
NLPQLP: A New Fortran Implementation of a

Sequential Quadratic Programming Algorithm

for Parallel Computing

Address: Prof. Dr. K. Schittkowski
Department of Mathematics
University of Bayreuth
D - 95440 Bayreuth

Phone: +921 553278 (office)
+921 32887 (home)

Fax: +921 35557

E-mail: klaus.schittkowski@uni-bayreuth.de
Web: http://www.klaus-schittkowski.de

Abstract

The Fortran subroutine NLPQLP solves smooth nonlinear programming
problems and is an extension of the code NLPQL. The new version is specif-
ically tuned to run under distributed systems. A new input parameter l is
introduced for the number of parallel machines, that is the number of function
calls to be executed simultaneously. In case of l = 1, NLPQLP is identical
to NLPQL. Otherwise the line search is modified to allow parallel function
calls either for the line search or for approximating gradients by difference
formulae. The mathematical background is outlined, in particular the modifi-
cation of line search algorithms to retain convergence under parallel systems.
Numerical results show the sensitivity of the new version with respect to the
number of parallel machines, and the influence of different gradient approxi-
mations under uncertainty. The performance evaluation is obtained by more
than 300 standard test problems.

1

1 Introduction

We consider the general optimization problem, to minimize an objective function f
under nonlinear equality and inequality constraints, i.e.

x ∈ IRn :

min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. To facilitate the subsequent notation,
we assume that upper and lower bounds xu and xl are not handled separately, i.e.
that they are considered as general inequality constraints. Then we get the nonlinear
programming problem

x ∈ IRn :
min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
(2)

called now NLP in abbreviated form. It is assumed that all problem functions f(x)
and gj(x), j = 1, . . . ,m, are continuously differentiable on the whole IRn. But
besides of this we do not suppose any further structure in the model functions.

Sequential quadratic programming methods are the standard general purpose
algorithms for solving smooth nonlinear optimization problems, at least under the
following assumptions:

• The problem is not too big.

• The functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The code NLPQL of Schittkowski [28] is a Fortran implementation of a sequential
quadratic programming (SQP) algorithm. The design of the numerical algorithm
is founded on extensive comparative numerical tests of Schittkowski [21, 25, 23],
Schittkowski et al. [34], Hock and Schittkowski [13], and on further theoretical in-
vestigations published in [22, 24, 26, 27]. The algorithm is extended to solve also
nonlinear least squares problems efficiently, see [31], and to handle problems with
very many constraints, cf. [32]. To conduct the numerical tests, a random test prob-
lem generator is developed for a major comparative study, see [21]. Two collections
with more than 300 academic and real-life test problems are published in Hock and
Schittkowski [13] and in Schittkowski [29]. These test examples are now part of the
Cute test problem collection of Bongartz et al. [4]. More than 100 test problems
based on a finite element formulation are collected for the comparative evaluation
in Schittkowski et al. [34].

Moreover there exist hundreds of commercial and academic applications of NLPQL,
for example

2

1. Mechanical structural optimization, see Schittkowski et al. [34] and Kneppe et
al. [15],

2. Data fitting and optimal control of transdermal pharmaceutical systems, see
Boderke et al. [1] or Blatt and Schittkowski [3],

3. Computation of optimal feed rates for tubular reactors, see Birk et al. [2],

4. Food drying in a convection oven, see Frias et al. [11],

5. Optimal design of horn radiators for satellite communication, see Hartwanger,
Schittkowski, Wolf [10],

6. Receptor-ligand binding studies, see Schittkowski [33].

The very first version of NLQPL developed in 1981, is still included in the IMSL
Library [30], but meanwhile outdated because of numerous improvements and cor-
rections made since then. Actual versions of NLPQL are part of commercial redis-
tributed optimization systems like

- ANSYS/POPT (CAD-FEM, Grafing) for structural optimization,

- STRUREL (RCP, Munich) for reliability analysis,

- TEMPO (OECD Reactor Project, Halden) for control of power plants,

- Microwave Office Suit (Applied Wave Research, El Segundo) for electronic design,

- MOOROPT (Marintec, Trondheim) for the design of mooring systems,

- iSIGHT (Enginious Software, Cary, North Carolina) for multi-disciplinary CAE,

- POINTER (Synaps, Atlanta) for design automation.

Customers include Axiva, BASF, Bayer, Bell Labs, Chevron Research, DLR, Dornier
Systems, Dow Chemical, EADS, ENSIGC, EPCOS, ESOC, Eurocopter, Fantoft
Prosess, General Electric, GLM Lasertechnik, Hoechst, IABG, IBM, INRIA, INRS-
Telecommunications, Mecalog, MTU, NASA, Nevesbu, NLR, Norsk Hydro Research,
Numerola, Peaktime, Philips, Rolls-Royce, SAQ Kontroll, SDRC, Siemens, TNO,
Transpower, US Air Force, and in addition dozens of academic research institutions
all over the world.

The general availability of parallel computers and in particular of distributed
computing through networks motivates a careful redesign of NLPQL, to allow si-
multaneous function calls with predetermined arguments. The resulting code is
called NLPQLP and its mathematical background and usage is documented in this
paper.

The iterative process of an SQP algorithm is highly sequential. Proceeding from
a given initial design, new iterates are computed based only on the information
available from the previous iterate. Each step requires the evaluation of all model
functions f(xk) and gj(xk), j = 1, . . ., m, and of gradients ∇f(xk) and ∇gj(xk),

3

j ∈ Jk. xk is the current iterate and Jk ⊂ {1, . . . ,m} a suitable active set determined
by the algorithm.

The most effective possibility to exploit a parallel system architecture occurs,
when gradients cannot be calculated analytically, but have to be approximated nu-
merically, for example by forward differences, two-sided differences, or even higher
order methods. Then we need at least n additional function calls, where n is the
number of optimization variables, or a suitable multiple of n. Assuming now that
a parallel computing environment is available with l processors, we need only one
simultaneous function evaluation in each iteration for getting the gradients, if l ≥ n.
In the most simple case, we have to execute the given simulation program to get
f(xk + hikei) and gj(xk + hikei), j = 1, . . ., m, for all i = 1, . . ., n, on n different
processors, where hik is a small perturbation of the i-th unit vector scaled by the
actual value of the i-th coefficient of xk. Subsequently the partial derivatives are
approximated by forward differences

1

hik

(f(xk + hikei)− f(xk)) ,
1

hik

(gj(xk + hikei)− gj(xk))

for j ∈ Jk. Two-sided differences can be used, if 2n ≤ l, fourth-order differences in
case of 4n ≤ l, etc.

Another reason for an SQP code to require function evaluations, is the line
search. Based on the gradient information at an actual iterate xk ∈ IRn, a quadratic
programming (QP) problem is formulated and solved to get a search direction dk ∈
IRn. It must be ensured that the solution of the QP is a descent direction subject to
a certain merit function. Then a sequential line search along xk + αdk is performed
by combining quadratic interpolation and a steplength reduction. The iteration is
stopped as soon as a sufficient descent property is satisfied, leading to a steplength
αk and a new iterate xk+1 = xk + αkdk. We know that the line search can be
restricted to the interval 0 < α ≤ 1, since αk = 1 is expected close to a solution, see
e.g. Spellucci [35], because of the local superlinear convergence of an SQP algorithm.
Thus, the line search is always started at α = 1.

To outline the new approach, let us assume that functions can be computed
simultaneously on l different machines. Then l test values αi = βi−1 with β = ε1/(l−1)

are selected, i = 1, . . ., l, where ε is a guess for the machine precision. Next we
require l parallel function calls to get the corresponding model function values. The
first αi satisfying a sufficient descent property, is accepted as the new steplength
for getting the subsequent iterate. One has to be sure, that existing convergence
results of the SQP algorithm are not violated. For an alternative approach based
on pattern search, see Hough, Kolda, and Torczon [14].

The parallel model of parallelism is SPMD, i.e., Single Program Multiple Data.
In a typical situation we suppose that there is a complex application code provid-
ing simulation data, for example by an expensive finite element calculation. It is
supposed that various instances of the simulation code providing function values,
are executable on a series of different machines, so-called slaves, controlled by a

4

master program that executes NLPQLP. By a message passing system, for example
PVM, see Geist et al. [6], only very few data need to be transferred from the master
to the slaves. Typically only a set of design parameters of length n must to be
passed. On return, the master accepts new model responses for objective function
and constraints, at most m + 1 double precision numbers. All massive numerical
calculations and model data, for example all FE data, remain on the slave processors
of the distributed system.

The investigations of this paper do not require a special parallel system architec-
ture. We present only a variant of an existing SQP code for nonlinear programming,
that can be embedded into an arbitrary distributed environment. A realistic im-
plementation depends highly on available hardware, operating system, or virtual
machine, and particularly on the underlying simulation package by which function
values are to be computed.

In Section 2 we outline the general mathematical structure of an SQP algorithm,
and consider some details of quasi-Newton updates and merit functions in Section
3. Sequential and parallel line search algorithms are described in Section 4. It
is shown how the traditional approach is replaced by a more restrictive one with
predetermined simultaneous function calls, nevertheless guaranteeing convergence.
Numerical results are summarized in Section 5. First it is shown, how the parallel
execution of the merit function depends on the number of available machines. Also
we compare the results with those obtained by full sequential line search. Since
parallel function evaluations are highly valuable in case of numerical gradient com-
putations, we compare also the effect of several difference formulae. Model functions
are often disturbed in practical environments, for example in case of iterative algo-
rithms required for internal auxiliary computations. Thus, we add random errors to
simulate uncertainties in function evaluations, and compare the overall efficiency of
an SQP algorithm. The usage of the Fortran subroutine is documented in Section
6 together with an illustrative example.

2 Sequential Quadratic Programming Methods

Sequential quadratic programming or SQP methods belong to the most powerful
nonlinear programming algorithms we know today for solving differentiable non-
linear programming problems of the form (1) or (2), respectively. The theoretical
background is described e.g. in Stoer [36] in form of a review, or in Spellucci [35] in
form of an extensive text book. From the more practical point of view SQP meth-
ods are also introduced briefly in the books of Papalambros, Wilde [17] and Edgar,
Himmelblau [5]. Their excellent numerical performance was tested and compared
with other methods in Schittkowski [21], and since many years they belong to the
most frequently used algorithms to solve practical optimization problems.

The basic idea is to formulate and solve a quadratic programming subproblem
in each iteration which is obtained by linearizing the constraints and approximating

5

the Lagrangian function

L(x, u) := f(x)−
m∑

j=1

ujgj(x) (3)

quadratically, where x ∈ IRn, and where u = (u1, . . . , um)T ∈ IRm is the multiplier
vector.

To formulate the quadratic programming subproblem, we proceed from given
iterates xk ∈ IRn, an approximation of the solution, vk ∈ IRm an approximation of
the multipliers, and Bk ∈ IRn×n, an approximation of the Hessian of the Lagrangian
function. Then one has to solve the following quadratic programming problem:

d ∈ IRn :

min 1
2
dTBkd+∇f(xk)

Td

∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . ,m .

(4)

It is supposed that bounds are not available or included as general inequality con-
straints to simplify the notation. Otherwise we proceed from (2) and pass the
bounds to the quadratic program directly. Let dk be the optimal solution and uk

the corresponding multiplier. A new iterate is obtained by(
xk+1

vk+1

)
:=

(
xk

vk

)
+ αk

(
dk

uk − vk

)
, (5)

where αk ∈ (0, 1] is a suitable steplength parameter.
The motivation for the success of SQP methods is found in the following ob-

servation: An SQP method is identical to Newton’s method to solve the necessary
optimality conditions, if Bk is the Hessian of the Lagrangian function and if we
start sufficiently close to a solution. The statement is easily derived in case of equal-
ity constraints only, that is me = m, but holds also for inequality restrictions. A
straightforward analysis shows that if dk = 0 is an optimal solution of (4) and uk

the corresponding multiplier vector, then xk and uk satisfy the necessary optimality
conditions of (2).

Although we are able to guarantee that the matrix Bk is positive definite, it is
possible that (4) is not solvable due to inconsistent constraints. One possible remedy
is to introduce an additional variable δ ∈ IR, leading to the modified problem

min 1
2
dTBkd+∇f(xk)

Td+ σkδ
2

d ∈ IRn, ∇gj(xk)
Td+ (1− δ)gj(xk)

{
=
≥
}
0, j ∈ Jk ,

δ ∈ IR : ∇gj(xk(j))
Td+ gj(xk) ≥ 0, j ∈ Kk

0 ≤ δ ≤ 1 .

(6)

σk is a suitable penalty parameter to force that the influence of the additionally
introduced variable δ is as small as possible, cf. Schittkowski [26] for details. The

6

active set Jk is given by

Jk := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(xk) < ε or uk
j > 0} (7)

and Kk is the complement, i.e. Kk := {1, . . . ,m}\Jk.
In (7), ε is any small tolerance to define the active constraints, and uk

j denotes
the j-th coefficient of uk. Obviously, the point d0 = 0, δ0 = 1 satisfies the linear
constraints of (6) which is then always solvable. Moreover it is possible to avoid
unnecessary gradient evaluations by recalculating only those gradients of restriction
functions, that belong to the active set, as indicated by the index ‘k(j)’.

3 Merit Functions and Quasi-Newton Updates

The steplength parameter αk is required in (5) to enforce global convergence of the
SQP method, i.e. the approximation of a point satisfying the necessary Karush-
Kuhn-Tucker optimality conditions when starting from arbitrary initial values, e.g.
a user-provided x0 ∈ IRn and v0 = 0, B0 = I. αk should satisfy at least a sufficient
decrease of a merit function φr(α) given by

φr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(8)

with a suitable penalty function ψr(x, v). Possible choices of ψr are the L1-penalty
function

ψr(x, v) := f(x) +
me∑
j=1

rj|gj(x)|+
m∑

j=me+1

rj|min(0, gj(x))| , (9)

cf. Han [9] and Powell [18], or the augmented Lagrangian function

ψr(x, v) := f(x)−∑
j∈J

(vjgj(x)− 1

2
rjgj(x)

2)− 1

2

∑
j∈K

v2
j/rj , (10)

with J := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} and K := {1, . . . ,m} \ J ,
cf. Schittkowski [26]. In both cases the objective function is penalized as soon as an
iterate leaves the feasible domain.

The corresponding penalty parameters that control the degree of constraint vi-
olation, must be chosen in a suitable way to guarantee a descent direction of the
merit function. Possible choices are

r
(k)
j := max(|u(k)

j | , 1

2
(r

(k−1)
j + |u(k)

j |) ,

see Powell [18] for the L1-merit function (9), or

r
(k)
j := max


 2m(u

(k)
j − v

(k)2

j

(1− δk)dT
k Bkdk

, r
(k−1)
j


 (11)

7

for the augmented Lagrangian function (10), see Schittkowski [26].
Here δk is the additionally introduced variable to avoid inconsistent quadratic

programming problems, see (6). For both merit functions we get the following
descent property that is essential to prove convergence:

φ′
rk
(0) =
ψrk

(xk, vk)
T

(
dk

uk − vk

)
< 0 (12)

For the proof see Han [9] or Schittkowski [26].
Finally one has to approximate the Hessian matrix of the Lagrangian function

in a suitable way. To avoid calculation of second derivatives and to obtain a final
superlinear convergence rate, the standard approach is to update Bk by the BFGS
quasi-Newton formula, cf. Powell [19] or Stoer [36]. The calculation of any new
matrix Bk+1 depends only on Bk and two vectors

qk := ∇xL(xk+1, uk)−∇xL(xk, uk) ,
wk := xk+1 − xk ,

(13)

i.e.
Bk+1 := Π(Bk, qk, wk) , (14)

where

Π(B, q, w) := B +
qqT

qTw
− BwwTB

wTBw
. (15)

The above formula yields a positive definite matrix Bk+1 provided that Bk is positive
definite and qT

k wk > 0. A simple modification of Powell [18] guarantees positive
definite matrices even if the latter condition is violated.

There remains the question whether the convergence of an SQP method can be
proved in a mathematically rigorous way. In fact there exist numerous theoretical
convergence results in the literature, see e.g. Spellucci [35]. We want to give here
only an impression about the type of these statements, and repeat two results that
have been stated in the early days of the SQP methods.

In the first case we consider the global convergence behaviour, i.e. the question,
whether the SQP methods converges when starting from an arbitrary initial point.
Suppose that the augmented Lagrangian merit function (8) is implemented and that
the primal and dual variables are updated in the form (10).

Theorem 3.1 Let {(xk, vk)} be a bounded iteration sequence of the SQP algorithm
with a bounded sequence of quasi-Newton matrices {Bk} and assume that there are
positive constants γ and δ̄ with

(i) dT
k Bkdk ≥ γdT

k dk for all k and a γ > 0,

(ii) δk ≤ δ for all k,

(iii) σk ≥ ‖A(xk)vk‖2/γ(1− δ)2 for all k,

8

Then there exists an accumulation point of {(xk, vk)} satisfying the Karush-Kuhn-
Tucker conditions for (2).

Assumption (i) is very well known from unconstrained optimization. It says
that the angles between the steepest descent directions and the search directions
obtained from the quadratic programming subproblems, must be bounded away
from π/2. Assumptions (ii) and (iii) are a bit more technical and serve to control
the additionally introduced variable δ for preventing inconsistency.

The proof of the theorem is found in Schittkowski [26]. The statement is quite
weak, but without any further information about second derivatives, we cannot
guarantee that the approximated point is indeed a local minimizer.

To investigate now the local convergence speed, we assume that we start from
an initial point x0 sufficiently close to an optimal solution. General assumptions for
local convergence analysis are:

a) z� = (x�, u�) is a strong local minimizer of (2).

b) me = m, i.e. we know all active constraints.

c) f , g1, . . ., gm are twice continuously differentiable.

d) For zk := (xk, vk) we have limk→∞ zk = z�.

e) The gradients
g1(x
�), . . .,
gm(x

�) are linearly independent, i.e. the con-
straint qualification is satisfied.

f) dTBkd ≥ γdTd for all d ∈ Rn with A(xk)
Td = 0, i.e. some kind of second order

condition for the Hessian approximation.

Powell [19] proved the following theorem for the BFGS update formula:

Theorem 3.2 Assume that

(i)
2
xL(x

�, u�) is positive definite,

(ii) αk = 1 for all k,

then the sequence {xk} converges R-superlinearly, i.e.

lim
k→∞

‖xk+1 − x�‖1/k = 0 .

The R-superlinear convergence speed is somewhat weaker than the Q-superlinear
convergence rate defined below. It was Han [8] who proved the statement

lim
k→∞

‖zk+1 − z�‖
‖zk − z�‖ = 0 .

for the so-called DFP update formula, i.e. a slightly different quasi-Newton method.
In this case, we get a sequence βk tending to zero with

‖zk+1 − z�‖ ≤ βk‖zk − z�‖

9

4 Steplength Calculation

Let us consider in more detail, how a steplength αk is actually calculated. First we
select a suitable merit function, in our case the augmented Lagrangian (10), that
defines a scalar function φr(α). For obvious reasons, a full minimization along α is
not possible. The idea is to get a sufficient decrease for example measured by the
so-called Goldstein condition

φr(0) + αµ2φ
′
r(0) ≤ φr(α) ≤ φr(0) + αµ1φ

′
r(0) (16)

or the Armijo condition

φr(σβ
i) ≤ φr(0) + σβiµφ′

r(0) , (17)

see for example Ortega and Rheinboldt [16]. The constants are from the ranges
0 < µ1 ≤ 0.5 < µ2 < 1, 0 < µ < 0.5, 0 < β < 1, and 0 < σ ≤ 1. In the first
case, we accept any α in the range given by (16), whereas the second condition is
constructive. We start with i = 0 and increase i, until (17) is satisfied for the first
time, say at ik. Then the desired steplength is αk = σβik . Both approaches are
feasible because of the descent property φ′

r(0) < 0, see (12).
All line search algorithms have to satisfy two requirements, which are somewhat

contradicting:

1. The decrease of the merit function must be sufficiently large, to accelerate
convergence.

2. The steplength must not become too small to avoid convergence against a
non-stationary point.

The implementation of a line search algorithm is a critical issue when imple-
menting a nonlinear programming algorithm, and has significant effect on the overall
efficiency of the resulting code. On the one hand we need a line search to stabilize
the algorithm, on the other hand it is not advisable to waste too many function
calls. Moreover the behaviour of the merit function becomes irregular in case on
constrained optimization, because of very steep slopes at the border caused by the
penalty terms. Even the implementation is more complex than shown above, if
linear constraints and bounds of the variables are to be satisfied during the line
search.

Fortunately SQP methods are quite robust and accept the steplength one in the
neighborhood of a solution. Typically the test parameter µ for the Armijo-type
sufficient descent property (17) is very small, for example µ = 0.0001 in the present
implementation of NLPQL. Nevertheless the choice of the reduction parameter β
must be adopted to the actual slope of the merit function. If β is too small, the line
search terminates very fast, but on the other hand the resulting stepsizes are usually
too small leading to a higher number of outer iterations. On the other hand, a larger

10

value close to one requires too many function calls during the line search. Thus,
we need some kind of compromise, which is obtained by applying first a polynomial
interpolation, typically a quadratic one, and use (16) or (17) only as a stopping
criterion. Since φr(0), φ

′
r(0), and φr(αi) are given, αi the actual iterate of the line

search procedure, we get easily the minimizer of the quadratic interpolation. We
accept then the maximum of this value or the Armijo parameter as a new iterate,
as shown by the subsequent code fragment implemented in NLPQL:

Algorithm 4.1:

Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: α0 := 1

For i = 0, 1, 2, . . . do

1) If φr(αi) < φr(0) + µαiφ
′
r(0), then stop.

2) Compute ᾱi := 0.5α2
iφ

′
r(0)/(αiφ

′
r(0)− φr(αi) + φr(0)).

3) Let αi+1 := max(βαi, ᾱi).

Corresponding convergence results are found in Schittkowski [26]. ᾱi is the min-
imizer of the quadratic interpolation, and we use the Armijo descent property for
termination. Step 3) is required to avoid irregular values, since the minimizer of
the quadratic interpolation may reside outside of the feasible domain (0, 1]. The
search algorithm is implemented in NLPQL together with additional safeguards, for
example to prevent violation of bounds. Algorithm 4.1 assumes that φr(1) is known
before calling the procedure, i.e., the corresponding function call is made in the
calling program. We have to stop the algorithm, if sufficient descent is not observed
after a certain number of iterations, say 10. If the tested stepsizes fall below machine
precision or the accuracy by which model function values are computed, the merit
function cannot decrease further.

Now we come back to the question, how the sequential line search algorithm can
be modified to work under a parallel computing environment. Proceeding from an
existing implementation as outlined above, the answer is quite simple. To outline
the new approach, let us assume that functions can be computed simultaneously on
l different machines. Then l test values αi = βi with β = ε1/(l−1) are selected, i = 0,
. . ., l − 1, where ε is a guess for the machine precision. Next we order l parallel
function calls to get f(xk + αidk) and gj(xk + αidk), j = 1, . . ., m, for i = 0, . . .,
l − 1. The first αi satisfying the sufficient descent property (17), is accepted as the
steplength for getting the subsequent iterate xk+1.

The proposed parallel line search will work efficiently, if the number of parallel
machines l is sufficiently large, and is summarized as follows:

Algorithm 4.2:

11

1

10

100

0 50 100 150 200 250 300 350

n

test problems

Figure 1: Number of Variables

Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: For αi = βi compute φr(αi) for i = 0, . . ., l − 1.

For i = 0, 1, 2, . . . do

1) If φr(αi) < φr(0) + µαiφ
′
r(0), then stop.

2) Let αi+1 := βαi.

5 Numerical Results

Our numerical tests use all 306 academic and real-life test problems published in
Hock and Schittkowski [13] and in Schittkowski [29]. The distribution of the di-
mension parameter n, the number of variables, is shown in Figure 1. We see, for
example, that about 270 of 306 test problems have not more than 10 variables. In
a similar way, the distribution of the number of constraints is shown in Figure 2.

Since analytical derivatives are not available for all problems, we approximate
them numerically. The test examples are provided with exact solutions, either known
from analytical solutions or from the best numerical data found so far. The Fortran
code is compiled by the Compaq Visual Fortran Optimizing Compiler, Version 6.5,
under Windows 2000, and executed on a Pentium III processor with 750 MHz. Since
the calculation times are very short, about 15 sec for solving all 306 test problems,
we count only function and gradient evaluations. This is a realistic assumption,
since for the practical applications in mind calculation times for evaluating model
functions, dominate and the numerical efforts within NLPQLP are negligible.

12

1

10

100

50 100 150 200 250 300 350

m

test problems

Figure 2: Number of Constraints

First we need a criterion to decide, whether the result of a test run is considered
as a successful return or not. Let ε > 0 be a tolerance for defining the relative
termination accuracy, xk the final iterate of a test run, and x� the supposed exact
solution as reported by the two test problem collections. Then we call the output
of an execution of NLPQLP a successful return, if the relative error in objective
function is less than ε and if the sum of all constraint violations less than ε2, i.e., if

f(xk)− f(x�) < ε|f(x�)| , if f(x�) <> 0 ,

or
f(xk) < ε , if f(x�) = 0 ,

and

r(xk) :=
me∑
j=1

|gj(xk)|+
m∑

j=me+1

|min(0, gj(xk))| < ε2 .

We take into account that NLPQLP returns a solution with a better function
value than the known one, subject to the error tolerance of the allowed constraint
violation. However there is still the possibility that NLPQLP terminates at a lo-
cal solution different from the one known in advance. Thus, we call a test run a
successful one, if NLPQLP terminates with error message IFAIL=0, and if

f(xk)− f(x�) ≥ ε|f(x�)| , if f(x�) <> 0 ,

or
f(xk) ≥ ε , if f(x�) = 0 ,

13

L SUCC NF NIT
1 305 41 26
3 205 709 178
4 250 624 125
5 281 470 79
6 290 339 49
7 291 323 41
8 296 299 34
9 298 305 31

10 299 300 28
12 300 346 27
15 296 394 25
20 298 519 25
50 299 1,280 25

Table 1: Performance Results for Parallel Line Search

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of
one per cent. NLPQLP is executed with termination accuracy ACC=10−8, and
MAXIT=500. Gradients are approximated by a fourth-order difference formula

∂

∂xi

f(x) ≈ 1

4!ηi

(
2f(x−2ηiei)−16f(x−ηiei)+16f(x+ηiei)−2f(x+2ηiei)

)
, (18)

where ηi = ηmax(10−5, |xi|), η = 10−7, ei the i-th unit vector, and i = 1, . . ., n. In
a similar way, derivatives of the constraint functions are computed.

First we investigate the question, how the parallel line search influences the
overall performance. Table 1 shows the number of successful test runs SUCC, the
average number of function calls NF, and the average number of iterations NIT,
for increasing number of simulated parallel calls of model functions denoted by L.
To get NF, we count each single function call, also in the case L > 1. However,
function evaluations needed for gradient approximations, are not counted. Their
average number is 4×NIT.

L = 1 corresponds to the sequential case, when Algorithm 4.1 is applied for
the line search, consisting of a quadratic interpolation combined with an Armijo-
type bisection strategy. Only one problem, TP108, could not be solved successfully,
since a necessary regularity assumption called constraint qualification is violated at
the optimal solution. Since we need at least one function evaluation for the subse-
quent iterate, we observe that the average number of additional function evaluations
needed for the line search, is less than one.

14

In all other cases, L > 1 simultaneous function evaluations are made according to
Algorithm 4.2. Thus, the total number of function calls NF is quite big in Table 1.
If, however, the number of parallel machines L is sufficiently large in a practical
situation, we need only one simultaneous function evaluation in each step of the
SQP algorithm. To get a reliable and robust line search, we need at least 5 parallel
processors. No significant improvements are observed, if we have more than 10
parallel function evaluations.

The most promising possibility to exploit a parallel system architecture occurs,
when gradients cannot be calculated analytically, but have to be approximated nu-
merically, for example by forward differences, two-sided differences, or even higher
order methods. Then we need at least n additional function calls, where n is the
number of optimization variables, or a suitable multiple of n.

For our numerical tests, we implement 6 different approximation routines for
derivatives. The first three are standard difference formulae of increasing order, the
final three linear and quadratic approximations to attempt to eliminate the influence
of round-off errors:

1. Forward differences:

∂

∂xi

f(x) ≈ 1

ηi

(f(x+ ηiei)− f(x))

2. Two-sided differences:

∂

∂xi

f(x) ≈ 1

2ηi

(f(x+ ηiei)− f(x− ηiei)

3. Fourth-order formula:

∂

∂xi

f(x) ≈ 1

4!ηi

(2f(x− 2ηiei)− 16f(x− ηiei) + 16f(x+ ηiei)− 2f(x+ 2ηiei))

4. Three-point linear approximation:

min
a,b∈IR

1∑
r=−1

(a+ b(xi + rηi)− f(x+ rηiei))
2 ,

∂

∂xi

f(x) ≈ b

5. Five-point quadratic approximation:

min
a,b,c∈IR

2∑
r=−2

(a+ b(xi + rηi) + c(xi + rηi))
2 − f(x+ rηiei)

2 ,
∂

∂xi

f(x) ≈ b+2cxi

6. Five-point linear approximation:

min
a,b∈IR

2∑
r=−2

(a+ b(xi + rηi)− f(xi + rηiei))
2 ,

∂

∂xi

f(x) ≈ b

15

ETA=1E-7 ETA=5E-4 ETA=1E-2
GA ERR SUCC NIT SUCC NIT SUCC NIT
1 0.0 294 29 268 25 205 22
2 0.0 300 29 291 25 277 22
3 0.0 299 29 290 24 277 22
4 0.0 89 33 283 23 275 22
5 0.0 118 30 247 32 272 22
6 0.0 127 28 278 22 273 22
1 10−10 203 32 263 24 195 25
2 10−10 215 33 289 25 273 23
3 10−10 220 34 287 25 278 23
4 10−10 94 34 277 23 276 23
5 10−10 121 33 254 29 275 23
6 10−10 106 32 284 24 274 23
1 10−8 121 35 250 26 194 25
2 10−8 140 31 270 26 262 24
3 10−8 125 35 260 28 269 24
4 10−8 76 40 267 24 265 24
5 10−8 124 33 244 33 260 24
6 10−8 119 33 273 26 268 24
1 10−6 11 115 208 28 172 27
2 10−6 12 109 202 28 236 25
3 10−6 17 74 217 26 237 26
4 10−6 19 73 209 28 235 25
5 10−6 38 47 220 33 237 25
6 10−6 27 56 225 29 242 24

Table 2: Performance Results for Different Gradient Approximations

In the above formulae, i = 1, . . ., n is the index of the variables for which a
partial derivative is to be computed, x = (x1, . . . , xn)

T the argument, ei the i-the
unit vector, and ηi = ηmax(10−5, |xi|) the relative perturbation. In the same way,
derivatives for constraints are approximated.

Table 2 shows the corresponding results for the six different procedures under
consideration (GA), and for increasing random perturbations (ERR). In particular
we are interested in the number of successful runs for three different perturbations
η (ETA). The termination tolerance of NLPQLP is set to ACC=0.01 × ETA. Bold
entries show the three best gradient approximations. The number of simulated
parallel machines is set to 10.

16

6 Program Documentation

NLPQLP is implemented in form of a Fortran subroutine. The quadratic program-
ming problem is solved by the code QL of the author, an implementation of the
primal-dual method of Goldfarb and Idnani [7] going back to Powell [20]. Model
functions and gradients are called by reverse communication.

Usage:

CALL NLPQLP(L,M,ME,MMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,XU,
/ C,D,ACC,MAXFUN,MAXIT,IPRINT,MODE,IOUT,IFAIL,WA,LWA,
/ KWA,LKWA,ACTIVE,LACTIV,QP)

Definition of the parameters:

L : Number of parallel systems, i.e. function calls during line search
at predetermined iterates.

M : Total number of constraints.
ME : Number of equality constraints.
MMAX : Row dimension of array DG containing Jacobian of constraints.

MMAX must be at least one and greater or equal to M.
N : Number of optimization variables.
NMAX : Row dimension of C. NMAX must be at least two and greater

than N.
MNN2 : Must be equal to M+N+N+2 when calling NLPQLP.
X(NMAX,L) : Initially, the first column of X has to contain starting values for

the optimal solution. On return, X is replaced by the current
iterate. In the driving program the row dimension of X has
to be equal to NMAX. X is used internally to store L differ-
ent arguments for which function values should be computed
simultaneously.

F(L) : On return, F(1) contains the final objective function value. F
is used also to store L different objective function values to be
computed from L iterates stored in X.

G(MMAX,L) : On return, the first column of G contains the constraint func-
tion values at the final iterate X. In the driving program the
row dimension of G has to be equal to MMAX. G is used in-
ternally to store L different set of constraint function values to
be computed from L iterates stored in X.

17

DF(NMAX) : DF contains the current gradient of the objective function.
In case of numerical differentiation and a distributed system
(L>1), it is recommended to apply parallel evaluations of F to
compute DF.

DG(MMAX,NMAX) : DG contains the gradients of the active constraints (AC-
TIVE(J)=.true.) at a current iterate X. The remaining rows
are filled with previously computed gradients. In the driving
program the row dimension of DG has to be equal to MMAX.

U(MNN2) : U contains the multipliers with respect to the actual iterate
stored in the first column of X. The first M locations contain
the multipliers of the M nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the final
N locations the multipliers of the upper bounds. At an optimal
solution, all multipliers with respect to inequality constraints
should be nonnegative.

XL(N),XU(N) : On input, the one-dimensional arrays XL and XU must contain
the upper and lower bounds of the variables.

C(NMAX,NMAX) : On return, C contains the last computed approximation of the
Hessian matrix of the Lagrangian function stored in form of an
Cholesky decomposition. C contains the lower triangular factor
of an LDL factorization of the final quasi-Newton matrix (with-
out diagonal elements, which are always one). In the driving
program, the row dimension of C has to be equal to NMAX.

D(NMAX) : The elements of the diagonal matrix of the LDL decomposition
of the quasi-Newton matrix are stored in the one-dimensional
array D.

ACC : The user has to specify the desired final accuracy (e.g. 1.0D-7).
The termination accuracy should not be much smaller than the
accuracy by which gradients are computed.

STPMIN : Minimum steplength in case of L>1. Recommended is any
value in the order of the accuracy by which functions are com-
puted.

MAXFUN : The integer variable defines an upper bound for the number of
function calls during the line search (e.g. 20). MAXFUN is
only needed in case of L=1.

MAXIT : Maximum number of outer iterations, where one iteration cor-
responds to one formulation and solution of the quadratic pro-
gramming subproblem, or, alternatively, one evaluation of gra-
dients (e.g. 100).

18

IPRINT : Specification of the desired output level.
0 - No output of the program.
1 - Only a final convergence analysis is given.
2 - One line of intermediate results is printed in each iteration.
3 - More detailed information is printed in each iteration step,

e.g. variable, constraint and multiplier values.
4 - In addition to ’IPRINT=3’, merit function and steplength

values are displayed during the line search.
MODE : The parameter specifies the desired version of NLPQLP.

0 - Normal execution (reverse communication!).
1 - The user wants to provide an initial guess for the multipliers

in U and for the Hessian of the Lagrangian function in C.
IOUT : Integer indicating the desired output unit number, i.e. all write-

statements start with ’WRITE(IOUT,... ’.
IFAIL : The parameter shows the reason for terminating a solution pro-

cess. Initially IFAIL must be set to zero. On return IFAIL could
contain the following values:

-2 - Compute gradient values w.r.t. the variables stored in first
column of X, and store them in DF and DG. Only deriva-
tives for active constraints ACTIVE(J)=.TRUE. need to be
computed. Then call NLPQLP again, see below.

-1 - Compute objective function and all constraint values w.r.t.
the variables found in the first L columns of X, and store
them in F and G. Then call NLPQLP again, see below.

0 - The optimality conditions are satisfied.
1 - The algorithm has been stopped after MAXIT iterations.
2 - The algorithm computed an uphill search direction.
3 - Underflow occurred when determining a new approximation

matrix for the Hessian of the Lagrangian.
4 - More than MAXFUN function evaluations are required dur-

ing the line search.
5 - Length of a working array is too short. More detailed error

information is obtained with ’IPRINT>0’.
6 - There are false dimensions, for example M>MMAX,

NgeqNMAX, or MNN2�=M+N+N+2.
7 - The search direction is close to zero, but the current iterate

is still infeasible.
8 - The starting point violates a lower or upper bound.

>10 - The solution of the quadratic programming subproblem has
been terminated with an error message IFQL>0 and IFAIL
is set to IFQL+10.

19

WA(LWA) : WA is a real working array of length LWA.
LWA : Length of the real working array WA. LWA must be at least

3/2*NMAX*NMAX+6*MMAX+28*NMAX+100.
KWA(LKWA) : KWA is an integer working array of length LKWA.
LKWA : Length of the integer working array KWA. LKWA should be

at least MMAX+2*NMAX+20.
ACTIVE(LACTIV) : The logical array indicates constraints, which NLPQLP con-

siders to be active at the last computed iterate, i.e. G(J,X) is
active, if and only if ACTIVE(J)=.TRUE., J=1,...,M.

LACTIV : Length of the logical array ACTIVE. The length LACTIV of
the logical array should be at least 2*MMAX+15.

QP : External subroutine to solve the quadratic programming sub-
problem.

The user has to provide functions and gradients in the same program, which
executes also NLPQLP, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in
the first column of X.

2. Compute objective and all constraint function values values, store them in
F(1) and the first column of G, respectively.

3. Compute gradients of objective function and all constraints, and store them
in DF and DG, respectively. The J-th row of DG contains the gradient of the
J-th constraint, J=1,...,M.

4. Set IFAIL=0 and execute NLPQLP.

5. If NLPQLP returns with IFAIL=-1, compute objective function values and
constraint values for all variables found in the first L columns of X, store them
in F (first L positions) and G (first L columns), and call NLPQLP again. If
NLPQLP terminates with IFAIL=0, the internal stopping criteria are satisfied.
In case of IFAIL>0, an error occurred.

6. If NLPQLP terminates with IFAIL=-2, compute gradient values w.r.t. the
variables stored in first column of X, and store them in DF and DG. Only
derivatives for active constraints ACTIVE(J)=.TRUE. need to be computed.
Then call NLPQLP again.

If analytical derivatives are not available, simultaneous function calls can be used
for gradient approximations, for example by forward differences (2N > L), two-sided
differences (4N > L ≥ 2N), or even higher order formulae (L ≥ 4N).

Example:
To give an example how to organize the code, we consider Rosenbrock’s post office
problem, i.e., test problem TP37 of Hock and Schittkowski [13].

20

x1, x2 ∈ IR :

min−x1x2x3

x1 + 2x2 + 2x3 ≥ 0
72− x1 − 2x2 − 2x3 ≥ 0
0 ≤ x1 ≤ 100
0 ≤ x2 ≤ 100

(19)

The Fortran source code for executing NLPQLP is listed below. Gradients are
approximated by forward differences. The function block inserted in the main pro-
gram, can be replaced by a subroutine call. Also the gradient evaluation is easily
exchanged by an analytical one or higher order derivatives.

IMPLICIT NONE

INTEGER NMAX,MMAX,LMAX,MNN2X,LWA,LKWA,LACTIV

PARAMETER (NMAX=4,MMAX=2,LMAX=10)

PARAMETER (MNN2X = MMAX+NMAX+NMAX+2,

/ LWA=3*NMAX*NMAX/2+6*MMAX+28*NMAX+100,

/ LKWA=MMAX+2*NMAX+20,LACTIV=2*MMAX+15)

INTEGER KWA(LKWA),KL,N,ME,M,L,MNN2,MAXIT,MAXFUN,IPRINT,

/ IOUT,MODE,IFAIL,I,J,K,NFUNC

DOUBLE PRECISION X(NMAX,LMAX),F(LMAX),G(MMAX,LMAX),DF(NMAX),

/ DG(MMAX,NMAX),U(MNN2X),XL(NMAX),XU(NMAX),C(NMAX,NMAX),

/ D(NMAX),WA(LWA),ACC,STPMIN,EPS,EPSREL,FBCK,GBCK(MMAX),

/ XBCK

LOGICAL ACTIVE(LACTIV)

EXTERNAL QL0001

C

IOUT=6

ACC=1.0D-9

STPMIN=1.0E-10

EPS=1.0D-7

MAXIT=100

MAXFUN=10

IPRINT=2

N=3

M=2

ME=0

MNN2=M+N+N+2

DO I=1,N

X(I,1)=1.0D+1

XL(I)=0.0

XU(I)=1.0D+2

ENDDO

MODE=0

IFAIL=0

NFUNC=0

L=N

1 CONTINUE

C==

C This is the main block to compute all function values

C simultaneously, assuming that there are L nodes.

C The block is executed either for computing a steplength

C or for approximating gradients by forward differences.

DO K=1,L

F(K)=-X(1,K)*X(2,K)*X(3,K)

G(1,K)=X(1,K) + 2.0*X(2,K) + 2.0*X(3,K)

G(2,K)=72.0 - X(1,K) - 2.0*X(2,K) - 2.0*X(3,K)

ENDDO

C==

NFUNC=NFUNC+1

IF (IFAIL.EQ.-1) GOTO 4

21

IF (NFUNC.GT.1) GOTO 3

2 CONTINUE

FBCK=F(1)

DO J=1,M

GBCK(J)=G(J,1)

ENDDO

XBCK=X(1,1)

DO I=1,N

EPSREL=EPS*DMAX1(1.0D0,DABS(X(I,1)))

DO K=2,L

X(I,K)=X(I,1)

ENDDO

X(I,I)=X(I,1)+EPSREL

ENDDO

GOTO 1

3 CONTINUE

X(1,1)=XBCK

DO I=1,N

EPSREL=EPS*DMAX1(1.0D0,DABS(X(I,1)))

DF(I)=(F(I)-FBCK)/EPSREL

DO J=1,M

DG(J,I)=(G(J,I)-GBCK(J))/EPSREL

ENDDO

ENDDO

F=FBCK

DO J=1,M

G(J,1)=GBCK(J)

ENDDO

C

4 CALL NLPQLP(L,M,ME,MMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,XU,

/ C,D,ACC,STPMIN,MAXFUN,MAXIT,IPRINT,MODE,IOUT,IFAIL,

/ WA,LWA,KWA,LKWA,ACTIVE,LACTIV,QL0001)

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

WRITE(IOUT,1000) NFUNC

1000 FORMAT(’ *** Number of function calls: ’,I3)

C

STOP

END

When applying simultaneous function evaluations with L = N , only 20 function
calls and 10 iterations are required to get a solution within termination accuracy
10−10. A corresponding call with L = 1 would stop after 9 iterations. The following
output should appear on screen:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

MODE = 0

ACC = 0.1000D-08

MAXFUN = 3

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

22

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.46D+04

2 -0.10003444D+04 0.00D+00 1 2 0.10D-03 0.00D+00 0.38D+04

3 -0.33594686D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.24D+02

4 -0.33818566D+04 0.16D-09 1 1 0.10D+01 0.00D+00 0.93D+02

5 -0.34442871D+04 0.51D-08 1 1 0.10D+01 0.00D+00 0.26D+03

6 -0.34443130D+04 0.51D-08 1 2 0.10D-03 0.00D+00 0.25D+02

7 -0.34558588D+04 0.19D-08 1 1 0.10D+01 0.00D+00 0.30D+00

8 -0.34559997D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.61D-03

9 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.12D-07

10 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.13D-10

--- Final Convergence Analysis ---

Objective function value: F(X) = -0.34560000D+04

Approximation of solution: X =

0.24000000D+02 0.12000000D+02 0.12000000D+02

Approximation of multipliers: U =

0.00000000D+00 0.14400000D+03 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.72000000D+02 0.35527137D-13

Distance from lower bound: XL-X =

-0.24000000D+02 -0.12000000D+02 -0.12000000D+02

Distance from upper bound: XU-X =

0.76000000D+02 0.88000000D+02 0.88000000D+02

Number of function calls: NFUNC = 10

Number of gradient calls: NGRAD = 10

Number of calls of QP solver: NQL = 10

*** Number of function calls: 20

In case of L = 1, NLPQLP is identical to NLPQL and stops after 9 iterations.
The corresponding sequential implementation of the main program is as follows:

IMPLICIT NONE

INTEGER NMAX,MMAX,LMAX,MNN2X,LWA,LKWA,LACTIV

PARAMETER (NMAX=4,MMAX=2)

PARAMETER (MNN2X = MMAX+NMAX+NMAX+2,

/ LWA=3*NMAX*NMAX/2+6*MMAX+28*NMAX+100,

/ LKWA=MMAX+2*NMAX+20,LACTIV=2*MMAX+15)

INTEGER KWA(LKWA),KL,N,ME,M,L,MNN2,MAXIT,MAXFUN,IPRINT,

/ IOUT,MODE,IFAIL,I,J,K

DOUBLE PRECISION X(NMAX),F,G(MMAX),DF(NMAX),

/ DG(MMAX,NMAX),U(MNN2X),XL(NMAX),XU(NMAX),C(NMAX,NMAX),

/ D(NMAX),WA(LWA),ACC,STPMIN,EPS,EPSREL,FBCK,GBCK(MMAX)

LOGICAL ACTIVE(LACTIV)

EXTERNAL QL0001

C

IOUT=6

ACC=1.0D-9

STPMIN=0.0

EPS=1.0D-7

MAXIT=100

MAXFUN=10

IPRINT=2

N=3

M=2

23

ME=0

MNN2=M+N+N+2

DO I=1,N

X(I)=1.0D+1

XL(I)=0.0

XU(I)=1.0D+2

ENDDO

MODE=0

IFAIL=0

L=1

I=0

1 CONTINUE

C==

C This is the main block to compute all function values.

C The block is executed either for computing a steplength

C or for approximating gradients by forward differences.

F=-X(1)*X(2)*X(3)

G(1)=X(1) + 2.0*X(2) + 2.0*X(3)

G(2)=72.0 - X(1) - 2.0*X(2) - 2.0*X(3)

C==

IF (IFAIL.EQ.-1) GOTO 4

IF (I.GT.0) GOTO 3

2 CONTINUE

FBCK=F

DO J=1,M

GBCK(J)=G(J)

ENDDO

I=0

5 I=I+1

EPSREL=EPS*DMAX1(1.0D0,DABS(X(I)))

X(I)=X(I)+EPSREL

GOTO 1

3 CONTINUE

DF(I)=(F-FBCK)/EPSREL

DO J=1,M

DG(J,I)=(G(J)-GBCK(J))/EPSREL

ENDDO

X(I)=X(I)-EPSREL

IF (I.LT.N) GOTO 5

F=FBCK

DO J=1,M

G(J)=GBCK(J)

ENDDO

C

4 CALL NLPQLP(L,M,ME,MMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,XU,

/ C,D,ACC,STPMIN,MAXFUN,MAXIT,IPRINT,MODE,IOUT,IFAIL,

/ WA,LWA,KWA,LKWA,ACTIVE,LACTIV,QL0001)

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

STOP

END

7 Summary

We present a modification of an SQP algorithm designed for execution under a paral-
lel computing environment (SPMD). Under the assumption that objective functions
and constraints are executed on different machines, a parallel line search procedure is
proposed. Thus, the SQP algorithm is executable under a distributed system, where
parallel function calls are exploited for line search and gradient approximations.

24

The approach is outlined, the usage of the program is documented, and some
numerical tests are performed. It is shown that there are no significant performance
differences between sequential and parallel line searches, if the number of parallel
processors is sufficiently large. In both cases, about the same number of iterations
is performed, and the number of successfully solved problems is also comparable.
The test results are obtained by a collection of 306 academic and real-life examples.

By a series of further tests, it is shown how the code behaves for 6 different
gradient approximations under additional random noise added to the model func-
tions, to simulate realistic situations arising in practical applications. If a sufficiently
large number of parallel processors is available, it is recommended to apply higher
order approximation formulae instead of forward differences. Linear and quadratic
approximations perform well in case of large round-off errors.

References

[1] Boderke P., Schittkowski K., Wolf M., Merkle H.P. (2000): Modeling of diffu-
sion and concurrent metabolism in cutaneous tissue, Journal on Theoretical
Biology, Vol. 204, No. 3, 393-407

[2] Birk J., Liepelt M., Schittkowski K., Vogel F. (1999): Computation of opti-
mal feed rates and operation intervals for tubular reactors, Journal of Process
Control, Vol. 9, 325-336

[3] Blatt M., Schittkowski K. (1998): Optimal Control of One-Dimensional Par-
tial Differential Equations Applied to Transdermal Diffusion of Substrates,
in: Optimization Techniques and Applications, L. Caccetta, K.L. Teo, P.F.
Siew, Y.H. Leung, L.S. Jennings, V. Rehbock eds., School of Mathematics and
Statistics, Curtin University of Technology, Perth, Australia, Vol. 1, 81 - 93

[4] Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and
unconstrained testing environment, Transactions on Mathematical Software,
Vol. 21, No. 1, 123-160

[5] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes,
McGraw Hill

[6] Geist A., Beguelin A., Dongarra J.J., Jiang W., Manchek R., Sunderam V.
(1995): PVM 3.0. A User’s Guide and Tutorial for Networked Parallel Com-
puting, The MIT Press

[7] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

25

[8] Han S.-P. (1976): Superlinearly convergent variable metric algorithms for gen-
eral nonlinear programming problems Mathematical Programming, Vol. 11,
263-282

[9] Han S.-P. (1977): A globally convergent method for nonlinear programming
Journal of Optimization Theory and Applications, Vol. 22, 297–309

[10] Hartwanger C., Schittkowski K., Wolf H. (2000): Computer aided optimal de-
sign of horn radiators for satellite communication, Engineering Optimization,
Vol. 33, 221-244

[11] Frias J.M., Oliveira J.C, Schittkowski K. (2001): Modelling of maltodextrin
DE12 drying process in a convection oven, to appear: Applied Mathematical
Modelling

[12] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems, Vol.
187, Springer

[13] Hock W., Schittkowski K. (1983): A comparative performance evaluation of
27 nonlinear programming codes, Computing, Vol. 30, 335-358

[14] Hough P.D., Kolda T.G., Torczon V.J. (2001): Asynchronous parallel pattern
search for nonlinear optimization, to appear: SIAM J. Scientific Computing

[15] Kneppe G., Krammer J., Winkler E. (1987): Structural optimization of
large scale problems using MBB-LAGRANGE, Report MBB-S-PUB-305,
Messerschmitt-Bölkow-Blohm, Munich

[16] Ortega J.M., Rheinbold W.C. (1970): Iterative Solution of Nonlinear Equa-
tions in Several Variables, Academic Press, New York-San Francisco-London

[17] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cam-
bridge University Press

[18] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimiza-
tion calculations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in
Mathematics, Vol. 630, Springer

[19] Powell M.J.D. (1978): The convergence of variable metric methods for non-
linearly constrained optimization calculations, in: Nonlinear Programming 3,
O.L. Mangasarian, R.R. Meyer, S.M. Robinson eds., Academic Press

[20] Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb
and Idnani. Report DAMTP 1983/Na 19, University of Cambridge, Cam-
bridge

26

[21] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 183 Springer

[22] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han
and Powell. Part 1: Convergence analysis, Numerische Mathematik, Vol. 38,
83-114

[23] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han
and Powell. Part 2: An efficient implementation with linear least squares
subproblems, Numerische Mathematik, Vol. 38, 115-127

[24] Schittkowski K. (1982): Nonlinear programming methods with linear least
squares subproblems, in: Evaluating Mathematical Programming Techniques,
J.M. Mulvey ed., Lecture Notes in Economics and Mathematical Systems, Vol.
199, Springer

[25] Schittkowski K. (1983): Theory, implementation and test of a nonlinear pro-
gramming algorithm, in: Optimization Methods in Structural Design, H. Es-
chenauer, N. Olhoff eds., Wissenschaftsverlag

[26] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Mathematische
Operationsforschung und Statistik, Series Optimization, Vol. 14, 197-216

[27] Schittkowski K. (1985): On the global convergence of nonlinear programming
algorithms, ASME Journal of Mechanics, Transmissions, and Automation in
Design, Vol. 107, 454-458

[28] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained
nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-
500

[29] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming,
Lecture Notes in Economics and Mathematical Systems, Vol. 182, Springer

[30] Schittkowski K. (1987): New routines in MATH/LIBRARY for nonlinear pro-
gramming problems, IMSL Directions, Vol. 4, No. 3

[31] Schittkowski K. (1988): Solving nonlinear least squares problems by a general
purpose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoff-
mann, J.-B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series
of Numerical Mathematics, Vol. 84, Birkhäuser, 295-309

[32] Schittkowski K. (1992): Solving nonlinear programming problems with very
many constraints, Optimization, Vol. 25, 179-196

27

[33] Schittkowski K. (1994): Parameter estimation in systems of nonlinear equa-
tions, Numerische Mathematik, Vol. 68, 129-142

[34] Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical Comparison
of Nonlinear Programming Algorithms for Structural Optimization, Structural
Optimization, Vol. 7, No. 1, 1-28

[35] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser

[36] Stoer J. (1985): Foundations of recursive quadratic programming methods for
solving nonlinear programs, in: Computational Mathematical Programming,
K. Schittkowski, ed., NATO ASI Series, Series F: Computer and Systems
Sciences, Vol. 15, Springer

28

