrained stationary point, Lagrange
multipliers λ are defined from the equations WTλ = g(x). A Lagrange multiplier λj corresponding to an inequality
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constraint in the working set is said to be optimal if λj ≤ σ when the associated constraint is at its upper bound, or
if λj ≥ −σ when the associated constraint is at its lower bound, where σ depends on the Optimality tolerance.
If a multiplier is non-optimal, the objective function (either the true objective or the sum of infeasibilities) can
be reduced by continuing the minimization with the corresponding constraint excluded from the working set (this
step is sometimes referred to as “deleting” a constraint from the working set). If optimal multipliers occur during
the feasibility phase but the sum of infeasibilities is not zero, there is no feasible point.

The special form (46) of the working set allows the multiplier vector λ, the solution of WTλ = g, to be written in
terms of the vector

d =

(
g

0

)
−
(
A − I

)T
π =

(
g −ATπ

π

)
, (49)

where π satisfies the equations BTπ = gB, and gB denotes the basic components of g. The components of π
are the Lagrange multipliers λj associated with the equality constraints Ax − s = 0. The vector dN of nonbasic
components of d consists of the Lagrange multipliers λj associated with the upper and lower bound constraints in
the working set. The vector dS of superbasic components of d is the reduced gradient gZ (48). The vector dB of
basic components of d is zero, by construction. (The Euclidean norm of dS, and the final values of dS, g and π are
the quantities norm rg, Reduced Gradnt, Obj Gradient and Dual Activity in the PRINT file output.)

If the reduced gradient is not zero, Lagrange multipliers need not be computed and the search direction is given
by p = ZZpZ , where pZ is defined below. The step length is chosen to maintain feasibility with respect to the
satisfied constraints.

There are two possible choices for pZ , depending on whether or not HZ is singular. If HZ is nonsingular, R is
nonsingular and pZ is computed from the equations,

RTRpZ = −gZ , (50)

where gZ is the reduced gradient at x. In this case, (x, s) + p is the minimizer of the objective function subject
to the working-set constraints being treated as equalities. If (x, s) + p is feasible, α is defined to be one. In this
case, the reduced gradient at (x̄, s̄) will be zero, and Lagrange multipliers are computed at the next iteration.
Otherwise, α is set to αN , the step to the boundary of the “nearest” constraint along p. This constraint is added
to the working set at the next iteration.

IfHZ is singular, then R must also be singular, and an inertia-controlling strategy is used to ensure that only the last
diagonal element of R is zero. (See [21] for discussion of a similar strategy for indefinite quadratic programming.)
In this case, pZ satisfies

pTZHZ pZ = 0andgTZ pZ ≤ 0,

which allows the objective function to be reduced by any step of the form (x, s) + αp, α > 0. The vector p = ZpZ

is a direction of unbounded descent for the QP in the sense that the QP objective is linear and decreases without
bound along p. If no finite step of the form (x, s) +αp (α > 0) reaches a constraint not in the working set, the QP
is unbounded and SQOPT terminates at (x, s) and declares the problem to be unbounded. Otherwise, α is defined
as the maximum feasible step along p and a constraint active at (x, s) + αp is added to the working set for the
next iteration.

7.6.4 Miscellaneous

If the basis matrix is not chosen carefully, the condition of the null-space matrix Z (47) could be arbitrarily high.
To guard against this, SQOPT implements a “basis repair” feature in the following way. LUSOL is used to compute
the rectangular factorization (

B S
)T = LU, (51)
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returning just the permutation P that makes PLPT unit lower triangular. The pivot tolerance is set to require
|PLPT |ij ≤ 2, and the permutation is used to define P in (46). It can be shown that ‖Z‖ is likely to be little
more than 1. Hence, Z should be well-conditioned regardless of the condition of W .

This feature is applied at the beginning of the optimality phase if a potential B-S ordering is known.

The EXPAND procedure (see Gill et al. [3]) is used to reduce the possibility of cycling at a point where the active
constraints are nearly linearly dependent. Although there is no absolute guarantee that cycling will not occur, the
probability of cycling is extremely small (see Hall and McKinnon [22]). The main feature of expand is that the
feasibility tolerance is increased at every iteration, perhaps at the expense of violating the bounds on (x, s) by a
simple amount.

Suppose that the value of Feasibility tolerance is δ. Over a period of K iterations (where K is the value of
the optional parameter Expand frequency, the feasibility tolerance used in SQOPT (i.e., the working feasibility
tolerance) increases from 1

2δ to δ in steps of 1
2δ/K.

At certain stages, the following “resetting procedure” is used to remove small constraint infeasibilities. First, all
nonbasic variables are moved exactly onto their bounds. A count is kept of the number of non-trivial adjustments
made. If the count is nonzero, the basic variables are recomputed. Finally, the working feasibility tolerance is
reinitialized to 1

2δ.

If a problem requires more than K iterations, the resetting procedure is invoked and a new cycle of iterations is
started. (The decision to resume phase 1 or phase 2 is based on comparing any constraint infeasibilities with δ.)

The resetting procedure is also invoked if when SQOPT reaches an apparently optimal, infeasible, or unbounded
solution, unless this situation has already occurred twice. If any non-trivial adjustments are made, iterations are
continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration, but also provides a potential
choice of constraint to be added to the working set. All constraints at a distance α (α ≤ αN) along p from the
current point are then viewed as acceptable candidates for inclusion in the working set. The constraint whose
normal makes the biggest angle with the search direction is added to the working set. This strategy helps keep
the basis matrix B well-conditioned.

197



8 SNOPT details

8.1 Introduction

TOMLAB /SNOPT (hereafter referred to as SNOPT) is a general-purpose system for constrained optimization. It
minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear con-
straints. It is suitable for large-scale linear and quadratic programming and for linearly constrained optimization,
as well as for general nonlinear programs of the form

SparseNP minimize
x

f0(x)

subject to l ≤


x

f(x)

ALx

 ≤ u,

where l and u are constant lower and upper bounds, f0(x) is a smooth scalar objective function, AL is a sparse
matrix, and f(x) is a vector of smooth nonlinear constraint functions {fi(x)}. An optional parameter maximize

may specify that f0(x) should be maximized instead of minimized.

Ideally, the first derivatives (gradients) of f0(x) and fi(x) should be known and coded by the user.

Note that upper and lower bounds are specified for all variables and constraints. This form allows full generality
in specifying various types of constraint. Special values are used to indicate absent bounds (lj = −∞ or uj = +∞
for appropriate j). Free variables and free constraints (“free rows”) are ones that have both bounds infinite. Fixed
variables and equality constraints have lj = uj .

8.1.1 Problem types

If f0(x) is linear and f(x) is absent, SparseNP is a linear program (LP) and SNOPT applies the primal simplex
method [8]. Sparse basis factors are maintained by LUSOL [2] as in MINOS [4].

If only the objective is nonlinear, the problem is linearly constrained (LC) and tends to solve more easily than
the general case with nonlinear constraints (NC). For both cases, SNOPT applies a sparse sequential quadratic
programming (SQP) method [36], using limited-memory quasi-Newton approximations to the Hessian of the La-
grangian. The merit function for steplength control is an augmented Lagrangian, as in the dense SQP solver
NPSOL [30, 38].

In general, SNOPT requires less matrix computation than NPSOL and fewer evaluations of the functions than the
nonlinear algorithms in MINOS [25, 1].

It is suitable for nonlinear problems with thousands of constraints and variables, and is efficient if many constraints
and bounds are active at a solution. (Thus, ideally there should not be thousands of degrees of freedom.)
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8.2 Description of the SQP method

Here we summarize the main features of the SQP algorithm used in SNOPT and introduce some terminology used
in the description of the subroutine and its arguments. The SQP algorithm is fully described by Gill, Murray and
Saunders [36].

8.2.1 Constraints and slack variables

The upper and lower bounds on the m components of f(x) and ALx are said to define the general constraints
of the problem. SNOPT converts the general constraints to equalities by introducing a set of slack variables
s = (s1, s2, . . . , sm)T . For example, the linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0
together with the bounded slack 5 ≤ s1 ≤ +∞. SparseNP can therefore be written in the equivalent form

minimize
x,s

f0(x)

subject to

(
f(x)

ALx

)
− s = 0, l ≤

(
x

s

)
≤ u.

The general constraints become the equalities f(x) − sN = 0 and ALx − sL = 0, where sL and sN are known as
the linear and nonlinear slacks.

8.2.2 Major iterations

The basic structure of the SQP algorithm involves major and minor iterations. The major iterations generate a
sequence of iterates {xk} that satisfy the linear constraints and converge to a point that satisfies the first-order
conditions for optimality. At each iterate a QP subproblem is used to generate a search direction towards the next
iterate xk+1. The constraints of the subproblem are formed from the linear constraints ALx − sL = 0 and the
nonlinear constraint linearization

f(xk) + f ′(xk)(x− xk)− sN = 0,

where f ′(xk) denotes the Jacobian matrix, whose elements are the first derivatives of f(x) evaluated at xk. The
QP constraints therefore comprise the m linear constraints

f ′(xk)x− sN = −f(xk) + f ′(xk)xk,

ALx − sL = 0,

where x and s are bounded above and below by u and l as before. If the m × n matrix A and m-vector b are
defined as

A =

(
f ′(xk)

AL

)
and b =

(
−f(xk) + f ′(xk)xk

0

)
,

then the QP subproblem can be written as

minimize
x,s

q(x) subject to Ax− s = b, l ≤

(
x

s

)
≤ u, (52)

where q(x) is a quadratic approximation to a modified Lagrangian function [36].
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8.2.3 Minor iterations

Solving the QP subproblem is itself an iterative procedure. The iterations of the QP solver are the minor iterations
of the SQP method. At each minor iteration, the constraints Ax − s = b are (conceptually) partitioned into the
form

BxB + SxS +NxN = b,

where the basis matrix B is square and nonsingular. The elements of xB, xS and xN are called the basic, superbasic
and nonbasic variables respectively; they are a permutation of the elements of x and s. At a QP solution, the
basic and superbasic variables will lie somewhere between their bounds, while the nonbasic variables will normally
be equal to one of their bounds. At each iteration, xS is regarded as a set of independent variables that are free
to move in any desired direction, namely one that will improve the value of the QP objective (or the sum of
infeasibilities). The basic variables are then adjusted in order to ensure that (x, s) continues to satisfy Ax− s = b.
The number of superbasic variables (nS, say) therefore indicates the number of degrees of freedom remaining after
the constraints have been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In particular,
nS will always be zero for LP problems.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic variable is
selected to be added to S, and the process is repeated with the value of nS increased by one. At all stages, if a
basic or superbasic variables encounters one of its bounds, the variables is made nonbasic and the value of nS is
decreased by one.

Associated with each of the m equality constraints Ax− s = b are the dual variables π. Similarly, each variable in
(x, s) has an associated reduced gradient dj . The reduced gradients for the variables x are the quantities g−ATπ,
where g is the gradient of the QP objective, and the reduced gradients for the slacks are the dual variables π.
The QP subproblem is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0 for all nonbasic
variables at their upper bounds, and dj = 0 for other variables, including superbasics. In practice, an approximate
QP solution (x̂k, ŝk, π̂k) is found by relaxing these conditions.

8.2.4 The merit function

After a QP subproblem has been solved, new estimates of the SparseNP solution are computed using a line search
on the augmented Lagrangian merit function

M(x, s, π) = f0(x)− πT
(
f(x)− sN

)
+ 1

2

(
f(x)− sN

)T
D
(
f(x)− sN

)
, (53)

where D is a diagonal matrix of penalty parameters (Dii ≥ 0). If (xk, sk, πk) denotes the current solution estimate
and (x̂k, ŝk, π̂k) denotes the QP solution, the line search determines a step αk (0 < αk ≤ 1) such that the new
point 

xk+1

sk+1

πk+1

 =


xk

sk

πk

+ αk


x̂k − xk
ŝk − sk
π̂k − πk

 (54)

gives a sufficient decrease in the merit function (53). When necessary, the penalties in D are increased by the
minimum-norm perturbation that ensures descent for M [38].

As in NPSOL, sN is adjusted to minimize the merit function as a function of s prior to the solution of the QP
subproblem. For more details, see [30, 10].
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8.2.5 Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. First, infeasible linear constraints are detected by
solving the linear program

FLP minimize
x,v,w

eT (v + w)

subject to l ≤

(
x

ALx− v + w

)
≤ u, v ≥ 0, w ≥ 0,

where e is a vector of ones, and the nonlinear constraint bounds are temporarily excluded from l and u. This
is equivalent to minimizing the sum of the general linear constraint violations subject to the bounds on x. (The
sum is the `1-norm of the linear constraint violations. In the linear programming literature, the approach is called
elastic programming.)

The linear constraints are infeasible if the optimal solution of FLP has v 6= 0 or w 6= 0. SNOPT then terminates
without computing the nonlinear functions.

Otherwise, all subsequent iterates satisfy the linear constraints. (Such a strategy allows linear constraints to be
used to define a region in which the functions can be safely evaluated.) SNOPT proceeds to solve SparseNP as
given, using search directions obtained from the sequence of QP subproblems (52).

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables π for the nonlinear constraints
become large), SNOPT enters “elastic” mode and thereafter solves the problem

NP(γ) minimize
x,v,w

f0(x) + γeT (v + w)

subject to l ≤


x

f(x)− v + w

ALx

 ≤ u, v ≥ 0, w ≥ 0,

where γ is a nonnegative parameter (the elastic weight), and f0(x) + γeT (v + w) is called a composite objective
(the `1 penalty function for the nonlinear constraints).

The value of γ may increase automatically by multiples of 10 if the optimal v and w continue to be nonzero. If γ
is sufficiently large, this is equivalent to minimizing the sum of the nonlinear constraint violations subject to the
linear constraints and bounds. A similar `1 formulation of SparseNP is fundamental to the S`1QP algorithm of
Fletcher [40]. See also Conn [7].

The initial value of γ is controlled by the optional parameters Elastic mode and Elastic weight (p. 207).
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8.3 Optional parameters

The performance of each SNOPT interface is controlled by a number of parameters or “options”. Each option
has a default value that should be appropriate for most problems. The options are normally set in optPar or
Prob.SOL.optPar before calling the solver. For special situations it is possible to specify non-standard values for
some or all of the options. This options may be defined in a file called a SPECS file.

8.3.1 The SPECS file

The specs file contains a list of option definitions, using data in the following general form:

Begin options

Iterations limit 500

Minor feasibility tolerance 1.0e-7

Solution Yes

End options

We call such data a SPECS file because it specifies various options. The file starts with the keyword Begin and
ends with End. Each line specifies a single option in free format, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers may be up to 16
contiguous characters in Fortran 77’s I, F, E or D formats, terminated by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords have synonyms,
and certain abbreviations are allowed, as long as there is no ambiguity. Blank lines and comments may be used to
improve readability. A comment begins with an asterisk (*), which may appear anywhere on a line. All subsequent
characters on the line are ignored.

It may be useful to include a comment on the first (Begin) line of the file. This line is echoed to the SUMMARY

file.

Most of the options described in the next section should be left at their default values for any given model. If
experimentation is necessary, we recommend changing just one option at a time.

8.3.2 SPECS file checklist and defaults

The following example SPECS file shows all valid keywords and their default values. The keywords are grouped
according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used. The values given here
correspond to double-precision arithmetic on most current machines (ε ≈ 2.22 × 10−16). Similar values would
apply to any machine having about 15 decimal digits of precision.
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BEGIN checklist of SPECS file parameters and their default values

* Printing

Major print level 1 * one-line major iteration log

Minor print level 1 * one-line minor iteration log

Print file 9 *

Summary file 6 * typically the screen

Print frequency 100 * minor iterations log on PRINT file

Summary frequency 100 * minor iterations log on SUMMARY file

Solution Yes * on the PRINT file

* Suppress options listing * default: options are listed

System information No * prints more system information

* Problem specification

Minimize * (opposite of Maximize)

* Feasible point * (alternative to Max or Min)

Infinite Bound size 1.0e+20 *

* Convergence Tolerances

Major feasibility tolerance 1.0e-6 * target nonlinear constraint violation

Major optimality tolerance 1.0e-6 * target complementarity gap

Minor feasibility tolerance 1.0e-6 * for satisfying the QP bounds

* Derivative checking

Verify level 0 * cheap check on gradients

Start objective check at col 1 *

Stop objective check at col n *

Start constraint check at col 1 *

Stop constraint check at col n *

* Scaling

Scale option 1 * linear constraints and variables

Scale tolerance 0.9 *

* Scale Print * default: scales are not printed

* Other Tolerances

Crash tolerance 0.1 *

Linesearch tolerance 0.9 * smaller for more accurate search

Pivot tolerance 3.7e-11 * ε2/3

* QP subproblems

QPSolver Cholesky * default

Crash option 3 * first basis is essentially triangular

Elastic mode No * until it seems necessary

Elastic weight 1.0e+4 * used only during elastic mode

Iterations limit 10000 * or 20m if that is more

Partial price 1 * 10 for large LPs

* SQP method

Major iterations limit 1000 * or m if that is more
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Minor iterations limit 500 *

Major step limit 2.0 *

Superbasics limit n+ 1

Hessian dimension 750 * or Superbasics limit if that is less

Derivative level 3 *

Derivative linesearch *

* Nonderivative linesearch *

Function precision 3.0e-13 * ε0.8 (almost full accuracy)

Difference interval 5.5e-7 * (Function precision)1/2

Central difference interval 6.7e-5 * (Function precision)1/3

New superbasics limit 99 * controls early termination of QPs

Objective row ObjRow * row number of objective in F (x)

Penalty parameter 0.0 * initial penalty parameter

Proximal point method 1 * satisfies linear constraints near x0

Violation limit 10.0 * unscaled constraint violation limit

Unbounded step size 1.0e+18 *

Unbounded objective 1.0e+15 *

* Hessian approximation

Hessian full memory * default if n ≤ 75

Hessian limited memory * default if n > 75

Hessian frequency 999999 * for full Hessian (never reset)

Hessian updates 20 * for limited memory Hessian

Hessian flush 999999 * no flushing

* Frequencies

Check frequency 60 * test row residuals ‖Ax− s‖
Expand frequency 10000 * for anti-cycling procedure

Factorization frequency 50 * 100 for LPs

Save frequency 100 * save basis map

* LU options

LU factor tolerance 10.0 * limits size of multipliers in L

LU update tolerance 10.0 * the same during updates

LU singularity tolerance 3.25e-11 *

LU partial pivoting * default pivot strategy

LU rook pivoting * use rook pivoting for the LU

LU complete pivoting * use complete pivoting for the LU

* Partitions of cw, iw, rw

Total character workspace lencw *

Total integer workspace leniw *

Total real workspace lenrw *

User character workspace 500 *

User integer workspace 500 *

User real workspace 500 *

* Miscellaneous

Debug level 0 * for developers

Timing level 3 * prints cpu times

End of SPECS file checklist
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8.3.3 Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and a description of their
effect. In the description of the options we use the notation of the problem format SparseNP to refer to the
objective and constraint functions.

Central difference interval r Default = ε1/3 ≈ 6.0e-6

When Derivative level < 3), the central-difference interval r is used near an optimal solution to obtain more
accurate (but more expensive) estimates of gradients. Twice as many function evaluations are required compared
to forward differencing. The interval used for the jth variable is hj = r(1+ |xj |). The resulting derivative estimates
should be accurate to O(r2), unless the functions are badly scaled.

Check frequency i Default = 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made to see if the current
solution x satisfies the general linear constraints (including linearized nonlinear constraints, if any). The constraints
are of the form Ax− s = b, where s is the set of slack variables. To perform the numerical test, the residual vector
r = b−Ax+s is computed. If the largest component of r is judged to be too large, the current basis is refactorized
and the basic variables are recomputed to satisfy the general constraints more accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should not be needed.

Crash option i Default = 3

Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows and columns of the
constraint matrix (A − I ). The Crash option i determines which rows and columns of A are eligible initially,
and how many times CRASH is called. Columns of −I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the matrix A.

2 CRASH is called twice (if there are nonlinear constraints). The first call looks for a triangular basis in
linear rows, and the iteration proceeds with simplex iterations until the linear constraints are satisfied. The
Jacobian is then evaluated for the first major iteration and CRASH is called again to find a triangular basis
in the nonlinear rows (retaining the current basis for linear rows).

3 CRASH is called up to three times (if there are nonlinear constraints). The first two calls treat linear
equalities and linear inequalities separately. As before, the last call treats nonlinear rows before the first
major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2, numerical values are used to
exclude slacks that are close to a bound.) CRASH then makes several passes through the columns of A, searching
for a basis matrix that is essentially triangular. A column is assigned to “pivot” on a particular row if the column
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contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately form
the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to complete the
basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small” nonzeros in each column
of A. If amax is the largest element in column j, other nonzeros aij in the column are ignored if |aij | ≤ amax × r.
(To be meaningful, r should be in the range 0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is likely to be nonsingular and
almost triangular. The intention is to obtain a starting basis containing more columns of A and fewer (arbitrary)
slacks. A feasible solution may be reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor tolerance; i.e., a tridiag-
onal matrix with entries −1, 4, −1. To help CRASH choose all m columns for the initial basis, we would specify
Crash tolerance r for some value of r > 1/4.

Derivative level i Default = 3

The keyword Derivative level specifies which nonlinear function gradients are known analytically and will be
supplied to SNOPT. This is normally automatically set by TOMLAB.

i Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gradient are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are unknown.

0 Some components of the objective gradient are unknown and some of the constraint gradients are unknown.

The value i = 3 should be used whenever possible. It is the most reliable and will usually be the most efficient.

If i = 0 or 2, SNOPT will estimate the missing components of the objective gradient, using finite differences.
However, it could increase the total run-time substantially, and there is less assurance that an acceptable solution
will be located. If the nonlinear variables are not well scaled, it may be necessary to specify a nonstandard
Difference interval (see below).

If i = 0 or 1, SNOPT will estimate missing elements of the Jacobian. For each column of the Jacobian, one call is
needed to estimate all missing elements in that column, if any. If Jacobian = sparse and the sparsity pattern of
the Jacobian happens to be 

* * *

? ?

* ?

* *


where * indicates known gradients and ? indicates unknown elements, SNOPT will use one call to estimate the
missing element in column 2, and another call to estimate both missing elements in column 3. No calls are needed
for columns 1 and 4.

At times, central differences are used rather than forward differences.
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Derivative linesearch Default

Nonderivative linesearch

At each major iteration a line search is used to improve the merit function. A Derivative linesearch uses
safeguarded cubic interpolation and requires both function and gradient values to compute estimates of the step
αk. If some analytic derivatives are not provided, or a Nonderivative linesearch is specified, SNOPT employs
a line search based upon safeguarded quadratic interpolation, which does not require gradient evaluations.

A nonderivative line search can be slightly less robust on difficult problems, and it is recommended that the default
be used if the functions and derivatives can be computed at approximately the same cost. If the gradients are
very expensive relative to the functions, a nonderivative line search may give a significant decrease in computation
time.

Comment: Derivative linesearch is only default if analytic derivatives are provided.

Difference interval h1 Default = ε1/2 ≈ 1.5e-8

This alters the interval h1 that is used to estimate gradients by forward differences in the following circumstances:

• In the initial (“cheap”) phase of verifying the problem derivatives.

• For verifying the problem derivatives.

• For estimating missing derivatives.

In all cases, a derivative with respect to xj is estimated by perturbing that component of x to the value xj +
h1(1 + |xj |), and then evaluating f0(x) or f(x) at the perturbed point. The resulting gradient estimates should be
accurate to O(h1) unless the functions are badly scaled. Judicious alteration of h1 may sometimes lead to greater
accuracy.

Elastic mode No Default

Elastic mode Yes

Normally SNOPT initiates elastic mode only when it seems necessary. Option Yes causes elastic mode to be entered
from the beginning.

Elastic weight ω Default = 104

This keyword determines the initial weight γ associated with problem NP(γ) on p. 201.

At major iteration k, if elastic mode has not yet started, a scale factor σk = 1 + ‖g(xk)‖∞ is defined from the
current objective gradient. Elastic mode is then started if the QP subproblem is infeasible, or the QP dual variables
are larger in magnitude than σkω. The QP is re-solved in elastic mode with γ = σkω.

Thereafter, major iterations continue in elastic mode until they converge to a point that is optimal for problem
NP(γ). If the point is feasible for SparseNP (v = w = 0), it is declared locally optimal. Otherwise, γ is increased
by a factor of 10 and major iterations continue. If γ has already reached a maximum allowable value, SparseNP
is declared locally infeasible.
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Expand frequency i Default = 10000

This option is part of the EXPAND anti-cycling procedure [3] designed to make progress even on highly degenerate
problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the bounds
on the variables by a small amount. Suppose that the Minor feasibility tolerance is δ. Over a period of i
iterations, the tolerance actually used by SNOPT increases from 0.5δ to δ (in steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic variable.
(Cycling can occur only when the current solution is at a vertex of the feasible region.) Thus, zero steps are
allowed if there is more than one superbasic variable, but otherwise positive steps are enforced.

Increasing i helps reduce the number of slightly infeasible nonbasic variables (most of which are eliminated during
a resetting procedure). However, it also diminishes the freedom to choose a large pivot element (see Pivot

tolerance).

Factorization frequency k Default = 50

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The default k is reasonable for
typical problems. Higher values up to k = 100 (say) may be more efficient on problems that are extremely
sparse and well scaled.

• When the objective function is nonlinear, fewer basis updates will occur as an optimum is approached. The
number of iterations between basis factorizations will therefore increase. During these iterations a test is
made regularly (according to the Check frequency) to ensure that the general constraints are satisfied. If
necessary the basis will be refactorized before the limit of k updates is reached.

Feasibility tolerance t Default = 1.0e-6

see Minor feasibility tolerance

Feasible point

see Minimize

Function precision εR Default = ε0.8 ≈ 3.7e-11

The relative function precision εR is intended to be a measure of the relative accuracy with which the nonlinear
functions can be computed. For example, if f(x) is computed as 1000.56789 for some relevant x and if the first
6 significant digits are known to be correct, the appropriate value for εR would be 1.0e-6.

(Ideally the functions f(x) or Fi(x) should have magnitude of order 1. If all functions are substantially less than
1 in magnitude, εR should be the absolute precision. For example, if f(x) = 1.23456789e-4 at some point and if
the first 6 significant digits are known to be correct, the appropriate value for εR would be 1.0e-10.)

• The default value of εR is appropriate for simple analytic functions.

208



• In some cases the function values will be the result of extensive computation, possibly involving an iterative
procedure that can provide rather few digits of precision at reasonable cost. Specifying an appropriate
Function precision may lead to savings, by allowing the line search procedure to terminate when the
difference between function values along the search direction becomes as small as the absolute error in the
values.

Hessian dimension r Default = Superbasics limit or 750

This specifies that an r× r triangular matrix R is to be available for use by the Cholesky QP solver (to define the
reduced Hessian according to RTR = ZTHZ).

Hessian full memory Default = Full if n1 ≤ 75

Hessian limited memory

These options select the method for storing and updating the approximate Hessian. (SNOPT uses a quasi-Newton
approximation to the Hessian of the Lagrangian. A BFGS update is applied after each major iteration.)

If Hessian full memory is specified, the approximate Hessian is treated as a dense matrix and the BFGS updates
are applied explicitly. This option is most efficient when the number of nonlinear variables n1 is not too large (say,
less than 75). In this case, the storage requirement is fixed and one can expect 1-step Q-superlinear convergence
to the solution.

Hessian limited memory should be used on problems where n1 is very large. In this case a limited-memory
procedure is used to update a diagonal Hessian approximation Hr a limited number of times. (Updates are
accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has been reset to their
diagonal.)

Hessian frequency i Default = 999999

If Hessian Full is selected and i BFGS updates have already been carried out, the Hessian approximation is
reset to the identity matrix. (For certain problems, occasional resets may improve convergence, but in general
they should not be necessary.)

Hessian Full memory and Hessian frequency = 20 have a similar effect to Hessian Limited memory and
Hessian updates = 20 (except that the latter retains the current diagonal during resets).

Hessian updates i Default = 20

If Hessian Limited memory is selected and i BFGS updates have already been carried out, all but the diagonal
elements of the accumulated updates are discarded and the updating process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate Hessian. However, the more
vectors stored, the greater the cost of each QP iteration. The default value is likely to give a robust algorithm
without significant expense, but faster convergence can sometimes be obtained with significantly fewer updates
(e.g., i = 5).
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Iterations limit k Default = max{10000, 20m}

This is the maximum number of minor iterations allowed (i.e., iterations of the simplex method or the QP algo-
rithm), summed over all major iterations.

Infinite Bound size r Default = 1.0e+20

If r > 0, r defines the “infinite” bound BigBnd in the definition of the problem constraints. Any upper bound
greater than or equal to BigBnd will be regarded as plus infinity (and similarly for a lower bound less than or equal
to −BigBnd). If r ≤ 0, the default value is used.

Linesearch tolerance t Default = 0.9

This controls the accuracy with which a steplength will be located along the direction of search each iteration.
At the start of each line search a target directional derivative for the merit function is identified. This parameter
determines the accuracy to which this target value is approximated.

• t must be a real value in the range 0.0 ≤ t ≤ 1.0.

• The default value t = 0.9 requests just moderate accuracy in the line search.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try t = 0.1,
0.01 or 0.001. The number of major iterations might decrease.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all gradients
are known, try t = 0.99. (The number of major iterations might increase, but the total number of function
evaluations may decrease enough to compensate.)

• If not all gradients are known, a moderately accurate search remains appropriate. Each search will require
only 1–5 function values (typically), but many function calls will then be needed to estimate missing gradients
for the next iteration.

Log frequency k Default = 100

see Print frequency

LU factor tolerance r1 Default = 100.0 (LP) or 3.99 (NLP)

LU update tolerance r2 Default = 10.0 (LP) or 3.99 (NLP)

These tolerances affect the stability and sparsity of the basis factorization B = LU during refactorization and
updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is a product of matrices of the form(

1

µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger values favor sparsity. The
default values usually strike a good compromise.
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• For large and relatively dense problems, r1 = 5.0 (say) may give a useful improvement in stability without
impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce r1 and/or r2 in order
to achieve stability. For example, if the columns of A include a submatrix of the form

4 −1

−1 4 −1

−1 4 −1
. . . . . . . . .

−1 4 −1

−1 4


,

both r1 and r2 should be in the range 1.0 ≤ ri < 4.0.

LU Partial Pivoting Default

LU Rook Pivoting

LU Complete Pivoting

The LU factorization implements a Markowitz-type search for a pivot that locally minimizes the fill-in subject to
a threshold pivoting stability criterion. The default option is to use threshold partial pivoting. The options LU

rook pivoting and LU complete pivoting are more expensive than partial pivoting but are more stable and
better at revealing rank.

LU density tolerance r1 Default = 0.5

LU singularity tolerance r2 Default = ε0.67 ≈ 3.25e-11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L and rows of U are
formed one at a time, and the remaining rows and columns of the basis are altered appropriately. At any stage,
if the density of the remaining matrix exceeds r1, the Markowitz strategy for choosing pivots is terminated. The
remaining matrix is factored by a dense LU procedure. Raising the density tolerance towards 1.0 may give slightly
sparser LU factors, with a slight increase in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When the basis is refactorized, the
diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or |Ujj | < r2 maxi |Uij |, the jth column of the basis
is replaced by the corresponding slack variable. (This is most likely to occur after a restart, or at the start of a
major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular. (For example, a
whole row of the Jacobian could be zero at an optimal solution.) Before exact singularity occurs, the basis could
become very ill-conditioned and the optimization could progress very slowly (if at all). Setting a larger tolerance
r2 = 1.0e-5, say, may help cause a judicious change of basis.

Major feasibility tolerance εr Default = 1.0e-6

This specifies how accurately the nonlinear constraints should be satisfied. The default value of 1.0e-6 is appro-
priate when the linear and nonlinear constraints contain data to about that accuracy.
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Let rowerr be the maximum nonlinear constraint violation, normalized by the size of the solution. It is required
to satisfy

rowerr = max
i

violi/‖x‖ ≤ εr, (55)

where violi is the violation of the ith nonlinear constraint (i = 1 : nnCon).

In the major iteration log, rowerr appears as the quantity labeled “Feasibl”. If some of the problem functions
are known to be of low accuracy, a larger Major feasibility tolerance may be appropriate.

Major optimality tolerance εd Default = 1.0e-6

This specifies the final accuracy of the dual variables. On successful termination, SNOPT will have computed a
solution (x, s, π) such that

maxComp = max
j

Compj/‖π‖ ≤ εd, (56)

where Compj is an estimate of the complementarity slackness for variable j (j = 1 :n+m). The values Compj are
computed from the final QP solution using the reduced gradients dj = gj − πTaj (where gj is the jth component
of the objective gradient, aj is the associated column of the constraint matrix (A − I ), and π is the set of QP
dual variables):

Compj =

{
dj min{xj − lj , 1} if dj ≥ 0;

−dj min{uj − xj , 1} if dj < 0.

In the major iteration log, maxComp appears as the quantity labeled “Optimal”.

Major iterations limit k Default = max{1000,m}

This is the maximum number of major iterations allowed. It is intended to guard against an excessive number of
linearizations of the constraints.

Major print level p Default = 00001

This controls the amount of output to the PRINT and SUMMARY files each major iteration. Major print level

1 gives normal output for linear and nonlinear problems, and Major print level 11 gives addition details of the
Jacobian factorization that commences each major iteration.

In general, the value being specified may be thought of as a binary number of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1 as follows:

s a single line that gives a summary of each major iteration. (This entry in JFDXbs is not strictly binary since
the summary line is printed whenever JFDXbs ≥ 1).

b BASIS statistics, i.e., information relating to the basis matrix whenever it is refactorized. (This output is
always provided if JFDXbs ≥ 10).

X xk, the nonlinear variables involved in the objective function or the constraints.

D πk, the dual variables for the nonlinear constraints.
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F F (xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.

To obtain output of any items JFDXbs, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each major iteration. Column j will be
preceded by the value of the corresponding variable xj and a key to indicate whether the variable is basic, superbasic
or nonbasic. (Hence if J=1, there is no reason to specify X=1 unless the objective contains more nonlinear variables
than the Jacobian.) A typical line of output is

3 1.250000D+01 BS 1 1.00000E+00 4 2.00000E+00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has elements of 1.0 and 2.0
in rows 1 and 4.

Major print level 0 suppresses most output, except for error messages.

Major step limit r Default = 2.0

This parameter limits the change in x during a line search. It applies to all nonlinear problems, once a “feasible
solution” or “feasible subproblem” has been found.

1. A line search determines a step α over the range 0 < α ≤ β, where β is 1 if there are nonlinear constraints,
or the step to the nearest upper or lower bound on x if all the constraints are linear. Normally, the first
steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the components of x can lead to
floating-point overflow. The parameter r is therefore used to define a limit β̄ = r(1+‖x‖)/‖p‖ (where p is the
search direction), and the first evaluation of f(x) is at the potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear functions
at meaningless points. The Major step limit provides an additional safeguard. The default value r = 2.0
should not affect progress on well behaved problems, but setting r = 0.1 or 0.01 may be helpful when rapidly
varying functions are present. A “good” starting point may be required. An important application is to the
class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate an optimum near
the starting point.

Minimize Default

Maximize

Feasible point

The keywords Minimize and Maximize specify the required direction of optimization. It applies to both linear and
nonlinear terms in the objective.

The keyword feasible point means “Ignore the objective function” while finding a feasible point for the linear
and nonlinear constraints. It can be used to check that the nonlinear constraints are feasible without altering the
call to SNOPT.
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Minor iterations limit k Default = 500

If the number of minor iterations for the optimality phase of the QP subproblem exceeds k, then all nonbasic QP
variables that have not yet moved are frozen at their current values and the reduced QP is solved to optimality.

Note that more than k minor iterations may be necessary to solve the reduced QP to optimality. These extra
iterations are necessary to ensure that the terminated point gives a suitable direction for the line search.

In the major iteration log, a t at the end of a line indicates that the corresponding QP was artificially terminated
using the limit k.

Note that Iterations limit defines an independent absolute limit on the total number of minor iterations
(summed over all QP subproblems).

Minor feasibility tolerance t Default = 1.0e-6

SNOPT tries to ensure that all variables eventually satisfy their upper and lower bounds to within the tolerance t.
This includes slack variables. Hence, general linear constraints should also be satisfied to within t.

Feasibility with respect to nonlinear constraints is judged by the Major feasibility tolerance (not by t).

• If the bounds and linear constraints cannot be satisfied to within t, the problem is declared infeasible. Let
sInf be the corresponding sum of infeasibilities. If sInf is quite small, it may be appropriate to raise t by
a factor of 10 or 100. Otherwise, some error in the data should be suspected.

• Nonlinear functions will be evaluated only at points that satisfy the bounds and linear constraints. If there
are regions where a function is undefined, every attempt should be made to eliminate these regions from the
problem.

For example, if f(x) =
√
x1 + log x2, it is essential to place lower bounds on both variables. If t = 1.0e-6,

the bounds x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log singularity is more serious. In general,
keep x as far away from singularities as possible.)

• If Scale option ≥ 1, feasibility is defined in terms of the scaled problem (since it is then more likely to be
meaningful).

• In reality, SNOPT uses t as a feasibility tolerance for satisfying the bounds on x and s in each QP subproblem.
If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared infeasible. SNOPT is
then in elastic mode thereafter (with only the linearized nonlinear constraints defined to be elastic). See the
Elastic options.

Minor print level k Default = 1

This controls the amount of output to the PRINT and SUMMARY files during solution of the QP subproblems.
The value of k has the following effect:

0 No minor iteration output except error messages.

≥ 1 A single line of output each minor iteration (controlled by Print frequency and Summary frequency).
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≥ 10 Basis factorization statistics generated during the periodic refactorization of the basis (see Factorization

frequency). Statistics for the first factorization each major iteration are controlled by the Major print

level.

New superbasics limit i Default = 99

This option causes early termination of the QP subproblems if the number of free variables has increased signifi-
cantly since the first feasible point. If the number of new superbasics is greater than i the nonbasic variables that
have not yet moved are frozen and the resulting smaller QP is solved to optimality.

In the major iteration log, a “T” at the end of a line indicates that the QP was terminated early in this way.

Partial price i Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables than constraints. It
reduces the work required for each “pricing” operation (when a nonbasic variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix
(
A − I

)
are searched.

• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to i). If the previous
pricing search was successful on Aj , Ij , the next search begins on the segments Aj+1, Ij+1. (All subscripts
here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable with the largest
such reduced gradient (of appropriate sign) is selected to become superbasic. If nothing is found, the search
continues on the next segments Aj+2, Ij+2, and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t time periods.

Pivot tolerance r Default = ε2/3 ≈ 3.7e-11

During solution of QP subproblems, the pivot tolerance is used to prevent columns entering the basis if they would
cause the basis to become almost singular.

• When x changes to x+ αp for some search direction p, a “ratio test” is used to determine which component
of x reaches an upper or lower bound first. The corresponding element of p is called the pivot element.

• Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than the pivot tolerance
r.

• It is common for two or more variables to reach a bound at essentially the same time. In such cases, the
Minor Feasibility tolerance (say t) provides some freedom to maximize the pivot element and thereby
improve numerical stability. Excessively small values of t should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some freedom to maximize the pivot element.
Excessively large values of f should therefore not be specified.
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Proximal point method i Default = 1

i = 1 or 2 specifies minimization of ‖x− x0‖1 or 1
2‖x− x0‖22 when the starting point x0 is changed to satisfy the

linear constraints (where x0 refers to nonlinear variables).

QPSolver Cholesky Default

QPSolver CG

QPSolver QN

Specifies the algorithm used to solve the QP subproblem. QPSolver Cholesky uses the active-set QP method of
SQOPT, which holds the full Cholesky factor R of the reduced Hessian ZTHZ. As the QP iterations proceed,
the dimension of R changes as the number of superbasic variables changes. If it is necessary that the number of
superbasic variables increases beyond the value of Hessian dimension, the reduced Hessian cannot be stored and
the solver switches to QPSolver CG. The Cholesky solver is reactivated if the number of superbasics stabilizes at
a value less than Hessian dimension.

QPSolver QN solves the QP subproblem using a quasi-Newton method similar to MINOS. In this case, R is the
factor of a quasi-Newton approximate Hessian.

QPSolver CG uses an active-set method similar to QPSolver QN, but uses the conjugate-gradient method to solve
all systems involving the reduced Hessian.

• The Cholesky QP solver is the most robust, but may require a significant amount of computation if the
number of superbasics is large.

• The quasi-Newton QP solver does not require the computation of the R at the start of each QP and may be
appropriate when the number of superbasics is large, but each QP subproblem requires relatively few minor
iterations.

• The conjugate-gradient QP solver is appropriate for problems with large numbers of degrees of freedom.

Reduced Hessian dimension i Default = min{750, n1 + 1}

see Hessian dimension

Scale option i Default = 2 (LP) or 1 (NLP)

Scale tolerance r Default = 0.9

Scale Print

Three scale options are available as follows:

i Meaning

0 No scaling. This is recommended if it is known that x and the constraint matrix (and Jacobian) never have
very large elements (say, larger than 1000).
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1 Linear constraints and variables are scaled by an iterative procedure that attempts to make the matrix
coefficients as close as possible to 1.0 (see Fourer [11]). This will sometimes improve the performance of the
solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, an additional scaling is performed
that takes into account columns of

(
A −I

)
that are fixed or have positive lower bounds or negative upper

bounds.

If nonlinear constraints are present, the scales depend on the Jacobian at the first point that satisfies the
linear constraints. Scale option 2 should therefore be used only if (a) a good starting point is provided,
and (b) the problem is not highly nonlinear.

Scale tolerance affects how many passes might be needed through the constraint matrix. On each pass, the
scaling procedure computes the ratio of the largest and smallest nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust the row and column
scales. Raising r from 0.9 to 0.99 (say) usually increases the number of scaling passes through A. At most 10
passes are made.

Scale Print causes the row-scales r(i) and column-scales c(j) to be printed. The scaled matrix coefficients are
āij = aijc(j)/r(i), and the scaled bounds on the variables and slacks are l̄j = lj/c(j), ūj = uj/c(j), where
c(j) ≡ r(j − n) if j > n.

Solution Yes

Solution No

Solution If Optimal, Infeasible, or Unbounded

Start Objective Check at Column k Default = 1

Start Constraint Check at Column k Default = 1

Stop Objective Check at Column l Default = n′1

Stop Constraint Check at Column l Default = n′′1

If Verify level > 0, they may be used to abbreviate the verification of individual derivative elements. For
example:

• If the first 100 objective gradients appeared to be correct in an earlier run, and if you have just found a bug
in that ought to fix up the 101-th component, then you might as well specify Start Objective Check at

Column 101. Similarly for columns of the Jacobian.

• If the first 100 variables occur nonlinearly in the constraints, and the remaining variables are nonlinear only
in the objective, then one must set the first 100 components of g(*) to zero, but these hardly need to be
verified. The above option would again be appropriate.
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Summary file f Default = 6

Summary frequency k Default = 100

If f > 0 and Minor print level > 0, a line of the QP iteration log will be output to file f every kth minor
iteration.

Superbasics limit i Default = n1 + 1

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set slightly larger than
the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom. (The number of variables
lying strictly between their bounds is no more than m, the number of general constraints.) The default value of i
is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the “number of independent variables”.

Normally, i need not be greater than n1 + 1, where n1 is the number of nonlinear variables. For many problems, i
may be considerably smaller than n1. This will save storage if n1 is very large.

System Information No Default

System Information Yes

This option allows the knowledgeable user to print some additional information on the progress of the major and
minor iterations.

Timing level i Default = 3

i = 0 suppresses output of cpu times. (Intended for installations with dysfunctional timing routines.)

Unbounded objective value fmax Default = 1.0e+15

Unbounded step size αmax Default = 1.0e+18

These parameters are intended to detect unboundedness in nonlinear problems. (They may not achieve that
purpose!) During a line search, f0 is evaluated at points of the form x+αp, where x and p are fixed and α varies.
if |f0| exceeds fmax or α exceeds αmax, iterations are terminated with the exit message Problem is unbounded

(or badly scaled).

If singularities are present, unboundedness in f0(x) may be manifested by a floating-point overflow (during the
evaluation of f0(x+ αp)), before the test against fmax can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Verify level l Default = 0

This option refers to finite-difference checks on the derivatives computed by the user-provided routines. Derivatives
are checked at the first point that satisfies all bounds and linear constraints.
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l Meaning

0 Only a “cheap” test will be performed.

1 Individual gradients will be checked (with a more reliable test). A key of the form “OK” or “Bad?” indicates
whether or not each component appears to be correct.

2 Individual columns of the problem Jacobian will be checked.

3 Options 2 and 1 will both occur (in that order).

−1 Derivative checking is disabled.

Verify level 3 should be specified whenever a new function routine is being developed. The Start and Stop

keywords may be used to limit the number of nonlinear variables checked. Missing derivatives are not checked, so
they result in no overhead.

Violation limit τ Default = 10

This keyword defines an absolute limit on the magnitude of the maximum constraint violation after the line search.
On completion of the line search, the new iterate xk+1 satisfies the condition

vi(xk+1) ≤ τ max{1, vi(x0)}, (57)

where x0 is the point at which the nonlinear constraints are first evaluated and vi(x) is the ith nonlinear constraint
violation vi(x) = max(0, li − fi(x), fi(x)− ui).

The effect of this violation limit is to restrict the iterates to lie in an expanded feasible region whose size depends
on the magnitude of τ . This makes it possible to keep the iterates within a region where the objective is expected
to be well-defined and bounded below. If the objective is bounded below for all values of the variables, then τ may
be any large positive value.
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8.4 File Output

The files can be directed with the Print file and Summary file options (or suppressed).

8.4.1 The PRINT file

If Print file is set (not done through optPar, see the help for calling the solver), the following information is
output to the PRINT file during the solution process. All printed lines are less than 131 characters.

• A listing of the SPECS file, if any.

• A listing of the options that were or could have been set in the SPECS file.

• An estimate of the working storage needed and the amount available.

• Some statistics about the problem being solved.

• The storage available for the LU factors of the basis matrix.

• A summary of the scaling procedure, if Scale option > 0.

• Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

• The major iteration log.

• The minor iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections.

8.4.2 The major iteration log

If Major print level > 0, one line of information is output to the PRINT file every kth minor iteration, where
k is the specified Print frequency (default k = 1).

Label Description

Itns The cumulative number of minor iterations.

Major The current major iteration number.

Minors is the number of iterations required by both the feasibility and optimality phases of the QP subproblem.
Generally, Minors will be 1 in the later iterations, since theoretical analysis predicts that the correct
active set will be identified near the solution (see §8.2).

Step The step length α taken along the current search direction p. The variables x have just been changed to
x+αp. On reasonably well-behaved problems, the unit step will be taken as the solution is approached.

nCon The number of times user subroutines have been called to evaluate the nonlinear problem functions.
Evaluations needed for the estimation of the derivatives by finite differences are not included. nCon is
printed as a guide to the amount of work required for the line search.

Feasible is the value of rowerr, the maximum component of the scaled nonlinear constraint residual (55). The
solution is regarded as acceptably feasible if Feasible is less than the Major feasibility tolerance.
In this case, the entry is contained in parenthesis.
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If the constraints are linear, all iterates are feasible and this entry is not printed.

Optimal is the value of maxgap, the maximum complementarity gap (56). It is an estimate of the degree of
nonoptimality of the reduced costs. Both Feasbl and Optimal are small in the neighborhood of a
solution.

MeritFunction is the value of the augmented Lagrangian merit function (see (53)). This function will decrease
at each iteration unless it was necessary to increase the penalty parameters (see §8.2). As the solution
is approached, Merit will converge to the value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint violations weighted
by the elastic weight.

If the constraints are linear, this item is labeled Objective, the value of the objective function. It will
decrease monotonically to its optimal value.

L+U The number of nonzeros representing the basis factors L and U on completion of the QP subproblem.

If nonlinear constraints are present, the basis factorization B = LU is computed at the start of the first
minor iteration. At this stage, LU = lenL + lenU, where lenL, the number of subdiagonal elements
in the columns of a lower triangular matrix and lenU is the number of diagonal and superdiagonal
elements in the rows of an upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up or down but in general
will tend to increase. As the solution is approached and the minor iterations decrease towards zero, LU
will reflect the number of nonzeros in the LU factors at the start of the QP subproblem.

If the constraints are linear, refactorization is subject only to the Factorize frequency, and LU will
tend to increase between factorizations.

BSwap The number of columns of the basis matrix B that were swapped with columns of S to improve the
condition of B. The swaps are determined by an LU factorization of the rectangular matrix BS =
(B S )T with stability being favored more than sparsity.

nS The current number of superbasic variables.

CondHz An estimate of the condition number of RTR, an estimate of ZTHZ, the reduced Hessian of the La-
grangian. It is the square of the ratio of the largest and smallest diagonals of the upper triangular
matrix R (which is a lower bound on the condition number of RTR). Cond Hz gives a rough indica-
tion of whether or not the optimization procedure is having difficulty. If ε is the relative precision of
the machine being used, the SQP algorithm will make slow progress if Cond Hz becomes as large as
ε−1/2 ≈ 108, and will probably fail to find a better solution if Cond Hz reaches ε−3/4 ≈ 1012.

To guard against high values of Cond Hz, attention should be given to the scaling of the variables and
the constraints. In some cases it may be necessary to add upper or lower bounds to certain variables
to keep them a reasonable distance from singularities in the nonlinear functions or their derivatives.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented Lagrangian merit
function (not printed if there are no nonlinear constraints.

The summary line may include additional code characters that indicate what happened during the course of the
major iteration.

Code Meaning
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c Central differences have been used to compute the unknown components of the objective and constraint
gradients. A switch to central differences is made if either the line search gives a small step, or x is
close to being optimal. In some cases, it may be necessary to re-solve the QP subproblem with the
central-difference gradient and Jacobian.

d During the line search it was necessary to decrease the step in order to obtain a maximum constraint
violation conforming to the value of Violation limit.

l The norm-wise change in the variables was limited by the value of the Major step limit. If this output
occurs repeatedly during later iterations, it may be worthwhile increasing the value of Major step limit.

i If SNOPT is not in elastic mode, an “i” signifies that the QP subproblem is infeasible. This event triggers
the start of nonlinear elastic mode, which remains in effect for all subsequent iterations. Once in elastic
mode, the QP subproblems are associated with the elastic problem NP(γ).

If SNOPT is already in elastic mode, an “i” indicates that the minimizer of the elastic subproblem does
not satisfy the linearized constraints. (In this case, a feasible point for the usual QP subproblem may or
may not exist.)

M An extra evaluation of the problem functions was needed to define an acceptable positive-definite quasi-
Newton update to the Lagrangian Hessian. This modification is only done when there are nonlinear
constraints.

m This is the same as “M” except that it was also necessary to modify the update to include an augmented
Lagrangian term.

n No positive-definite BFGS update could be found. The approximate Hessian is unchanged from the
previous iteration.

R The approximate Hessian has been reset by discarding all but the diagonal elements. This reset will be
forced periodically by the Hessian frequency and Hessian updates keywords. However, it may also
be necessary to reset an ill-conditioned Hessian from time to time.

r The approximate Hessian was reset after ten consecutive major iterations in which no BFGS update
could be made. The diagonals of the approximate Hessian are retained if at least one update has been
done since the last reset. Otherwise, the approximate Hessian is reset to the identity matrix.

s A self-scaled BFGS update was performed. This update is always used when the Hessian approximation
is diagonal, and hence always follows a Hessian reset.

t The minor iterations were terminated because of the Minor iterations limit.

T The minor iterations were terminated because of the New superbasics limit.

u The QP subproblem was unbounded.

w A weak solution of the QP subproblem was found.

z The Superbasics limit was reached.

8.4.3 The minor iteration log

If Minor print level > 0, one line of information is output to the PRINT file every kth minor iteration, where k
is the specified Minor print frequency (default k = 1). A heading is printed before the first such line following
a basis factorization. The heading contains the items described below. In this description, a PRICE operation
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is defined to be the process by which a nonbasic variable is selected to become superbasic (in addition to those
already in the superbasic set). The selected variable is denoted by jq. Variable jq often becomes basic immediately.
Otherwise it remains superbasic, unless it reaches its opposite bound and returns to the nonbasic set.

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments of the constraint matrix
(A − I ).

Label Description

Itn The current iteration number.

RedCost,QPmult This is the reduced cost (or reduced gradient) of the variable jq selected by PRICE at the start
of the present iteration. Algebraically, dj is dj = gj − πTaj for j = jq, where gj is the gradient of the
current objective function, π is the vector of dual variables for the QP subproblem, and aj is the jth
column of (A − I ).

Note that dj is the 1-norm of the reduced-gradient vector at the start of the iteration, just after the
PRICE operation.

LPstep,QPstep The step length α taken along the current search direction p. The variables x have just been
changed to x + αp. If a variable is made superbasic during the current iteration (+SBS > 0), Step will
be the step to the nearest bound. During Phase 2, the step can be greater than one only if the reduced
Hessian is not positive definite.

nInf The number of infeasibilities after the present iteration. This number will not increase unless the itera-
tions are in elastic mode.

SumInf If nInf > 0, this is sInf, the sum of infeasibilities after the present iteration. It usually decreases at
each nonzero Step, but if nInf decreases by 2 or more, SumInf may occasionally increase.

In elastic mode, the heading is changed to Composite Obj, and the value printed decreases monotonically.

rgNorm The norm of the reduced-gradient vector at the start of the iteration. (It is the norm of the vector with
elements dj for variables j in the superbasic set.) During Phase 2 this norm will be approximately zero
after a unit step.

(The heading is not printed if the problem is linear.)

LPobjective,QPobjective,Elastic QPobj The QP objective function after the present iteration. In elastic
mode, the heading is changed to Elastic QPobj. In either case, the value printed decreases monotoni-
cally.

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The variable chosen to leave the set of superbasics. It has become basic if the entry under -B is nonzero;
otherwise it has become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a vector y satisfying
By = aq. Wherever possible, Step is chosen to avoid extremely small values of Pivot (since they cause
the basis to be nearly singular). In rare cases, it may be necessary to increase the Pivot tolerance to
exclude very small elements of y from consideration during the computation of Step.

L+U The number of nonzeros representing the basis factors L and U . Immediately after a basis factorization
B = LU , this is lenL+lenU, the number of subdiagonal elements in the columns of a lower triangular
matrix and the number of diagonal and superdiagonal elements in the rows of an upper-triangular matrix.
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Further nonzeros are added to L when various columns of B are later replaced. As columns of B are
replaced, the matrix U is maintained explicitly (in sparse form). The value of L will steadily increase,
whereas the value of U may fluctuate up or down. Thus, in general, the value of L+U may fluctuate up
or down; in general it will tend to increase.)

ncp The number of compressions required to recover storage in the data structure for U . This includes the
number of compressions needed during the previous basis factorization. Normally ncp should increase
very slowly. If not, the amount of integer and real workspace available to SNOPT should be increased by
a significant amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended by L + U

elements.

nS The current number of superbasic variables. (The heading is not printed if the problem is linear.)

cond Hz See the major iteration log. (The heading is not printed if the problem is linear.)

8.4.4 Basis factorization statistics

If Major print level ≥ 10, the following items are output to the PRINT file whenever the basis B or the
rectangular matrix BS = (B S )T is factorized before solution of the next QP subproblem.

Note that BS may be factorized at the start of just some of the major iterations. It is immediately followed by a
factorization of B itself.

Gaussian elimination is used to compute a sparse LU factorization of B or BS , where PLPT and PUQ are lower
and upper triangular matrices for some permutation matrices P and Q. Stability is ensured as described under LU
factor tolerance in §8.3.3.

If Minor print level ≥ 10, the same items are printed during the QP solution whenever the current B is
factorized.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Code Meaning

0 First LU factorization.

1 The number of updates reached the Factorization Frequency.

2 The nonzeros in the updated factors have increased significantly.

7 Not enough storage to update factors.

10 Row residuals too large (see the description of Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Itn The current minor iteration number.

Nonlin The number of nonlinear variables in the current basis B.

Linear The number of linear variables in B.

Slacks The number of slack variables in B.

B BR BS or BT factorize The type of LU factorization.
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B Periodic factorization of the basis B.

BR More careful rank-revealing factorization of B using threshold rook pivoting. This occurs mainly
at the start, if the first basis factors seem singular or ill-conditioned. Followed by a normal B
factorize.

BS BS is factorized to choose a well-conditioned B from the current (B S ). Followed by a normal
B factorize.

BT Same as BS except the current B is tried first and accepted if it appears to be not much more
ill-conditioned than after the previous BS factorize.

m The number of rows in B or BS.

n The number of columns in B or BS. Preceded by “=” or “>” respectively.

Elems The number of nonzero elements in B or BS.

Amax The largest nonzero in B or BS.

Density The percentage nonzero density of B or BS.

Merit The average Markowitz merit count for the elements chosen to be the diagonals of PUQ. Each merit
count is defined to be (c− 1)(r− 1) where c and r are the number of nonzeros in the column and row
containing the element at the time it is selected to be the next diagonal. Merit is the average of n

such quantities. It gives an indication of how much work was required to preserve sparsity during the
factorization.

lenL The number of nonzeros in L.

Cmpressns The number of times the data structure holding the partially factored matrix needed to be compressed
to recover unused storage. Ideally this number should be zero. If it is more than 3 or 4, the amount
of workspace available to SNOPT should be increased for efficiency.

Incres The percentage increase in the number of nonzeros in L and U relative to the number of nonzeros in
B or BS.

Utri is the number of triangular rows of B or BS at the top of U .

lenU The number of nonzeros in U .

Ltol The maximum subdiagonal element allowed in L. This is the specified LU factor tolerance or a
smaller value that is currently being used for greater stability.

Umax The maximum nonzero element in U .

Ugrwth The ratio Umax/Amax, which ideally should not be substantially larger than 10.0 or 100.0. If it is orders
of magnitude larger, it may be advisable to reduce the LU factor tolerance to 5.0, 4.0, 3.0 or 2.0,
say (but bigger than 1.0).

As long as Lmax is not large (say 10.0 or less), max{Amax, Umax} / DUmin gives an estimate of the
condition number of B. If this is extremely large, the basis is nearly singular. Slacks are used to
replace suspect columns of B and the modified basis is refactored.

Ltri is the number of triangular columns of B or BS at the left of L.

dense1 is the number of columns remaining when the density of the basis matrix being factorized reached 0.3.

Lmax The actual maximum subdiagonal element in L (bounded by Ltol).
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Akmax The largest nonzero generated at any stage of the LU factorization. (Values much larger than Amax

indicate instability.)

growth The ratio Akmax/Amax. Values much larger than 100 (say) indicate instability.

bump is the size of the “bump” or block to be factorized nontrivially after the triangular rows and columns
of B or BS have been removed.

dense2 is the number of columns remaining when the density of the basis matrix being factorized reached 0.6.
(The Markowitz pivot strategy searches fewer columns at that stage.)

DUmax The largest diagonal of PUQ.

DUmin The smallest diagonal of PUQ.

condU The ratio DUmax/DUmin, which estimates the condition number of U (and of B if Ltol is less than 100,
say).

8.4.5 Crash statistics

If Major print level ≥ 10, the following items are output to the PRINT file. They refer to the number of
columns that the CRASH procedure selects during several passes through A while searching for a triangular basis
matrix.

Label Description

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather far apart.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some j ≤ n). It will be a subset
of the columns for which hs(j) = 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing 2 nonzeros.

Triangle is the number of triangular columns in the basis with 3 or more nonzeros.

Pad is the number of slacks used to pad the basis (to make it a nonsingular triangle).

8.4.6 EXIT conditions

When any solver or auxiliary routine in the SNOPT package terminates, a message is printed that summarizes
what happened during the run. The general form of the output message is:

SOLVER EXIT e -- exit condition

SOLVER INFO i -- informational message

where e is an integer that labels the particular exit condition, and i is one of several alternative informational
messages that elaborate on the exit condition. For example, the solver may print the message:

SNOPTA EXIT 20 -- the problem appears to be unbounded

SNOPTA INFO 21 -- unbounded objective
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Note that in this example, the exit condition gives a broad definition of what happened, while the informational
message is more specific about the cause of the termination.

The number i associated with the informational message is the output value of the argument inform. Note that
the number e associated with the exit condition may always be recovered from inform by stripping off the least
significant decimal digit.

The list of possible exit conditions are:

0 Finished successfully

10 The problem appears to be infeasible

20 The problem appears to be unbounded

30 Resource limit error

40 Terminated after numerical difficulties

50 Error in the user-supplied functions

60 Undefined user-supplied functions

70 User requested termination

80 Insufficient storage allocated

90 Input arguments out of range

100 Finished successfully (associated with SNOPT auxiliary routines)

110 Errors while processing MPS data

120 Errors while estimating Jacobian structure

130 Errors while reading OPTIONS file

140 System error

The exit conditions 0–20 arise when a solution exists (though it may

not be optimal).

Here we describe each message and suggest possible courses of action.
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EXIT -- 0 Finished successfully

INFO -- 1 optimality conditions satisfied

INFO -- 2 feasible point found (from option Feasible point only)

INFO -- 3 requested accuracy could not be achieved

This message should be the cause of guarded optimism! It is certainly preferable to every other message, and we
naturally want to believe what it says.

In all cases, a distinct level of caution is in order. For example, if the objective value is much better than expected,
we may have obtained an optimal solution to the wrong problem! Almost any item of data could have that effect
if it has the wrong value. Verifying that the problem has been defined correctly is one of the more difficult tasks
for a model builder. It is good practice in the function subroutines to print any data that is input during the first
entry.

If nonlinearities exist, one must always ask the question: could there be more than one local optimum? When the
constraints are linear and the objective is known to be convex (e.g., a sum of squares) then all will be well if we
are minimizing the objective: a local minimum is a global minimum in the sense that no other point has a lower
function value. (However, many points could have the same objective value, particularly if the objective is largely
linear.) Conversely, if we are maximizing a convex function, a local maximum cannot be expected to be global,
unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave regions. However, the
functions of a problem are more likely to be neither convex nor concave. Our advice is always to specify a starting
point that is as good an estimate as possible, and to include reasonable upper and lower bounds on all variables,
in order to confine the solution to the specific region of interest. We expect modelers to know something about
their problem, and to make use of that knowledge as they themselves know best.

One other caution about “Optimality conditions satisfied”. Some of the variables or slacks may lie outside
their bounds more than desired, especially if scaling was requested. Some information concerning the run can be
obtained from the short summary given at the end of the print and summary files. Here is an example.

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name Toy1

No. of iterations 7 Objective value -1.0000000008E+00

No. of major iterations 7 Linear objective 0.0000000000E+00

Penalty parameter 3.253E-02 Nonlinear objective -1.0000000008E+00

No. of calls to funobj 9 No. of calls to funcon 9

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.0E+00 Max pi 1 1.2E-01

Max Primal infeas 0 0.0E+00 Max Dual infeas 2 8.0E-10

Nonlinear constraint violn 6.4E-09

Max Primal infeas refers to the largest bound infeasibility and which variable is involved. If it is too large,
consider restarting with a smaller Minor feasibility tolerance (say 10 times smaller) and perhaps Scale

option 0.

Similarly, Max Dual infeas indicates which variable is most likely to be at a non-optimal value. Broadly speaking,
if

Max Dual infeas/Max pi = 10−d,
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then the objective function would probably change in the dth significant digit if optimization could be continued.
If d seems too large, consider restarting with a smaller Major optimality tolerance.

Finally, Nonlinear constraint violn shows the maximum infeasibility for nonlinear rows. If it seems too large,
consider restarting with a smaller Major feasibility tolerance.

If the requested accuracy could not be achieved, a feasible solution has been found, but the requested accuracy in
the dual infeasibilities could not be achieved. An abnormal termination has occurred, but SNOPT is within 10−2

of satisfying the Major optimality tolerance. Check that the Major optimality tolerance is not too small.

EXIT -- 10 The problem appears to be infeasible

INFO -- 11 infeasible linear constraints

INFO -- 12 infeasible linear equalities

INFO -- 13 nonlinear infeasibilities minimized

INFO -- 14 infeasibilities minimized

This exit occurs if SNOPT unable to find a point that satisfies the constraints. When the constraints are linear,
these message can probably be trusted. Feasibility is measured with respect to the upper and lower bounds on the
variables and slacks. Among all the points satisfying the general constraints Ax − s = 0, there is apparently no
point that satisfies the bounds on x and s. Violations as small as the Minor feasibility tolerance are ignored,
but at least one component of x or s violates a bound by more than the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize correctly. Even if a feasible
solution exists, the current linearization of the constraints may not contain a feasible point. In an attempt to
deal with this situation, when solving each QP subproblem, SNOPT is prepared to relax the bounds on the slacks
associated with nonlinear rows.

If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier estimates for the nonlinear
constraints become large), SNOPT enters so-called “nonlinear elastic” mode. The subproblem includes the original
QP objective and the sum of the infeasibilities—suitably weighted using the Elastic weight parameter. In elastic
mode, some of the bounds on the nonlinear rows “elastic”—i.e., they are allowed to violate their specified bounds.
Variables subject to elastic bounds are known as elastic variables. An elastic variable is free to violate one or
both of its original upper or lower bounds. If the original problem has a feasible solution and the elastic weight is
sufficiently large, a feasible point eventually will be obtained for the perturbed constraints, and optimization can
continue on the subproblem. If the nonlinear problem has no feasible solution, SNOPT will tend to determine a
“good” infeasible point if the elastic weight is sufficiently large. (If the elastic weight were infinite, SNOPT would
locally minimize the nonlinear constraint violations subject to the linear constraints and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear constraint violations, there may still exist
other regions in which the nonlinear constraints are satisfied. Wherever possible, nonlinear constraints should be
defined in such a way that feasible points are known to exist when the constraints are linearized.

EXIT -- 20 The problem appears to be unbounded

INFO -- 21 unbounded objective

INFO -- 22 constraint violation limit reached

For linear problems, unboundedness is detected by the simplex method when a nonbasic variable can be increased
or decreased by an arbitrary amount without causing a basic variable to violate a bound. A message prior to
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the EXIT message will give the index of the nonbasic variable. Consider adding an upper or lower bound to the
variable. Also, examine the constraints that have nonzeros in the associated column, to see if they have been
formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give an erroneous indication of
unboundedness. Consider using the Scale option.

For nonlinear problems, SNOPT monitors both the size of the current objective function and the size of the change
in the variables at each step. If either of these is very large (as judged by the Unbounded parameters—see §8.3.3),
the problem is terminated and declared unbounded. To avoid large function values, it may be necessary to impose
bounds on some of the variables in order to keep them away from singularities in the nonlinear functions.

The second informational message indicates an abnormal termination while enforcing the limit on the constraint
violations. This exit implies that the objective is not bounded below in the feasible region defined by expanding
the bounds by the value of the Violation limit.

EXIT -- 30 Resource limit error

INFO -- 31 iteration limit reached

INFO -- 32 major iteration limit reached

INFO -- 33 the superbasics limit is too small

Either the Iterations limit or the Major iterations limit was exceeded before the required solution could be
found. Check the iteration log to be sure that progress was being made. If so, restart the run using WarmDefSOL
at the end of the run.

If the superbasics limit is too small, then the problem appears to be more nonlinear than anticipated. The current
set of basic and superbasic variables have been optimized as much as possible and a PRICE operation is necessary
to continue, but there are already Superbasics limit superbasics (and no room for any more).

EXIT -- 40 Terminated after numerical difficulties

INFO -- 41 current point cannot be improved

INFO -- 42 singular basis

INFO -- 43 cannot satisfy the general constraints

INFO -- 44 ill-conditioned null-space basis

Several circumstances may lead to SNOPT not being able to improve on a non-optimal point.

1. Subroutines could be returning accurate function values but inaccurate gradients (or vice versa). This is
the most likely cause. Study the comments given for INFO 51 and 52, and do your best to ensure that the
coding is correct.

2. The function and gradient values could be consistent, but their precision could be too low. For example,
accidental use of a real data type when double precision was intended would lead to a relative function
precision of about 10−6 instead of something like 10−15. The default Major optimality tolerance of 10−6

would need to be raised to about 10−3 for optimality to be declared (at a rather suboptimal point). Of
course, it is better to revise the function coding to obtain as much precision as economically possible.

3. If function values are obtained from an expensive iterative process, they may be accurate to rather few
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significant figures, and gradients will probably not be available. One should specify

Function precision t

Major optimality tolerance
√
t

but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same exit condition may
occur. At present the only remedy is to increase the accuracy of the function calculation.

Termination because of a singular basis is highly unlikely to occur. The first factorization attempt will have found
the basis to be structurally or numerically singular. (Some diagonals of the triangular matrix U were respectively
zero or smaller than a certain tolerance.) The associated variables are replaced by slacks and the modified basis
is refactorized, but singularity persists. This must mean that the problem is badly scaled, or the LU factor

tolerance is too much larger than 1.0.

If the general constraints cannot be satisfied, an LU factorization of the basis has just been obtained and used
to recompute the basic variables xB, given the present values of the superbasic and nonbasic variables. A step of
“iterative refinement” has also been applied to increase the accuracy of xB. However, a row check has revealed
that the resulting solution does not satisfy the current constraints Ax− s = 0 sufficiently well.

This probably means that the current basis is very ill-conditioned. If there are some linear constraints and variables,
try Scale option 1 if scaling has not yet been used.

For certain highly structured basis matrices (notably those with band structure), a systematic growth may occur
in the factor U . Consult the description of Umax, Umin and Growth in §8.4.4, and set the LU factor tolerance

to 2.0 (or possibly even smaller, but not less than 1.0).

EXIT -- 50 Error in the user-supplied functions

INFO -- 51 incorrect objective derivatives

INFO -- 52 incorrect constraint derivatives

This exit implies that there may be errors in the subroutines that define the problem objective and constraints. If
the objective derivatives appear to incorrect, a check has been made on some individual elements of the objective
gradient array at the first point that satisfies the linear constraints. At least one component (G(k) or gObj(j) ) is
being set to a value that disagrees markedly with its associated forward-difference estimate ∂f0/∂xj . (The relative
difference between the computed and estimated values is 1.0 or more.) This exit is a safeguard, since SNOPT will
usually fail to make progress when the computed gradients are seriously inaccurate. In the process it may expend
considerable effort before terminating with INFO 41 above.

Check the function and gradient computation very carefully. A simple omission (such as forgetting to divide f0
by 2) could explain everything. If f0 or a component ∂f0/∂xj is very large, then give serious thought to scaling
the function or the nonlinear variables.

If you feel certain that the computed gObj(j) is correct (and that the forward-difference estimate is therefore
wrong), you can specify Verify level 0 to prevent individual elements from being checked. However, the opti-
mization procedure may have difficulty.

If some constraint derivatives appear to be incorrect, then at least one of the computed constraint derivatives is
significantly different from an estimate obtained by forward-differencing the vector F (x). Follow the advice given
above for the objective function, trying to ensure that the arrays F and G are being set correctly.
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EXIT -- 60 Undefined user-supplied functions

INFO -- 61 undefined function at the first feasible point

INFO -- 62 undefined function at the initial point

INFO -- 63 unable to proceed into undefined region

EXIT -- 70 User requested termination

INFO -- 71 terminated during function evaluation

INFO -- 72 terminated during constraint evaluation

INFO -- 73 terminated during objective evaluation

INFO -- 74 terminated from monitor routine

These exits occur when Status < −1 is set during some call to the user-defined routines. SNOPT assumes that
you want the problem to be abandoned forthwith.

If the following exits occur during the first basis factorization, the
primal and dual variables x and pi will have their original input
values.

EXIT -- 80 Insufficient storage allocated

INFO -- 81 work arrays must have at least 500 elements

INFO -- 82 not enough character storage

INFO -- 83 not enough integer storage

INFO -- 84 not enough real storage

SNOPT cannot start to solve a problem unless the char, int and real work arrays are at least 500 elements.

If the main character, integer or real storage arrays cw(*), iw(*) and rw(*) are not large enough for the current
problem, the routine declaring cw(*), iw and rw should be recompiled with a larger dimensions for those arrays.
The new values should also be assigned to lencw, leniw and lenrw. An estimate of the additional storage required
is given in messages preceding the exit.

If rw(*) is not large enough, be sure that the Hessian dimension is not unreasonably large.

EXIT -- 90 Input arguments out of range

INFO -- 91 invalid input argument

EXIT -- 140 System error

INFO -- 141 wrong number of basic variables
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8.4.7 Solution output

At the end of a run, the final solution is output to the PRINT file in accordance with the Solution keyword.
Some header information appears first to identify the problem and the final state of the optimization procedure.
A ROWS section and a COLUMNS section then follow, giving one line of information for each row and column.
The format used is similar to certain commercial systems, though there is no industry standard.

An example of the printed solution is given in §8.4. In general, numerical values are output with format f16.5.
The maximum record length is 111 characters, including the first (carriage-control) character.

To reduce clutter, a dot “.” is printed for any numerical value that is exactly zero. The values ±1 are also printed
specially as 1.0 and -1.0. Infinite bounds (±1020 or larger) are printed as None.

Note: If two problems are the same except that one minimizes an objective f0(x) and the other maximizes −f0(x),
their solutions will be the same but the signs of the dual variables πi and the reduced gradients dj will be reversed.

The ROWS section

General linear constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the form

α ≤ aTx ≤ β,

and the value of aTx is called the row activity. Internally, the linear constraints take the form Ax− s = 0, where
the slack variables s should satisfy the bounds l ≤ s ≤ u. For the ith “row”, it is the slack variable si that is
directly available, and it is sometimes convenient to refer to its state. Slacks may be basic or nonbasic (but not
superbasic).

Nonlinear constraints α ≤ fi(x) + aTx ≤ β are treated similarly, except that the row activity and degree of
infeasibility are computed directly from fi(x) + aTx rather than si.

Label Description

Number The value n+ i. This is the internal number used to refer to the ith slack in the iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The limits are the same (α = β).

BS The constraint is not binding. si is basic.

A key is sometimes printed before the State to give some additional information about the state of the
slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient is essentially zero. This
means that if the slack were allowed to start moving from its current value, there would be no change
in the objective function. The values of the basic and superbasic variables might change, giving a
genuine alternative solution. The values of the dual variables might also change.

D Degenerate. The slack is basic, but it is equal to (or very close to) one of its bounds.
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I Infeasible. The slack is basic and is currently violating one of its bounds by more than the Feasibility
tolerance.

N Not precisely optimal. The slack is nonbasic. Its reduced gradient is larger than the Major optimality

tolerance .
Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled problem because
the keys are then more likely to be meaningful.

Activity The row value aTx (or fi(x) + aTx for nonlinear rows).

Slack activity The amount by which the row differs from its nearest bound. (For free rows, it is taken to be
minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex multiplier) for the
ith constraint. The full vector π always satisfies BTπ = gB , where B is the current basis matrix and gB
contains the associated gradients for the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” xj , j = 1: n. We assume that a typical variable has bounds α ≤ xj ≤ β.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic at some value strictly between its bounds: α < xj < β.

BS xj is basic. Usually α < xj < β.

SBS xj is superbasic. Usually α < xj < β.

A key is sometimes printed before the State to give some additional information about the state of xj .

A Alternative optimum possible. The variable is nonbasic, but its reduced gradient is essentially zero.
This means that if xj were allowed to start moving from its current value, there would be no change
in the objective function. The values of the basic and superbasic variables might change, giving a
genuine alternative solution. The values of the dual variables might also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by more than the Feasibility

tolerance.
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N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the Major optimality

tolerance .
Note: If Scale option > 0, the tests for assigning A, D, I, N are made on the scaled problem because
the keys are then more likely to be meaningful.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the gradient of the (linear or nonlinear) objective function. (If any xj is
infeasible, gj is the gradient of the sum of infeasibilities.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

Reduced gradnt The reduced gradient dj = gj − πTaj , where aj is the jth column of the constraint matrix (or
the jth column of the Jacobian at the start of the final major iteration).

M+J The value m+ j.

8.4.8 The SUMMARY file

If Summary file > 0, the following information is output to the SUMMARY file. (It is a brief form of the PRINT

file.) All output lines are less than 72 characters.

• The Begin line from the SPECS file, if any.

• The basis file loaded, if any.

• A brief Major iteration log.

• A brief Minor iteration log.

• The EXIT condition and a summary of the final solution.

The following SUMMARY file is from the example, using Major print level 1 and Minor print level 0.
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==============================

S N O P T 7.1-1(2) (Jun 2004)

==============================

SNSPEC EXIT 100 -- finished successfully

SNSPEC INFO 101 -- OPTIONS file read

Nonlinear constraints 2 Linear constraints 0

Nonlinear variables 2 Linear variables 0

Jacobian variables 2 Objective variables 2

Total constraints 2 Total variables 2

This is problem Toy1

The user has defined 6 out of 6 first derivatives

Major Minors Step nCon Feasible Optimal MeritFunction nS Penalty

0 2 1 4.1E-01 5.0E-01 1.0000000E+00 2 r

1 2 1.0E+00 2 (0.0E+00) 3.1E-01 -4.1421356E-01 1 n rl

2 1 1.0E+00 3 1.4E+00 1.5E-01 -9.3802987E-01 1 s

3 1 1.0E+00 4 1.8E-01 3.3E-02 -9.6547072E-01 1 2.8E-03

4 1 1.0E+00 5 3.4E-02 8.9E-03 -9.9129962E-01 2.8E-03

5 0 1.0E+00 6 4.2E-02 4.8E-03 -1.0000531E+00 2.8E-03

6 0 1.0E+00 7 1.9E-04 2.0E-05 -9.9999997E-01 3.3E-02

7 0 1.0E+00 8 (3.7E-09)(4.0E-10)-1.0000000E+00 3.3E-02

SNOPTA EXIT 0 -- finished successfully

SNOPTA INFO 1 -- optimality conditions satisfied

Problem name Toy1

No. of iterations 7 Objective value -1.0000000008E+00

No. of major iterations 7 Linear objective 0.0000000000E+00

Penalty parameter 3.253E-02 Nonlinear objective -1.0000000008E+00

No. of calls to funobj 9 No. of calls to funcon 9

No. of degenerate steps 0 Percentage 0.00

Max x 2 1.0E+00 Max pi 1 1.2E-01

Max Primal infeas 0 0.0E+00 Max Dual infeas 2 8.0E-10

Nonlinear constraint violn 6.4E-09

Solution printed on file 15

Finished problem Toy1

Time for MPS input 0.00 seconds

Time for solving problem 0.00 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.00 seconds

Time for objective function 0.00 seconds

snOptA finished.

INFO = 1

nInf = 0

sInf = 0.

Obj = -1.
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