PENLIB/SDP User’s Guide

Michal Kocvara Michael Stingl

In this guide we give a description of parameters of function sdp, solving linear
semidefinite programming problems with linear constraints. This function is part

of the library PENLIB.

We solve the dual linear SDP problem with linear constraints:

n

. i
min T
rER™ 4 f
i=1
n
s.t. E bi—“xkgci, i=1,...,my

k=1

n
A?+ZA§:LJ€<O i=1,....,m.
k=1

The matrix constraints can be written as one constraint with block diagonal
matrices as follows:

A 4

Here we use the abbreviations n := vars, my := constr, and m := mconstr.

The input parameters are explained below. We assume that the linear constraint
vectors b; can be sparse, so we give them in standard sparse format. Similarly, we
assume that the matrix constraints data can be sparse. Here we distinguish two
cases: Some (many) of the matrices A% for the k—th constraint can be empty; so we
only give those matrices (for each matrix constraint) that are nonempty. Further,
each of the nonempty matrices A,i can still be sparse; hence we give the matrices
A! in sparse format (value, column index, row index). Further, as all the matrices
are symmetric, we only give the upper triangle.

The function sdp is declared as

int sdp(int vars, int constr, int mconstr, int* msizes, double *fx,
double* x0, double* uoutput, double* fobj, doublex* ci,
int* bi_dim, int* bi_idx, doublex bi_val,
int* ai_dim, int* ai_idx, int* ai_nzs,
double* ai_val, int* ai_col, int* ai_row,
int* ioptions, doublex foptions,
int* iresults, doublex fresults, int* info);

(1) vars

number of variables

integer number

(2) constr

number of linear constraints

integer number

(3) mconstr

number of matrix constraints (diagonal blocks in each Ay)

integer number

(4) msizes

sizes of the diagonal blocks A}, A7, ..., Ajconstr

integer array

length: mconstr

(5) £fx

on exit: objective function value

double array

length: 1

(6) x0

on entry: initial guess for the solution
on exit: solution vector x
(Not referenced, if x0 = 0 on entry)

double array

length: vars

(7) uoutput

on exit: linear multipliers u; (¢ = 1,..., constr) followed by upper
triangular parts of matrix multipliers U7 (j = 1,...,mconstr) in
rowise storage format

(Not referenced, if uoutput = 0 on entry)

double array

length: constr + msizes(1)*(msizes(1)+1)/2 +
msizes(2)*(msizes(2)+1)/2 + ...+
msizes(mconstr)*(msizes (mconstr)+1)/2

(8) fobj objective vector f in full format

double array length: vars

(9) ci right-hand side vector of the linear constraint ¢ in full format

double array length: constr

(10) bi_dim number of nonzeros in vector b; for each linear constraint

integer array length: constr

(11) bi_idx indices of nonzeros in each vector b;

integer array length: bi_dim(1)+bi_dim(2)+ ...+bi dim(constr)

(12) bi_val nonzero values in each vector b; corresponding to indices in bi_idx

double array length: bi_dim(1)+bi dim(2)+ ...+bi dim(constr)

(13) ai-dim number of nonzero blocks A§, A, ..., Al . for each matrix con-
straint ¢ = 1,2,...,mconstr

integer array

length: mconstr

(14) ai_idx

indices of nonzero blocks for each matrix constraint

integer array

length: ai_dim(1)+ai_dim(2)+ ...+ai_dim(mconstr)

(15) ai nzs

number of nonzero values in each nonzero block
Aai_idx(l)’ ‘/4ai_idx(2)7 T Aai_idx(ai_dim(i)) for each matrix con-
straint ¢ = 1,2,...,mconstr

integer array

length: ai_dim(1)+ai dim(2)+ ...+ai dim(mconstr)

(16) aival

nonzero values in the upper triangle of each nonzero block
Aai_.idx(i.)’Aai_idx(Q)"'"Aai_idx(ai_dim(i)) for each matrix con-
straint ¢ = 1,2,...,mconstr

double array

length: ai_nzs(1)+ai_nzs(2)+ ...+ainzs(length(ai_nzs))

(17) ai_col

column indices of nonzero values in the upper triangle of each

nonzero block A;i_idx(l),A;i_idx@), .. .,A;i_idx(ai_dim(i)) for each

matrix constraint ¢ = 1,2,...,mconstr

integer array

length: ai_nzs(1)+ainzs(2)+ ...+ai nzs(length(ai_nzs))

(18) ai_row

row indices of nonzero values in the upper triangle of each
nonzero block A’ A Al for each

i
ai_idx(1)’ “*ai_idx(2)’ " * > “'ai_idx(ai_dim(i))
matrix constraint ¢ = 1,2,...,mconstr

integer array

length: ai_nzs(1)+ai nzs(2)+ ...+ai nzs(length(ai nzs))

(19) ioptions

integer valued options (see below)

integer array

length: 8

(20) foptions

real valued options (see below)

double array

length: 7

(21) iresults

on exit: integer valued output information (see below)
(Not referenced, if iresults =

0 on entry)

integer array

length: 4

(22) fresults

on exit: real valued output information (see below)
(Not referenced, if fresults =

0 on entry)

double array

length: 3

(23) info

on exit: error flag (see below)

integer array length: 1
IOPTIONS name/value meaning default
ioption(0) DEF
0 use default values for all options
1 use user defined values
ioption(1) | PBM_MAX_ITER | maximum number of iterations of the overall 50
algorithm
ioption(2) | UM_MAXITER | maximum number of iterations for the uncon- 100
strained minimization
ioption(3) OouTPUT output level 1
0 no output
1 summary output
2 brief output
3 full output
ioption(4) DENSE check density of the Hessian 0
0 automatic check. For very large problems with
dense Hessian, this may lead to memory diffi-
culties.
1 dense Hessian assumed
ioption(5) LS linesearch in unconstrained minimization 0
0 do not use linesearch
1 use linesearch
ioption(6) XouT write solution vector x in the output file 0
0 no
1 yes
ioption(7) uouT write computed multipliers in the output file 0
0 no
1 yes
FOPTIONS | name/value | meaning default
foption(0) Uo scaling factor for linear constraints; must be positive 1.0
foption(1) MU restriction for multiplier update for linear constraints 0.7
foption(2) MU2 restriction for multiplier update for matrix con- 0.1
straints
foption(3) | PBM_EPS | stopping criterium for the overall algorithm 1.0e-7
foption(4) P_EPS lower bound for the penalty parameters 1.0e-6
foption(5) UMIN lower bound for the multipliers 1.0e-14
foption(6) ALPHA stopping criterium for unconstrained minimization 1.0e-2

IRESULTS

meaning

iresults(0) | number of outer iterations
iresults(1) | number of Newton steps
iresults(2) | number of linesearch steps
iresults(3) | elapsed time in seconds

FRESULTS | meaning

fresults(0) | relative precision at zopt
fresults(1) | feasibility of linear inequalities at zpt
fresults(2) | feasibility of matrix inequalities at xqpt

INFO meaning

info(0) | no errors occured

info(1) | no progress in objective value, problem probably infeasible.

info(2) | Cholesky factorization of Hessian failed. The result still may be useful.
info(3) | Maximum iteration limit exceeded. The result still may be useful.
info(4) | Linesearch failed. The result still may be useful.

info(5) | Wrong input parameters (ioptions, foptions).

info(6) | Memory error.

info(7) | Unknown error, please contact PENOPT GbR (contact@penopt.com).

Example 1. Let f = (1,2,3)7. Assume that we have no linear constraints. Assume
further that we have two matrix inequality constraints, first of size (3x3), second
of size (2x2). The first constraint contains full matrices, the second one diagonal
matrices:

40 + A r1+ 45 T2 + A T
A? A})t A%)7 A%)

The blocks A} have then 6 nonzero elements, block A? only two nonzero elements
(recall that we only give elements of the upper triangular matrix). In this case

vars = 3
constr =0
mconstr = 2

msizes

2)

x0 = (0.0,0.0,0.0) (for example)

fobj = (1.0,2.0,3.0)

0)

ci

bi_dim = (0)

bival =

4,4)

aidim =
ai_idx = (0,1,2,3,0,1,2,3
ainzs = (6,

6,6,6,2,2,2,2

= (3,

(

(

= (0.

(
bi_idx = (0)

(0.0

(

()

()

(A

Y(1),..., Ab(6), AY(1),..., AL(6),...... ,
AG(1), A§(2), AT(1), AT(2), A3(1), A3(2), A3(1), A3(2))

ai_val =

ai_col = (0,1,2,1,2,2, 0,1,2,1,2.2,...... ,0,1,0,1,0,1,0,1)
ai_row = (0,0,0,1,1,2, 0,0,0,1,1,2,...... ,0,1,0,1,0,1,0,1)

Example 2. Let again f = (1,2,3)”. We have two linear constraints with
by = (0,0,1)T, by =(5,6,00T, c¢=(3,-3)T

Assume further that we have two matrix inequality constraints, first of size (3x3),
second of size (2x2). The first constraint contains sparse matrices, the second one
diagonal matrices. Some of the matrices are empty, as shown below:

0 2 -1 0
0 2 0

0 + 2 X1

0 1
s o
0 2 0 -1
0 2 0
+ 0 Ta + 2 3
3 0
‘ -3 0

In this case
vars = 3
constr = 2

mconstr = 2

msizes = (3,2)
x0 = (0.0,0.0,0.0) (for example)
fobj = (1.0,2.0,3.0)
ci = (3.0, -3.0)
bidim = (1,2)
bi_idx = (2,0,1)

bi_val = (1.0, 5.0, 6.0)

3)
1,3,0,1,2)

aidim = (2,
aiidx = (
ainzs = (4,4,1,2,2)

ai_val =(2.0-1.0,2.0,2.0, 2.0-1.0,2.0,2.0, 1.0, 1.0,-1.0, 3.0,-3.0)
ai_col = (0,1,1,2,0,2,1,2, 1, 0,1, 0,1)

ai_row = (0,0,1,2, 0,0,1,2, 1, 0,1, 0,1)

